
A New Constructive Method for the One-Letter
Context-Free Grammars

Ştefan ANDREI and Wei-Ngan CHIN
Singapore-MIT Alliance E4-04-10, 4 Engineering Drive 3, Singapore 117576

Abstract— Constructive methods for obtaining the regular
grammar counterparts for some sub-classes of the context free
grammars (cfg) have been investigated by many researchers.
An important class of grammars for which this is always
possible is the one-lettercfg . We show in this paper a new
constructive method for transforming arbitrary one-letter cfg
to an equivalent regular expression of star-height 0 or 1. Our
new result is considerably simpler than a previous construction
by Leiss, and we also propose a new normal form for a regular
expression with single-star occurrence. Through an alphabet
factorization theorem, we show how to go beyond the one-letter
cfg in a straight-forward way.

Index Terms— reduction of a context-free grammar, one-letter
context-free language, regular expression

I. I NTRODUCTION

The subclass of one-letter alphabet languages has been stud-
ied for many years. The result “Each context-free one-letter
language is regular” was first proven in [13] and re-published
in [14] using Parikh mappings. A second method based on
the “pumping” lemma for the context-free languages (cfl ’s)
was presented in [10]. Salomaa ([15]) used thesystems of
equations(based on∪, · and ∗ operators) to prove that the
star-height of every one-letter alphabet language is equal to0
or 1. Later, Leiss ([12]) gave the first constructive method by
developing a theory of language equations over a one-letter
alphabet. Several key theorems were proven and tied together
to provide an algorithm which solves any equation of that
type. In this paper, we shall present a new simpler method
using only a single result, called theRegularization Theorem,
with the help of a new normal form for one-letter equations.

Like [1], [7], [10], we will use systems of equations to
denotecfg ’s. It is known that for an arbitrarycfg , it is
undecidable whether its least fixed point can be expressed
as a regular expression, in general ([5]). We define a new
normal form for the one-letter equations and a new theorem for
solving them. AlgorithmA (Section III) will use this normal
form to determine precisely the least fixed point, as an equiv-
alent regular expression. By considering the classes ofone-
letter/one-variable factorizable, we enlarge slightly the class
of cfg ’s for which the construction of a regular expression
remains decidable.

Ştefan ANDREI is with Singapore-MIT Alliance, National
University of Singapore, CS Programme, Singapore, 117543; e-mail:
andrei@comp.nus.edu.sg

Wei-Ngan CHIN is with National University of Singapore, School of
Computing, Department of Computer Science, Singapore, 117543; e-mail:
chinwn@comp.nus.edu.sg.

II. PRELIMINARIES

We suppose the reader is familiar with the basic notions of
the formal language theory, but some important notions are
briefly covered here.

A context-free grammar is denoted as G =
(VN , VT , S, P), where VN/VT are the alphabets of
variables/terminals, (V = VN ∪ VT is the alphabet of
all symbols ofG), S is the start symbol andP ⊆ VN ×V ∗ is
the set of productions. The productionsX → α1, X → α2,
..., X → αk will be denoted byX → α1 |α2 | ... |αk and
the right-hand side ofX is denoted byrhs (X), that is
{α1, α2, ..., αk}. A variable X is a self-embedded variable
in G if there exists a derivationX

∗=⇒
G

αXβ, where α,

β ∈ V + ([6]). G is a self-embedded grammar if there
exists a self-embedded variable.G is a reduced grammar
if ∀ X ∈ V , S

∗=⇒
G

α X β and ∀ X ∈ VN , X
∗=⇒
G

u, with

u ∈ V ∗
T . The empty word is denoted byε. A cfg is proper

if it has no ε-productions (i.e.X → ε, X ∈ VN) and no
chain-productions (i.e.X → Y , X,Y ∈ VN). It is known
that for everycfg (which doesn’t generatesε) there exists
an equivalent propercfg .

The set of the terminal words attached to the variableX
of the grammarG is LG(X) = {w ∈ V ∗

T | ∃ X
+=⇒
G

w}
(

m=⇒
G

(
+=⇒
G

) means thatm (at least one) productions have been

applied in G). The set ofsentential forms of X in G is
SG(X) = {α ∈ V ∗ | ∃ X

∗=⇒
G

α}, the set ofsentential

forms of G is S(G) = SG(S). The languageof G is L(G) =
S(G)∩V ∗

T = LG(S). All the above sets can be easily extended
to words, i.e.LG(α) = {α ∈ V ∗

T | ∃ α
+=⇒
G

w}, a.s.o.

