
The Max-bak Ordering- A setion from the unfinished Master Thesis ofMette Hagenborg EskesenDepartment of Mathematis & Computer SieneUniversity of Southern Denmark, Odense UniversitySeptember 27, 2001Given an undireted multigraph G = (V;E), it is well known, that the edge-onnetivity�(G) of G an be found using n� 1 max-ow omputations. In this setion we will presentan alternative approah, in whih we ompute �(G) using only degree-omparisons and edge-ontrations. Our main tool is a speial ordering, here alled a max-bak ordering, of theverties of G. All graphs onsidered in this setion will be undireted.Subsequently we will also show how to �nd a sparse erti�ate for the edge-onnetivity�(G) of G, i.e. a �(G)-edge-onneted spanning subgraph G� = (V;E�) of G, where E� � Eand jE�j � �(G)jV j, using the same speial ordering.The presentation given below is inspired by a presentation given at SDU, Odense Univer-sity, by Tibor Jord�an in September 1996.We start with a few de�nitions and some properties of the strutures they de�ne.Definition 1 (Max-bak Ordering) A max-bak ordering of a given undireted multi-graph G is an ordering v1; v2; : : : ; vn of the verties of G, satisfying the inequalityd(Vi; vi+1) � d(Vi; vj);for all indies i and j, 1 � i < j � n. The set Vi is de�ned by Vi = fv1; v2; : : : ; vig.An example of a max-bak ordering an be seen in Figure 1 (a) on page 4.Lemma 1 A max-bak ordering of a given undireted multigraph G = (V;E) an be found inO(jV j log jV j+ jE0j) time, where E0 is the set of edges in the orresponding simple graph.Proof of Lemma 1 Let G = (V;E) be an undireted multigraph. It follows from the de�-nition above, that we an �nd a max-bak ordering of G by hoosing v1 2 V arbitrarily andthen suessive hoose vi+1 2 V as a vertex maximizing d(Vi; vi+1).We will pursue the above idea, whih bears a lot of similarities to the famous Single-SoureShortest-Path algorithm by Dijkstra (a desription of whih an be found in [CLR90℄), but�rst we will review our pereption of G. Dealing with multigraphs is usually not very pratialwhen our goal is a polynomial time algorithm, so in the following we will onsider G, not as amultigraph, but as a simple weighted graph G0 = (V;E0;W) with edge-weights depiting the1

multipliity of the edges in G. In this way we an represent G0 by an array of jV j adjaenylists, where the weight of the edge vu 2 E0, is simply stored with vertex u in v's adjaenylist { and vie versa.Having Dijkstra's algorithm in mind, we now implement the algorithm suggested above,using a priority queue Q ontaining all the verties v in V � Vi, keyed by the sum of theweights of the edges between v and Vi in G0. Initially we insert all the verties of V in Q, andgive them all key-value 0. In eah iterative step we then extrat the maximum keyed vertex vfrom Q, insert it into Vi and inrease the key-value of eah of v's neighbours u by the weightof the edge vu 2 E0.The omplexity of the algorithm is given by the total omplexity of the operations on Q.Implementing Q with a Fibonai heap, we have jV j Insert operations of amortized ost O(1),jV j ExtratMax operations taking O(log jV j) amortized time and at most jE0j InreaseKeyoperations of amortized ost O(1). Hene a total ost of O(jV j � 1 + jV j � log jV j+ jE0j � 1)as required. 2An ordering ful�lling De�nition 1 is sometimes alled a maximum adjaeny ordering, amaximum ardinality ordering or a legal ordering. Here however, we have hosen the termmax-bak ordering (as it was denoted in Tibor Jord�an's presentation) to illustrate the greedyhoie of vi+1, as being a vertexmaximizing the number of edges bak to the set Vi of previouslyhosen verties.Aording to Frank, Ibaraki & Nagamohi [FIN93℄ max-bak orderings (though this termwas not used), where �rst investigated by R. E. Tarjan and M. Yannakakis [TY84℄ in onne-tion with hordal graphs.Definition 2 (Continuous ordering) An ordering v1; v2; : : : ; vn of the verties of a multi-graph G is said to be ontinuous, if every onneted omponent C of G possesses the followingproperties:(i) the verties of C have onseutive indies in the ordering.(ii) every vertex of C (exept the one with the smallest index) is adjaent to a vertex witha lower index.In partiular we see, that if v1; v2; : : : ; vn is a ontinuous ordering of the verties of somemultigraph G, then vn and vn�1 belong to the same onneted omponent in G, if and onlyif d(vn) > 0.Lemma 2 Every max-bak ordering of a given multigraph G, is ontinuous.An illustrative example is given in Figure 1 (b) on page 4.Proof of Lemma 2 Let G be a multigraph and let v1; v2; : : : ; vn be an arbitrary max-bakordering of the verties of G. We then need to verify, that the ordering possesses property (i)and (ii) stated in De�nition 2.Property (i):Assume by ontradition the existene of a onneted omponent C in G in whih the indiesof the verties do not form an interval and hoose (without loss of generality) C to ontainthe smallest index among suh omponents. This gives us two indies i and h, suh that1 � i < i+ 1 < h � n, vi 2 C, vi+1 =2 C and vh 2 C.2

