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1 Introduction

This note introduces an exact solution method for mathematical program-
ming problems. The method is based on Dantzig-Wolfe decomposition and
delayed column generation. The note concerns mathematical programming
where a problem is represented by an objective function and a set of con-
straints, e.g.:

min cX

s. t. AX ≥ b
X ∈ S

Here X is a vector of variables, all lying in the set S. The cost vector is
denoted c. A is a matrix, b a vector, and together they form the constraints
on the variables. When S is the set of real numbers, the mathematical model
is said to be a linear program (LP). If S is a binary set or the set of integers,
the problem is an integer program (IP). If some variables in X belong to the
set of real numbers and others to the set of binaries or integers, the model
is said to be a mixed integer program (MIP).

Let X ∈ R : x ≥ 0, x ∈ X in the above formulation and denote this
the primal problem. The dual model is found by transposing the primal
problem:

max bTY

s. t. ATY ≤ cT

Y ≥ 0

where bT is the transpose of b, AT is the transpose of A, and cT is the
transpose of c. The dual variables are denoted Y . The optimal solution
value for the dual problem equals the optimal solution value for the primal
problem.
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Dantzig-Wolfe decomposition transforms the original mathematical prob-
lem into a master problem, where the number of columns may be large but
the number of rows is reduced. To make the new model more tractable,
columns are generated iteratively in the hopes of only having to include a
subset of the columns in the model. This is denoted delayed column gener-
ation and consists of solving a pricing problem in each iteration.

This note introduces Dantzig-Wolfe decomposition and delayed columns
generation and is not meant to be an in-depth survey but more a guide
for understanding the basics of the approaches. For details on the methods
and examples of applications, see e.g. Desaulniers et al. [3], Lübbecke and
Desrosiers [4], and Nemhauser and Wolsey [5].

2 Dantzig-Wolfe decomposition

Dantzig-Wolfe decomposition was introduced by Dantzig and Wolfe [2] and
consists of reformulating a problem into a master problem and a pricing
problem for improving the tractability of large-scale problems. The mas-
ter problem typically has fewer constraints than the original problem, but
the number of columns may be very large. The pricing problem generates
columns, which have the potential to improve the current solution.

In order to Dantzig-Wolfe decompose a problem, the constraint matrix
should take on a certain structure and consist of a number of independent
constraints and a number of connecting constraints. The constraint matrix
is block-angular, i.e., the matrix can be divided into blocks with non-zero co-
e�cients. These blocks constitute the independent constraints. Connecting
constraints bind the columns together. Consider the problem:

min
∑
k∈K

ckxk (1)

s. t.
∑
k∈K

Akxk ≤ b (2)

Dkxk ≤ dk ∀k ∈ K (3)

xk ∈ Znk
+ ∀k ∈ K (4)

where K is the set of blocks and Ak and Dk constitute the constraint ma-
trices. Constraints Ak are the connecting block, and Dk the independent
block.

Figure 1 illustrates this matrix consisting of connecting and independent
constraints as blocks Ak and Dk, respectively. Now, we de�ne the domains
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Figure 1: The desired matrix structure for Dantzig-Wolfe decomposition.
The blocks A1, A2, . . . , An are connecting constraints and the blocks
D1, D2, . . . , Dn are independent constraints.

Xk as Xk = {xk ∈ Znk
+ , Dkxk ≤ dk} and we can rewrite our problem into:

min
∑
k∈K

ckxk (5)

s. t.
∑
k∈K

Akxk ≤ b (6)

xk ∈ Xk ∀k ∈ K (7)

Note that this problem only contains the connecting constraints. The vari-
ables xk must satisfy the independent constraints, which thus are left out.
The model holds fewer constraints than the original formulation, but the
number of columns may be very large. How to deal with the large number
of variables is discussed in the next section.

Example: Consider the Minimum Cost Multi-Commodity unsplittable
Flow Problem (MCMCuFP), which consists of sending a number of
commodities through a capacitated network such that the total routing
cost is minimized and such that each commodity uses exactly one path.

The network is represented as a graph with nodes and edges G =
(V,E). Commodities are represented by the set L and each commodity
l ∈ L consists of a source node, a target node, and a quantity ql to
route. Let cij ≥ 0 be the cost of routing one unit of �ow on edge
(ij) ∈ E and let dij be the capacity of edge (ij) ∈ E. Finally, let
xlij ∈ {0, 1} be a binary variable indicating whether or not commodity
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l ∈ L visits edge (ij) ∈ E. Now MCMCuFP can be formulated as:

min
∑
l∈L

∑
(ij)∈E

cijq
lxlij (8)

s. t.
∑
l∈L

qlxlij ≤ dij ∀(ij) ∈ E (9)∑
(ij)∈E

xlij −
∑

(ji)∈E

xlji = bli ∀i ∈ V, ∀l ∈ L (10)

xlij ∈ {0, 1} ∀(ij) ∈ E,∀l ∈ L (11)

The objective (8) minimizes the total cost of routing all commodities.
The �rst constraint (9) ensures that edge capacities are not violated.
In constraint (10) let bli = 1 if i is the source node of commodity
l, let bli = −1 if i is the target node of commodity l, and let bli = 0
otherwise. Constraint (10) ensures that each commodity is routed from
its source node to its target node. Finally the bound (11) makes sure
that variables take on binary values.