A permutation with n elements is an one-to-one correspon-
dence from{1, ..., n} to {1, ..., n}, the set of all permutations
with n elements is denoted byΠn. N denotes the set of natural
numbers;1, n denotes the set{1, ..., n}, i, j ∈ 1, n denotes
i ∈ 1, n, j ∈ 1, n.

We continue by providing some results related to thesystem
of equations([1]). The systems of equations are extremely
concise for modelingcfl ’s ([7], [10]). The notions of substi-
tution, solution, and equivalence can be found in [1], [11].

Definition 2.1: Let G = ({X1, ..., Xn}, VT , X1, P) be a
cfg . A system of (Xi−)equations over G is a vectorP =
(P1, ...,Pn) of subsets ofV ∗, usually written as:Xi =
Pi, ∀ i ∈ 1, n, with Pi = {α ∈ V ∗ | Xi → α ∈ P}.

The next classical result gives one method for computing
the minimal solution of a system of equations by derivations
([1]).

Theorem 2.1:Let G = ({X1, ..., Xn}, VT , X1, P) be a
cfg . Then the vectorLG = (LG(X1), ..., LG(Xn)) is the
least solution of the associated system.

The next theorem refers to a well known transformation
which “eliminates”X from a linearX−equation ([3], [15],
[11]). From now on, unless specified otherwise, we will use
notationsα = α1 + ...+αm, β = β1 + ...+βn, wherem, and
n ∈ N. We shall useX /∈ β to meanX /∈ βj , ∀ j ∈ 1, n.

Theorem 2.2:Let X = α X +β be anX−equation, where
X /∈ α, and X /∈ β. The least solution isX = α∗β, and if
ε /∈ α, then this is unique.

III. O NE-LETTER CFG AND ITS REGULAR CONSTRUCTION

In this section, we shall give a new constructive method for
regularizing one-lettercfg ’s that is more concise and general
than the method proposed by Leiss ([12]). The commutativity
plays an important role for transforming the one-lettercfg ’s
and this is covered in the following lemma.

Lemma 3.1:Let G = (VN , {a}, S, P) be a one-lettercfg .
The set of allcommutative grammars of G is Gcom(G) =
{(VN , {a}, S, Pcom), wherePcom = {X → απ(1) ... απ(k) |
X → α1 ... αk ∈ P, π ∈ Πk}. Then for everyGcom ∈
Gcom(G), it follows L(G) = L(Gcom).
Proof It can be easily proved by induction onl, l ≥ 1, that
for any X ∈ VN , we have:(1) X

l=⇒
G

an iff X
l=⇒

Gcom

an.

Complete proof can be found in [2].

Lemma 3.2 allows the symbols of any sentential form to be
re-ordered in an one-lettercfg . Its proof is similar to Lemma
3.1.

Lemma 3.2:Let G = (VN , {a}, S, P) be an one-lettercfg
and let us consider the derivationα1 ... αk

∗=⇒
G

an. For any

π ∈ Πk, we haveαπ(1) ... απ(k)
∗=⇒
G

an.

The next lemma shows how star-operations are flattened in
the one-lettercfg ’s.

Lemma 3.3:Let G = (VN , {a}, S, P) be an one-lettercfg
andα1, ..., αn some words overVN ∪{a}. Then the following
properties hold:LG((α1 + ... + αn)∗) = LG(α∗1...α

∗
n) =

LG((α∗1...α
∗
n)∗), LG((α1α

∗
2...α

∗
n)∗) = ε+LG(α1α

∗
1α
∗
2...α

∗
n).

Proof Focusing to the first equality, we have to prove that:
(α1 + ... + αn)∗ ∗=⇒

G
am iff α∗1...α

∗
n

∗=⇒
G

am. Based on

Lemma 3.2, the wordsα1, ..., αn can be commuted in any
order. We proceed by induction onn. First, let us suppose
that n = 2. The inclusionLG((α1 + α2)∗) ⊇ LG(α∗1α

∗
2) is

obvious. For the other inclusion, let us takeβ = (α1 + α2)n,
n ≥ 0. It can be rewrittenβ = αn1

1 αn2
2 ... αnk−1

1 αnk
2 , where

ni ∈ 0, n, ∀ i ∈ 1, k, and
k∑

i=1

ni = n. Using α1α2 = α2α1

applied several times, we getβ = α
n1+...+nk−1
1 αn2+...+nk

2 . So
L(β) ⊆ LG(α∗1 α∗2), thereforeLG((α1 + α2)∗) = LG(α∗1α

∗
2).