Let C 0 denote the onneted omponent of G ontaining vi+1. By the hoie of C and thefat that vi 2 C, C 0 ontains no vertex vl, with 1 � l � i. This implies, that d(Vi; vi+1) = 0.Sine vi and vh belong to the same onneted omponent, we have the existene of a pathbetween vi and vh. In partiular we therefore have the existene of a path between Vi and vhgiving us a vertex vj , i + 1 < j � n, suh that d(Vi; vj) � 1. Hene d(Vi; vi+1) < d(Vi; vj),ontraditing the de�nition of a max-bak ordering.Property (ii):Assume by ontradition the existene of a onneted omponent C in G with vertex-setfvk; vk+1; : : : ; vlg, 1 < k + 1 < l � n, where some vertex vi+1, k < i+ 1 < l, do not have anedge to a vertex with a smaller index. Note that i+ 1 6= l, sine the vertex vl has to have anbakwards edge in order for C to be onneted.By hoie of vi+1 d(Vi; vi+1) = 0. But sine C is onneted, we must have, thatd(fvk; vk+1; : : : ; vig; fvi+1; vi+2; : : : ; vlg) > 0, giving us a vertex vj 2 fvi+2; vi+3; : : : ; vlg suhthat 0 < d(fvk; vk+1; : : : ; vig; vj) � d(Vi; vj). But then d(Vi; vi+1) < d(Vi; vj) ontraditingthe de�nition of a max-bak ordering. 2Definition 3 (Max-bak forest) Let G = (V;E) be a multigraph. The forest orrespond-ing to a given max-bak ordering v1; v2; : : : ; vn of G, is de�ned as the simple graph F = (V;E0),where E0 = fvivj j vivj 2 E ^ i < j ^ d(Vi�1; vj) = 0g.It is lear from the de�nition, that given a multigraph G = (V;E) and a max-bak orderingv1; v2; : : : ; vn of G we an easily �nd the orresponding max-bak forest by a sequene ofgreedy hoies, in whih we, for eah vertex v 2 V , inlude the edge inident to v, whihreahes as far bakwards in the ordering as possible. In other words, the idea is to go throughthe verties of V (in any order) and for eah vertex vi, to inlude in F an edge vivj from E,j < i, minimizing the index j (if more than one edge ful�ll the riteria, we only inlude oneof these edges). If in some step, there is no edge inident to v, whih reahes bakwards inthe ordering, no edge is inluded in F in that step.That the de�ned forest indeed is a forest, an be veri�ed by establishing, that F ontainsno yles and at most n � 1 edges. The latter, however, follows diretly from the aboveonstrution of F , sine we inlude at most one edge for eah of the verties v2; : : : ; vn andnone for the vertex v1.To see that F ontains no yles, we assume the existene of a yle and let v be thevertex with the highest index in that yle. The hoie of v implies that it has at least twoadjaent verties w and u in F , both with indies less than i. However, this ontradits theonstrution of F , aording to whih we only inlude one of the edges wv and uv.It will be useful to note, that the spanning forest onstruted above is maximal in G, i.e.the addition of any edge from E=F to F would reate a yle. This is easily seen, sine (bythe above onstrution) the number of edges in F is given by the number of verties in Gminus the number of onneted omponents in G. This number equals the size of a maximumforest in G, hene F is maximum and must therefore also be maximal. An obvious, yet useful,onsequene of this observation is that F gives rise to a spanning tree in eah of the onnetedomponents of G.An example of a max-bak forest is given in Figure 1 ().3