Barnhart et al. [1] Dantzig-Wolfe decomposed MCMCuFP such that
the pricing problem generates a path for each commodity and the mas-
ter problem merges the paths into an overall feasible solution. Let P
be the set of paths and let the cost cp of each path be de�ned as the
sum of visited edges

∑
(ij)∈p cij . The binary variable xlp ∈ {0, 1} in-

dicates whether or not commodity l ∈ L uses path p ∈ P . Also, let
δpij be a constant denoting whether or not path p visits edge (ij) ∈ E.
The master problem is:

min
∑
l∈L

∑
p∈P

cpq
lxlp (12)

s. t.
∑
l∈L

qlδpijx
l
p ≤ dij ∀(ij) ∈ E (13)∑

p∈P
xlp = 1 ∀l ∈ L (14)

xlp ∈ {0, 1} ∀p ∈ P,∀l ∈ L (15)

The objective (12) still minimizes the total cost of routing the com-
modities and the �rst constraint (13) makes sure that edge capacities
are satis�ed. Constraint (14) says that each commodity can use exactly
one path and the bound (15) ensures that variables take on feasible val-
ues.

3 Delayed column generation

When applying Dantzig-Wolfe decomposition on an mathematical formula-
tion, the number of columns may be very large. An idea is thus to only
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include a subset of the columns. In this case we denote (5)-(7) the restricted
master problem, because only a subset of columns are included. Columns are
generated iteratively by solving the pricing problem. Only columns, which
have the potential to improve the current solution to the restricted master
problem, are added. This procedure is denoted delayed column generation,
or simply column generation.

To decide whether or not a column has potential to improve the current
solution to the restricted master problem, the dual variables of the current
solution are considered. Consider the restricted master problem:

min
∑
j∈J

cjxj

s. t.
∑
j∈J

ajxj ≥ b (16)

xj ∈ X

The reduced cost for a column j ∈ J is de�ned as cj − yaj where y is
the dual cost vector. In minimization problems, a generated column has
potential to improve the current solution to the restricted master problem if
its reduced cost is negative; in maximization problems positive reduced costs
are sought. Now, the objective of the pricing problem is the reduced cost
and the constraints are the independent constraints of the original problem:

min (cj − yaj)xj
s. t. Dxj ≤ d (17)

xj ∈ Zn
+

A pricing problem is generated for each block k ∈ K of the original prob-
lem. The pricing problems for di�erent blocks may thus di�er. Columns
generated by the pricing problem, are not necessarily part of the solution
in the following iteration even though they had negative reduced costs. If
one generated column becomes part of the next solution then the remaining
generated columns may become uninteresting. Also, even if a column is part
of the solution in the iteration just after its generation, the column is not
necessarily part of an optimal solution.

The overall column generation procedure can now be stated as:

1. Solve the restricted master problem (16)

2. Generate columns with the most negative reduced costs by solving the
corresponding pricing problems (17)

3. If new columns are generated go to step 1, otherwise stop

Often it is only slightly more expensive to generate several columns at a
time. Hence this may be bene�cial, for instance when the pricing problem
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is di�cult to solve, e.g. NP-hard. In this case, the pricing problem can
also be solved heuristically. However, when the heuristic cannot generate a
column with negative reduced cost, then the pricing problem must be solved
to optimality to ensure that the column generation procedure eventually
gives an optimal solution.

Example (cont). Consider the Minimum Cost Multi-Commodity
unsplittable Flow Problem from the previous example and how the
problem was Dantzig-Wolfe decomposed. This example shows how to
generate columns for the master problem according to Barnhart et al.
[1]. The restricted master problem became:

min
∑
l∈L

∑
p∈P

cpq
lxlp (18)

s. t.
∑
l∈L

qlδpijx
l
p ≤ dij ∀(ij) ∈ E (19)∑

p∈P
xlp = 1 ∀l ∈ L (20)

xlp ∈ {0, 1} ∀p ∈ P,∀l ∈ L (21)

Let πij ≤ 0 be the dual of constraint (19) and σl ∈ R be the dual of
constraint (20). The reduced cost for a column p for a commodity l is:

c̄lp =
∑

(ij)∈E

ql(cij − πij)− σl

The pricing problem for each column p and commodity l seeks to �nd
columns with negative reduced cost. Now, σl is known for each com-
modity and the reduced cost can be rewritten as:∑

(ij)∈E

ql(cij − πij) < σl

Let the cost of each edge (ij) ∈ E in the graph be replaced by (cij −
πij), which is non-negative because cij ≥ 0 and πij ≤ 0. The pricing
problem consists of �nding the shortest path from the source node
to the target node of the commodity, such that the total (reduced)
cost is minimized. Because edge weights are non-negative, the pricing
problem is polynomially solvable. If the pricing problem �nds a path
with total cost less than σl then the corresponding column is priced
into the master problem.
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