Now, we suppose true forn = m > 2 and prove it for
n = m + 1. We haveLG((α1 + ... + αm + αm+1)∗) =
LG(((α1+...+αm)+αm+1)∗) = LG((α1+...+αm)∗α∗m+1) =
LG((α1+...+αm)∗)·LG(α∗m+1) = LG(α∗1...α

∗
m)·LG(α∗m+1)

= LG(α∗1...α
∗
mα∗m+1).

For the other identities, we shall use some equations for
regular expressions from [15]:(α∗)∗ = α∗ and (α β∗)∗ =

ε + α(α + β)∗. Therefore LG((α∗1...α
∗
n)∗) = LG(((α1 +

... + αn)∗)∗) = LG((α1 + ... + αn)∗) = LG(α∗1...α
∗
n) and

LG((α1α
∗
2...α

∗
n)∗) = LG(((α1(α2 + ... + αn)∗)∗) = LG(ε +

α1(α1 + ... + αn)∗) = ε + LG(α1α
∗
1α
∗
2...α

∗
n).

Definition 3.1: We say that the equationX = P is in
the one-letter normal form (abbreviated byOLNF) if P =
α X + β, whereX /∈ β.

Theorem 3.1:Let G = ({X1, ..., Xn}, {a}, X1, P) be an
one-letter reducedcfg . Then every attachedXi-equation can
be transformed into OLNF.
Proof Let Xi = α Xi + β be an arbitraryXi-equation.
BecauseG is reduced, it follows thatβ 6= ∅, otherwise there
will be no terminal word inLG(Xi). Based on Lemma 3.2,
it follows that the symbols ofα can be commuted inPi in
such a way thatXi will be on the last position. Next, by
distributivity (γ1·Xi+γ2·Xi = (γ1+γ2)·Xi), it is obvious that
everyXi−equation can be transformed in this form. The only
possible term ofPi for which Xi cannot be commuted until
the last position isα′(β′Xi)∗. In that case,α′(β′Xi)∗ will be
rewritten intoα′(ε+(β′Xi)∗(β′Xi)) = α′+α′ β′(β′Xi)∗Xi.
Now, if Xi /∈ α′ then theXi-equation is in OLNF, otherwise
the transformation will continue and stop after a finite number
of steps.

By doing this transformation together with the (flattening)
Lemma 3.3, Theorem 3.2 can be viewed as a generalization of
Leiss’s results (consisting of Theorems 3.1, 4.1, and 4.2 from
[12]).

The next theorem is a tool for eliminating the occurrences
of the variable X in a rhs of an X−equation. This is
a generalization of Theorem 2.2, and a key ingredient of
Algorithm A. Let us denote byα[β/X] the word obtained
by replacing everyX−occurrence inα with β. Of course, the
substitution is valid iffX does not occur inβ.

Theorem 3.2:(Regularization) LetG = (VN , {a}, S, P) be
an one-letter reducedcfg , X ∈ VN and X = α X + β
be an OLNFX−equation. Then, the least solution of the
X−equation isX = (α[β/X])∗β, and if G is proper, then
this solution is unique.
Proof Before starting the proof, let us refer to the uniqueness
of the solution. BecauseG is proper, it follows thatG has no
ε-productions and chain-productions, soε /∈ α, and ε /∈ β.
Similarly to Theorem 2.2, it easily follows that the solution
of the X−equation is unique. Without loss of generality,
by applying finitely many times Lemmas 3.2 and 3.3, we
suppose thatα can be viewed as a regular expression over
VN ∪ {a} of star-height0 or 1. So, its general form isα

=
t∑

i=1

α0,i(α1,iX
k1,i)∗...(αm,iX

km,i)∗. For simplicity, let us

focus on(α1,iX
k1,i)∗. Based on commutativity,(α1,iX

k1,i)∗

= {(α1,iX
k1,i)n1,i | n1,i ≥ 0} = {αn1,i

1,i Xk1,i·n1,i | n1,i ≥
0}. Hence,α =

t∑
i=1

α0,i(α
n1,i

1,i Xk1,i·n1,i)...(αnm,i

m,i Xkm,i·nm,i)

=
t∑

i=1

α0,iα
n1,i

1,i ...α
nm,i

m,i Xk1,i·n1,i+...+km,i·nm,i . This will be

denoted byα =
t∑

i=1

α′iX
Qi , whereα′i are words over(VN −

{X}) ∪ {a} and Qi are (linear) polynomials in variables
nj,i ∈ N, (kj,i ∈ N are constants).