v1 v2 v4 v6 v10v12
v5 v7 v8 v9 v11

v1 v3v2 v4 v5 v6 v7 v8 v9 v10 v11 v12
v1 v3v2 v4 v5 v6 v7 v8 v9 v10 v11 v12

v3
(a)
(b)
()

G :
G :
F :Figure 1: (a) v1; v2; : : : ; v12 is an example of a max-bak ordering of the verties of theshown graph G. (b) G drawn in a way illustrating that the ordering from (a) is ontinuous.() The forest F orresponding to the max-bak ordering in question.Lemma 3 If v1; v2; : : : ; vn is a max-bak ordering of a given multigraph G, it is also a max-bak ordering of the graph G�E[F ℄, where F denotes the forest orresponding to the max-bakordering, and E[F ℄ spei�es the edge-set of that forest.Proof of Lemma 3 Let G be a multigraph, let v1; v2; : : : ; vn be a max-bak ordering of Gand assume by ontradition, that v1; v2; : : : ; vn is not a max-bak ordering of G�E[F ℄.The assumption gives us the existene of two indies i and j, 1 < i + 1 < j � n, suhthat dG�E[F ℄(Vi; vi+1) < dG�E[F ℄(Vi; vj). Consequently dG�E[F ℄(Vi; vj) � 1, implying thatdG(Vi; vj) � 1. Sine v1; v2; : : : ; vn is a max-bak ordering in G and i + 1 < j, the latterfurthermore gives us that dG(Vi; vi+1) � 1.We an onlude that, in G, both vi+1 and vj have at least one vertex in Vi, i.e. theyboth have at least one edge going bakwards in the ordering. Hene, the de�nition of amax-bak ordering and the forest orresponding to it gives the inequality dG�E[F ℄(Vi; vi+1) =dG(Vi; vi+1)� 1 � dG(Vi; vj)� 1 = dG�E[F ℄(Vi; vj), ontraditing our hoie of i and j. 2Theorem 4 For any max-bak ordering v1; v2; : : : ; vn of a given multigraph G, we have that�(vn�1; vn) = d(vn):Proof of Theorem 4 Let G be a multigraph and let v1; v2; : : : ; vn be an arbitrary max-bakordering of G. Clearly d(vn) � �(vn�1; vn), sine vn an be the end-vertex of at most d(vn)edge-disjoint (vn�1; vn)-paths. For the same reason the theorem is trivial, if d(vn) = 0, so wemay assume that d(vn) = k > 0.Use the notation F1 to speify the forest of G orresponding to the max-bak orderingv1; v2; : : : ; vn and let Fi speify the forest of graph G�[i�1j=1E[Fj ℄, 2 � i � k, orresponding4

