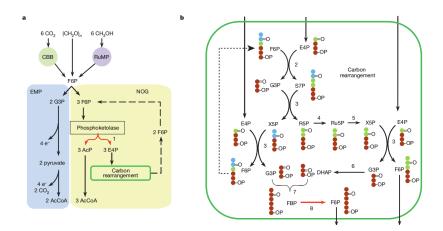

DM840 Algorithms in Cheminformatics: Multistep enzyme design with MØD

Daniel Merkle

October 30, 2019

Glycolysis

Glycolysis


LETTER

doi:10.1038/nature12575

Synthetic non-oxidative glycolysis enables complete carbon conservation

Igor W. Bogorad^{1,2}, Tzu-Shyang Lin¹ & James C. Liao^{1,3}

Glycolysis (classical and with 100% carbon yield)

Non-Oxidative Glycolysis (all 100% carbon yield)

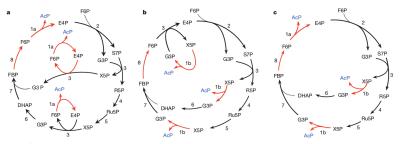
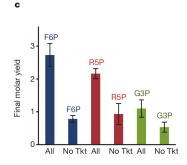
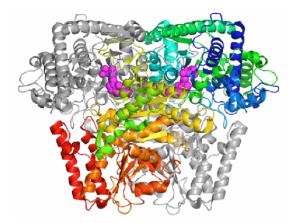



Figure 2 | Three FBP-dependent NOG networks. a-c, NOG using Fpk only (a), NOG using Xpk only (b) and NOG using F/Xpk (c). These configurations differ from those shown in Fig. 1 because the Xpk-linked Tkt has been

integrated with carbon rearrangement. The red arrows in **a**-**c** indicate irreversible reactions that drive the cycle. Enzyme numbers are defined in Fig. 1 legend, except: 1a, Fpk; 1b, Xpk.

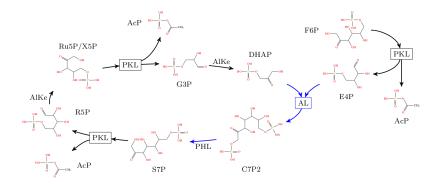
These networks are **engineered**.


Non-Oxidative Glycolysis (in vitro, Results)

Depicted: (molar) yield of AcP (2 carbons). Interpretation: all carbons of F6P are transformed into F6P (6 carbons). *in vivo* (in bacteria): not perfect, but similar

In a nutshell: It works

Enzymes


Different enzymes trigger/catalyze different reactions (depicted: FPK, catalyzing F6P).

How a Computer Scientist does it

First, expand the network with Graph Grammars, then something like

```
ief getBaseFlow(dg):
flow = dgFlow(dg)
for a in {Pi, water}:
    flow.addSource(a)
    flow.addSink(a)
flow.addSource(F6P)
flow.addConstraint(inFlow(F6P) == 1)
flow.addSink(AcP)
flow.transit.allowInOutReverse = False
return flow
```

What you get (for example)

Now ... got in the lab, build it.

What you get (more examples)

	Only FBP 8 Unique Reactions Reactions					Other Bisphosphates									
						7 Unique Reactions Reactions					8 Unique Reactions Reactions				
Phosphoketolase Type															
(XPK, FPK, SPK, OPK)	$\overline{7}$	8	9	10	11	7	8	9	10	11	7	8	9	10	11
(0, 0, 0, 3)	_	_	_	_	_	_	_	_	_	_	_	_	_	4	16
(0, 0, 1, 2)	_	_	-	_	_	_	_	-	_	_	_	-	3	2	_
(0, 0, 2, 1)	_	_	_	_	_	_	_	-	_	_	_	-	4	_	_
(0, 0, 3, 0)	_	_	_	1	2	_	_	1	2	_	_	_	_	9	20
(0, 1, 0, 2)	_	_	_	_	_	_	_	—	_	_	_	-	4	4	_
(0, 1, 1, 1)	_	_	_	_	_	_	_	_	_	_	_	3	_	_	_
(0, 1, 2, 0)	_	_	1	_	_	_	1	_	_	_	_	_	8	2	_
(0, 2, 0, 1)	_	_	_	_	_	_	_	-	_	_	_	_	6	_	_
(0, 2, 1, 0)	_	_	1	_	_	_	1	-	_	_	_	-	9	_	_
(0, 3, 0, 0)	_	_	-	2	4_{a}	-	_	2	4	-	-	_	_	14	24
(1, 0, 0, 2)	-	-	-	-	-	_	-	-	-	_	-	-	2	4	-
(1, 0, 1, 1)	_	_	_	_	-	_	_	_	-	-	-	1	_	_	_
(1, 0, 2, 0)	_	_	1	_	_	_	1	_	_	_	_	_	6	2	_
(1, 1, 0, 1)	_	_	_	_	_	_	_	_	_	_	_	2	_	_	_
(1, 1, 1, 0)	_	1	-	_	_	1	_	_	_	-	_	3	_	_	_
(1, 2, 0, 0)	_	_	2	_	-	-	2	_	-	-	-	_	10	-	_
(2, 0, 0, 1)	-	-	_	_	_	_	-	-	_	-	_	-	4	_	-
(2, 0, 1, 0)	_	_	1	-	_	_	1	_	-	-	-	_	7	_	_
(2, 1, 0, 0)	_	—	$2_{\rm c}$	_	_	_	2	—	_	-	_	_	10	_	_
(3, 0, 0, 0)	_	_	_	$2_{\rm b}$	4	_	_	2	4	_	_	-	_	12	20