Therefore, the initial X−equation becomesX =

(
t∑

i=1

α′iX
Qi)X + β, which corresponds to the following

X−productions inG: X → α′1 XQ1X | ... | α′t XQtX |
β1 | ... | βn. BecauseX /∈ α′i, ∀ i ∈ 1, t, and X /∈ βj ,
∀ j ∈ 1, n, it follows that SG(X) can be generated by
applying several times (e.g.s−times) productions of the form
X → α′i XQiX, i ∈ 1, t, followed by productions of the form
X → βj , j ∈ 1, n in order to remove all the occurrences of
X. According to Lemma 3.2, we can re-order the symbols in
any sentential form, and thus apply the currentX-production
to the last occurrence of the variableX, so we get the
general X−derivations: X

s=⇒
G

α′i1 ...α
′
is

XQi1 ...XQis X,

where i1, ..., is ∈ 1, t. After applying Qi1 + ... + Qis + 1
productions of typeX → βj , j ∈ 1, n, we obtain the
words α′i1 ...α

′
is

βj1,1 ...βj1,Qi,1
...βjs,1 ...βjs,Qi,s

βj . According
to Lemma 3.2,LG(α′i1 ..α

′
is

βj1,1 ..βj1,Qi,1
..βjs,1 ..βjs,Qi,s

βj) =
LG(αi1βj1,1 ..βj1,Qi,1

..αis
βjs,1 ..βjs,Qi,s

βj). Because the
words αi1βj1,1 ...βj1,Qi,1

...αis
βjs,1 ...βjs,Qi,s

βj correspond
to (α[β/X])∗β, then it follows that the solution of the
X−equation isX = (α[β/X])∗β.

Algorithm A is based on the representation of the one-letter
cfg as a system of equations. Then this system of equations
is solved in order to obtain an equivalent regular expression.
As we assume reducedcfg , each recursiveX−equation must
have at least one term without any occurrence ofX.

Algorithm A

Input: G = ({X1, ..., Xn}, {a}, X1, P) a reduced and proper
one-lettercfg
Output: LG = (LG(X1), ..., LG(Xn)), andLG(Xi) is regu-
lar, ∀ i ∈ 1, n
Method:
1. ConstructXi = Pi, ∀ i ∈ 1, n as in Definition 2.1;
2. for i := 1 to n do begin
3. TransformXi−equation into OLNF
4. Pi = (α[β/Xi])∗β;
5. Apply Lemma 3.3 to obtain the star-height0 or 1 for
Pi

6. for j := i + 1 to n do Pj = Pj [Pi/Xi];
endfor

7. for i := n− 1 downto 1 do
8. for j := n downto i + 1 do begin
9. Pi = Pi[Pj/Xj];
10. Apply Lemma 3.3 to obtain the star-height0 or 1
for Pi

endfor
11. LG = (X1, ..., Xn)

Theorem 3.3:Algorithm A is correct and performs a finite
number of steps.
Proof The lines 1, 11 are due to Definition 2.1 and Theorem
2.1, respectively. The instructions between lines 3-5 are based
on Theorem 3.2 and Lemma 3.3 and imply that∀ i ∈ 1, n,
Pi doesn’t containXi. Line 6 ensures that∀ i ∈ 1, n, Pi

doesn’t contain anyXj with j < i. The occurrences ofXj

from Pi, wherej > i are replaced with terminal words at the
lines 7-10. After the execution of AlgorithmA, Pi is a regular

expression over{a} of star-height0 or 1, thus LG(Xi) is
regular,∀ i ∈ 1, n. By induction oni, it can be easily proved
that according to Lemma 3.3,Pi has the star-height0 or 1.

As a remark, due to the nestedfor instructions (2-6 and 7-
10), if we suppose that the steps 3-6 and 9-10 require constant
time in n, then the time-complexity of AlgorithmA is O(n2).