to the same max-bak ordering. Reall that Lemma 3 ensures the existene of eah of theforests F1; F2; : : : ; Fk�1 and Fk.Sine dG(vn) = k, the de�nition of the forest orresponding to a max-bak ordering gives,that dFi(vn) = 1, for all 1 � i � k. Hene the degree of vn is nonzero in all of the graphsG � [i�1j=1E[Fj ℄, 2 � i � k, so Lemma 2 ombined with the remark after De�nition 2 implythat vn�1 and vn belong to the same onneted omponent in eah of these graph (as well as inG). Therefore vn�1 and vn must belong to the same tree in eah of the edge-disjoint forests Fi,1 � i � k, giving k edge-disjoint (vn�1; vn)-paths in G. Consequently �(vn�1; vn) � k = d(vn)and we are done. 2Definition 4 (Gvw) Let G = (V;E) be a multigraph with distint verties v; w 2 V . We nowlet Gvw denote the multigraph obtained from G, by removing all vw-edges and identifying vwith w, so that the resulting vertex z is inident with those edges (other than the vw-edges),that where originally inident with either v or w.
identifying v with w minimum utzminimum utv wG: Gvw :x yxyFigure 2: Example of a graph G in whih �(G) < �(Gvw). Notie how the ut(fx; y; vg; fwg) simply does not exist in GvwTheorem 5 Let G = (V;E) be an undireted multigraph on at least 3 verties, then�(G) = minf�(Gvw); �G(v; w)gfor all v; w 2 V .Proof of Theorem 5 Let G = (V;E) be an undireted multigraph and let v; w 2 V be twoarbitrary verties of G. Obviously �(G) � �G(v; w), sine �(G) = minx;y2V �G(x; y).Sine the operation of identifying v with w eliminates some of the possible uts in G (allthe uts separating v and w) and does not reate new ones, every ut in Gvw must be aut in G. Thus �(G) � �(Gvw) and we have the inequality �(G) � minf�(Gvw); �G(v; w)g.Figure 2 illustrates, how a (minimum) ut in G might not exist in Gvw.Let (S; S) be a minimum ut in G. If (S; S) does not separate v and w, then (S; S) is alsoa minimum ut in Gvw. Hene �(Gvw) = �(G) � �G(v; w). If (S; S) does separate v and win G it is not a valid ut in Gvw, and we have, that �G(v; w) = �(G) � �(Gvw). 2Theorem 4 and Theorem 5 ombined, more or less gives us the desired algorithm for �nding theedge-onnetivity of a given multigraph G { without the use of maximum-ow omputations.Indeed we are ready to address the main subjet of this setion.The idea is to repeatedly hoose a pair of verties v and w, ompute the size of a minimum(v; w)-ut and then replae G by the ontrated graph Gvw. This way we keep trak of thesize of all potential minimum uts lost in the proess, and after n� 1 iterative steps we have5

a graph onsisting of only a single vertex. By Theorem 5 the edge onnetivity of the originalgraph G is now given by the minimum size of all the minimum uts found along the way.A ruial observation is, that the hoie of v and w is arbitrary in eah step. Consequentlywe might as well hoose them in a way that makes the size of a minimum (v; w)-ut as easy aspossible to determine. By Theorem 4 we see, that the aid of a max-bak ordering enables usto hoose v and w so that �(v; w) is given by d(w). Using this approah the edge-onnetivityof G is learly found as the minimum among all the values dGi(wi), that appeared during theproess (here Gi and wi denotes the graph and the hosen vertex w at the i'th iteration). Inaddition, a global minimum ut in the original graph G is given by the set of verties, thathas been ontrated into that partiular vertex w, that attains the minimum just mentioned.As seen in Figure 3, there is no guarantee that a given max-bak ordering will remaina max-bak ordering through all steps of the algorithm. Furthermore, verifying whether anordering is in fat a max-bak ordering, will take just as long as to �nd a new max-bakordering. As a onsequene hereof, the algorithm given below, will ompute a new max-bakordering in eah iterative step.
identifying v with wv1 v2v3v4

G : v1 v2\v3v4"Gv3v4 :
Figure 3: A simple example showing that a max-bak ordering of a given graph might notbe valid after the ontration of the last two verties in the ordering. Clearly the orderingfv1; v2; \v3v4"g is not a max-bak ordering of Gv3v4 , sine d(v1; v2) < d(v1; \v3v4").ALGORITHM FOR FINDING �(G):INPUT: A multigraph GOUTPUT: k = �(G) and a minimum ut (S; S) in Gk :=1S := ;n := jV (G)jwhile n > 1�nd a max-bak ordering v1; v2; : : : ; vn of Gif d(vn) < kk := d(vn)S := fv1; v2; : : : ; vn�1gG := Gvn�1vnn := n� 1return(k; S)Figure 4 shows a step-by-step example of the algorithm in use.6

()
(e)
(g)

d(v6) = 4v1 v2
v3

v4v5
v6

v1 v2
v3

v4
v2v1

d(v4) = 1
d(v2) = 2

v1 v2
v3

v4v5
v6v7 v8d(v8) = 2

(b)
(d)
(f)

v1 v2
v3

v4v5
v6v7 d(v7) = 3

v3 v5v1 v2 v4

v3
v2v1

d(v5) = 4
d(v3) = 3

minimum utG :(a)

Figure 4: A step-by-step example of how the algorithm for �nding �(G) works. The graphand the given max-bak ordering have been taken from Figure 1. The ordering is harateris-ti, sine it is valid through all the iterative steps of the algorithm (however the algorithm willreprodue it in eah iteration). The algorithm �nds, that �(G) = minf2; 3; 4; 4; 1; 3; 2g= 1,and that (fv1; v2; v3g; fv4; v5; : : : ; v8g) is a minimum ut in the graph { as indiated in Figure(a).Theorem 6 Given an undireted multigraph G = (V;E), we an �nd the edge-onnetivity�(G) of G as well as a minimum ut in the graph in time O(jV j2logjV j+ jV jjE0j) time withoutthe use of ow-omputations.E0 denotes the set of edges in the orresponding simple graph.Proof of Theorem 6 Let G = (V;E) be a multigraph. That the algorithm given aboveatually �nds �(G) along with a minimum ut (S; S) in G { and does so without the use ofow-omputations { should be established by now, so we turn our attention to the omplexityof the algorithm.There is no doubt, that the most expensive operations used in the algorithm is to �nd amax-bak ordering, so evidently the omplexity of the algorithm is dominated by the jV j � 17

times, this operation is arried out. By Lemma 1 we therefore onlude that the total timeomplexity of the algorithm is given by O((jV j � 1) � (jV jlogjV j + jE0j)) = O(jV j2logjV j+jV jjE0j). 2To the best of our knowledge, one of the fastest known ow-algorithms for determiningthe edge-onnetivity of a multigraph G = (V;E) is a O(jV jjE0j) time algorithm pre-sented by Matula in 1987 [AMO93℄. Obviously the algorithm presented here is faster forjE0j 2
(jV jlogjV j).As mentioned in the opening, the onept of a max-bak ordering an also be used to �nd asparse erti�ate for the edge-onnetivity of a given multigraph. To do so, we will need thefollowing lemma.Lemma 7 (Sparse erti�ate) Let G be a k-edge-onneted multigraph. Let F1 be a maxi-mal spanning forest in G and let Fi be a maximal spanning forest in G�[i�1j=1E[Fj ℄, 2 � i � k.The graph H = [ki=1Fi is then k-edge-onneted.Proof of Lemma 7 Let G = (V;E) and Fi, 1 � i � k, be as desribed in the theorem.Then let H be the union of the k forests Fi, 1 � i � k, and assume by ontradition that His not k-edge-onneted.The assumption gives us the existene of a ut (S; S), S � V , of size at most k � 1 in H.Sine G is k-edge-onneted, the size of (S; S) in G is at least k. Consequently we must havetwo distint verties v 2 S and w 2 S, suh that vw 2 E[G℄, vw =2 E[H℄ and �H(v; w) < k.Sine vw =2 E[H℄ we have vw 2 G�[i�1j=1E[Fj ℄, 2 � i � k, plaing v and w in a ommononneted omponent in eah of the graphs G and G�[i�1j=1E[Fi℄, 2 � i � k. But then, sinethe forests Fi, 1 � i � k, are maximal, v and w must also belong to a ommon onnetedomponent (a tree) in eah of the forests. Thus we get k edge-disjoint (v; w)-paths in H,ontraditing the hoie of v and w. 2Aording to Lemma 7, it is possible to �nd a sparse erti�ate G� for the k-edge-onnetivity of a given multigraph G, by repeatedly �nding an arbitrary maximal forestF in G and then replaing G by the graph G � E[F ℄. After k iterative steps, the sparseerti�ate G� is given as the union of the k forests found along the way.This algorithm seems simple and straightforward, but, as we shall see below, it an bemade even simpler if we hoose to onsider forests belonging to some max-bak ordering ofG, instead of just arbitrary forests.By Lemma 3 it will not be neessary to produe more than one max-bak ordering ofG, sine the ordering will remain valid as a max-bak ordering throughout the proess. Aninteresting result hereof, is that we might as well reate G� in one step, instead of k stepswhere we remove only one forest at a time:Find a max-bak ordering fv1; v2; : : : ; vng of G. For eah vertex v 2 V , inlude in G�those k edges (vi; v) 2 E with the smallest index 1 � i < j. If there is fewer than k suhedges, just take as many as there are.Theorem 8 Let G = (V;E) be a k-edge-onneted multigraph. In time O(jV j log jV j+ jE0j)we an �nd a k-edge-onneted spanning subgraph G� = (V;E�), suh that jE�j � kjV j.E0 denotes the set of edges in the simple graph orresponding to G.8