Example 3.1:Let us considerG = ({X1, X2}, {a}, X1, P)
with P given by the following productions:X1 → aX1 X2 |
a, X2 → X1 X2 | a a. Line 1 of Algorithm A will construct
the system:X1 = aX1 X2 + a, X2 = X1 X2 + a2. After
executing line 4, we getX1 = (a X2)∗ a, and after line 6,
we obtainX2 = a (aX2)∗X2 + a2. At the next iteration,
Algorithm A will provide X2 = (a (a3)∗)∗a2, and after line
5, X2 = a2 + a3 · a∗(a3)∗. At line 9, it follows X1 = a(a3 +
a4 · a∗(a3)∗)∗, and after line 10,X1 = (a3)∗ · (a + a5 · a∗ ·
(a3)∗ · (a4)∗).

As a remark, in AlgorithmA the order of eliminatingXi can
be arbitrary. For instance, by eliminatingX2, followed byX1,
we get the equivalent simpler expressions:X1 = a + a4 · a∗
and X2 = a2 · a∗. We shall next show that every factor of
the one-letter regular expression can be reduced to only one
occurrence of∗.

Definition 3.2: We say thate = e1 + ... + en (where each
ei contains only· and ∗ operators) is insingle-star normal
form iff ∀ i ∈ 1, n, ei has at most one occurrence of∗.

This normalization is captured in the following theorem.
Theorem 3.4:Every regular expression over an one-letter

alphabet can be transformed into an equivalent single-star
normal form.
Proof If e is a regular expression of the star-height1 (the
case0 is trivial) then it can be written ase = e1+...+en, where
∀ i ∈ 1, n, ei = am0,i(am1,i)∗...(amki,i)∗, wherem1,i < ... <
mki,i. We suppose, without loss of generality, that the cases
ms,i = ms+1,i are excluded based on the propertyα∗α∗ =
α∗. Let G(a1, ..., ak) be the greatest numberb such that the
Diophantine equationa1 x1 + ... + ak xk = b has no solution
in N, where the greatest common divisor ofa1, ..., ak is 1
(notationgcd(a1, ..., ak) = 1). This means that for anyb >
G(a1, ..., ak) the equationa1 x1 + ... + ak xk = b has always
solution in N. Let us denote byF (a1, ..., ak) the set of all
natural numbers less thanG(a1, ..., ak) such that the above
equation has solution inN. According to [8], ifa1 < ... < ak

andgcd(a1, ..., ak) = 1, thenG(a1, ..., ak) ≤ (ak−1)(a1−1).
Denoting d = gcd(m1,i, ..., mki,i), due to

the above Diophantine equation, it follows that
ei can be equivalently transformed intoam0,i ·(
ε + ad·n1 + ... + ad·ns + (ad)(

mk,i
d −1)(

m1,i
d −1)+1 · (ad)∗

)
,

wheren1, ..., ns ∈ F (m1,i

d , ...,
mk,i

d). In this way, each factor
ei of e has at most one star, soe is in single-star normal
form.

A particular case of the above theorem is to reduce the
expression(am)∗ · (an)∗ for which m ≡ 0(modn). So,
gcd(m,n) = m, hence by Theorem 3.4, it follows that
(am)∗ · (an)∗ = ε + (am) · (am)∗ = (am)∗. Considering the
cfg from Example 3.1, we can reduceX1 = a ·(a3)∗+a5 ·a∗
andX2 = a2 + a3 · a∗.

Example 3.2:For instance, the following regular expres-

sions of star-height1 are reduced to the single-star normal
form: (a2)∗(a3)∗ = ε + a2a∗, (a4)∗(a6)∗ = ε + a4(a2)∗ and
(a4)∗(a6)∗(a9)∗ = ε + a4 + a6 + a8 + a9 + a10 + a12 · a∗.

Our main result, based on Theorem 3.2, is considerably
simpler and more general than the constructive method given
by Leiss [12]. Firstly, we needed only a single (more general)
theorem to facilitate the construction of an equivalent regular
expression for an arbitrary one-lettercfg . Secondly, the
substitution of all theX−occurrences byβ is done in one
step, as opposed to multiple steps used by Leiss’s procedure.
We now explore a straight-forward way to go beyond one-
letter cfg ’s through the use of alphabet factorisation.

IV. B EYOND ONE-LETTER CFG’S

As is well-known, the non self-embedded variables/cfg ’s
are easily converted to the regular sublanguages. Theorem 4.1
(proven in [2]) shows that anycfg , G, generates a regular
language if all its self-embedded variables can be shown to
generate regular languages.