Proof of Theorem 8 Let G = (V;E) be a k-edge-onneted multigraph, and assume thatwe have found a max-bak ordering v1; v2; : : : ; vn of the verties of G.In order to �nd a sparse erti�ate for the edge-onnetivity of G, we will more or lessfollow the algorithmi ideas disussed above, but instead of going through the verties of V inan arbitrary order, we will onstrut G� by looking at eah edgey one, and then determinewhether or not it should be a part of E�. Using this approah, it is of ourse ruial, thatwe hoose the right order in whih to examine the edge-set of G and it is here the max-bakordering will be of tremendous help.In the text preeding the theorem, we saw that for eah vertex vi in V , we wish to inludethose k edges inident to vi, that reahes as far bak as possible in the max-bak ordering.Hene we start by examining the edges inident to v1, then those edges inident to v2 thatare not inident to v1, followed by those edges inident to v3 that are not inident to v1 or v2and so forth.Note that in eah step we only examine edges, that reahes forward in the max-bakordering, and reall that in G� eah vertex must have at most k edges reahing bakwardsbut an arbitrary number of edges reahing forward.An edge vivj , 1 � i < j � n, is to be inluded in E� if we have not yet inluded k edgesinident to vj . If we have already inluded k edges inident to vj , eah of those edges reahesa vertex vk, where 1 � k � i, indiating that our algorithm must be orret.Analyzing the algorithm for �nding a max-bak ordering (from the proof of Lemma 1),we see that we an onstrut the max-bak ordering and the spanning subgraph G� = (V;E�)simultaneously, sine the algorithm from Lemma 1 examine eah of the edges in E0 in theexat same order, as we just did in the proof above. Hene, by Lemma 1, we an �nd G� intime O(jV j log jV j+ jE0j).As for the size of G�, we reall that G� is onstruted as the union of k spanning forestin G, or equivalently as the union of at most k bakward-edges from eah vertex in V . It istherefore obvious that the edge-set E� of G� annot have more than k(jV j � 1) edges. 2Using a somewhat similar approah, Nagamohi and Ibaraki [NI92℄ have presented a linear-time algorithm for �nding a sparse erti�ate for the edge-onnetivity �(G) of a given multi-graph G. It is easy to verify that their O(jV j+ jE0j) algorithm produes a max-bak orderingas well as a sparse erti�ate, so by their result, we an atually get an O(jV j2+ jV jjE0j) algo-rithm for �nding �(G) as opposed to the O(jV j2logjV j+ jV jjE0j) algorithm from Theorem 6.Referenes[AMO93℄ R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,and Appliations. PRENTICEHALL, New Jersey, 1993.[CLR90℄ T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introdution to Algorithms.MGraw-Hill Book Company, Massahusetts, 1990.[FIN93℄ A. Frank, T. Ibaraki, and H. Nagamohi. On sparse subgraphs preserving onne-tivity properties. Journal of Graph Theory, 17(3):pp. 275{281, 1993.yHaving the proof of Lemma 1 in mind, it should be obvious how we an onsider G to be a simpleweighted graph, with edge-weights depiting the multipliity of the original edges. We do this in order to keepthe algorithm polynomial. 9

[NI92℄ H. Nagamohi and T. Ibaraki. A linear-time algirithm for �nding a sparse k-onneted spanning subgraph of a k-onneted graph. Algorithmia, 7:pp.583{596,1992.[TY84℄ R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test hordality ofgraphs, test ayliity of hypergraphs, and seletively redue ayli hypergraphs.SIAM J. Computing, 13(3):pp.566{579, 1984.

10