Theorem 4.1:Let G be an arbitrary reduced and proper
cfg . If for all self-embedded variablesX the language
LG(X) is regular, thenL(G) is regular.

In the following, we shall combine the property of an one-
letter alphabet, together with self-embeddedness, in order to
obtain a more powerful class ofcfg ’s which generates regular
languages.

Definition 4.1: A cfg G = (VN , VT , S, P) is calledone-
letter factorizable iff for every self-embedded variableX,
LG(X) ⊆ {a}∗, wherea ∈ VT .

In other words, ifG is one-letter factorizable, then every
self-embedded variable has the corresponding language de-
fined over (only) one-letter alphabet.

Now, the notion of one-variable factorizable will be intro-
duced. This notion is somehowdual to one-letter factorizable,
by considering at most one occurrence of a variableAi in
rhs (Xi).

Definition 4.2: We say thatG = (V 1
N ∪ V 2

N , VT , X1, P)
where V 1

N = {X1, ..., Xn} and V 2
N = {A1, ..., An} (V 1

N ∩
V 2

N = ∅) is one-variable factorizable iff for every self-
embedded variableXi the rhs (Xi) ⊆ {Xi, Ai}∗ and
rhs (Ai) ⊆ V ∗

T .
Theorem 4.2:(Factorization) The following facts hold:
(a) An one-letter factorizablecfg generates a regular

language.
(b) An one-variable factorizablecfg generates a regular

language.
Proof (a) Let G = (VN , VT , S, P) be a one-letter factor-
izable cfg . For every self-embedded variableX ∈ VN , we
know thatLG(X) ⊆ {a}∗. So due to Theorem 3.3, it follows
that LG(X) is regular. Applying Theorem 4.1, it follows that
L(G) is regular.

(b) Let G = (V 1
N ∪V 2

N , VT , X1, P) be a one-variable factor-
izable cfg , whereV 1

N = {X1, ..., Xn}, V 2
N = {A1, ..., An}

(V 1
N ∩ V 2

N = ∅) and for every self-embedded variableXi the
rhs (Xi) ⊆ {Xi, Ai}∗ and rhs (Ai) ⊆ V ∗

T .
Let us construct thecfg G′ = (V 1

N , V 2
N ∪ VT , X1, P

′),
where P ′ = P − {Ai → w | Ai ∈ V 2

N}. Because for

every self-embedded variableXi the rhs (Xi) ⊆ {Xi, Ai}∗,
it follows that LG′(Xi) ⊆ {Ai}∗. Hence LG′(Xi) is an
one-letter language, so based on AlgorithmA, it results that
LG′(Xi) is a regular language. By applying Theorem 4.1, it
follows thatL(G′) is regular.

Now, let us consider the substitutionσ : V 2
N ∪ VT → V ∗

T ,
such thatσ(Ai) = {rhs (Ai)}, ∀ i ∈ 1, n and σ(a) = a, ∀
a ∈ VT . Because{rhs (Ai)} is a finite set of words, it follows
that σ is a regular substitution. Obviously,L(G) = σ(L(G′))
and according to closure of the regular languages under the
regular substitutions, it results thatL(G) is regular.

Example 4.1:Let G = ({S,A, B}, {a, b, c}, S, P) be a
cfg with the following set of productionsP : S → AB S | c,
A → aAa a Aa | a, B → bB B | b b b. The set of
the self-embedded variables is{A, B}, and LG(A) ⊆ {a}∗,
LG(B) ⊆ {b}∗, so G is one-letter factorizable. Based on
Algorithm A, we get LG(A) = {(a5)n1 a | n1 ≥ 0} and
LG(B) = {(b4)n2 b3 | n2 ≥ 0}. Now, LG(S) = (LG(A) ·
LG(B))∗ · c = {((a5)n1 a (b4)n2 b3)n3 c | n1, n2, n3 ≥ 0}, so
L(G) = LG(S) is regular.

Example 4.2:Let G = ({S, A}, {(,) }, S, P) be a cfg
with productionsP given by S → S S | AS A | ε, and
A → (|) . Obviously, by Definition 4.2,G is one-variable
factorizable. Similarly to the proof of Theorem 4.2, we get the
equationS = (S + A2)S + ε. Now based on AlgorithmA, it
results thatS = (A2)∗, so according to theA−productions,
we get the regular languageL(G) = {{(,) }2}∗.

V. CONCLUDING REMARKS

We summarize and compare some previous work on one-
letter alphabet language. The class of one-letter alphabet lan-
guages were used by considering pushdown automata, whose
memory consists of one-letter language. Boasson ([4]) called
this kind of pushdown automatacountersand the accepted
languageone-counterlanguage. He proved that the family of
one-counter languages is a proper subfamily ofcfl ’s.

The class of one-letter alphabet languages can be handled
by considering finite-state automata. In [8], the problem of
converting the (one-way) nondeterministic and two-way deter-
ministic finite-state automata is hard to simulate by (one-way)
deterministic finite-state automata, even for only one-letter
alphabet languages. He proved thatO(e

√
n log n) states are

sufficient to simulate ann−state (one-way) nondeterministic
finite automaton recognizing a one-letter language by a (one-
way) deterministic finite automaton.

The class of one-letter alphabet languages was covered in
[9], where an efficient conversion from a finite-state automaton
over one-letter alphabet to a context-free grammar in Chomsky
normal form was proposed. The authors of [9] showed that
any n−states one-letter deterministic finite automata can be
simulated by a Chomsky normal form grammar withO(n2/3)
variables, respectively the non-deterministic automata requires
O(n1/3) variables. In our paper, AlgorithmA takes in its
input an one-letter reduced and propercfg and provide the
equivalent regular expression in single-star normal form.

The one-letter languages have been used recently in [16]
for the decomposition of finite languages.

Our work has advanced the frontier of research in one-letter
cfg ’s by providing a much simpler constructive method for
transforming into regular expressions using one-letter normal
form. We also introduced a factorization result that enabled
us to go beyond one-letter languages in a straight-forward
way. This helps to enlarge the class ofcfg ’s that could be
regularized.

We thank to the unknown referees for their very useful
remarks, suggestions and comments which improved the paper.

REFERENCES

[1] Auteberg, J., Berstel, J., Boasson, L.: Context-Free Languages and
Pushdown Automata.Handbook of Formal Languages. Word, Language,
Grammar. Vol. 1, Eds. G.Rozenberg, A. Salomaa. Springer Verlag,
Berlin (1997) 111-174

[2] Andrei, Şt., Cavadini, S., Chin, W.-N.: Transform-
ing self-embedded context-free grammars into regular
expressions. Faculty of Computer Science. TR02-06,
http://www.infoiasi.ro/˜tr/tr.pl.cgi , Iaşi University,
România (2002) 1-25

[3] Arden, D.N.: Delayed logic and finite state machines.Theory of comput-
ing machine design. Univ. of Michigan Press, Ann Arbor (1960) 1-35

[4] Boasson, L.: Two iteration theorems for some families of languages.J.
Comput. System Sci.7(6), (1973) 583-596

[5] Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple
phrase structure grammars.Z. Phonetik. Sprachwiss. Kommunikations-
forsch.14 (1961) 143-172

[6] Chomsky, N.: On certain formal properties of grammars.Information
and Control.vol. 2 (1959) 137-167

[7] Chomsky, N., Scḧutzenberger, M.P.: The algebraic theory of context-free
languages.Computer Programming and Formal Systems.(P. Braffort and
D. Hirschberg, eds.) Amsterdam, North-Holland (1963) 118-161

[8] Chrobak, M.: Finite automata and unary languages.Theoretical Com-
puter Science.47 (1986) 149-158

[9] Domaratzki, M., Pighizzini, G., Shallit, J.: Simulating finite automata
with context-free grammars.Information Processing Letters.84 (2002)
339-344

[10] Ginsburg, S., Rice, H. G.: Two families of languages related to ALGOL.
Journal of the Association for Computing Machinery. vol. 9 (1962) 350-
371

[11] Kuich, W., Urbanek, F.J.: Infinite linear systems and one counter
languages.Theoretical Computer Science.22 (1983) 95-126

[12] Leiss, E.L.: Language equations over a one-letter alphabet with union,
concatenation and star: a complete solution.Theoretical Computer
Science.131 (1994) 311-330

[13] Parikh, R. J.: Language-generating devices.Quaterly Progress Report.
No. 60, Research Laboratory of Electronics, M.I.T. (1961) 199-212

[14] Parikh, R. J.: On context-free languages.Journal of the Association for
Computing Machinery. Vol. 13, (1966) 570-581

[15] Salomaa, A.:Theory of Automata.Pergamon Press. Oxford (1969)
[16] Salomaa, A., Yu, S.: On the Decomposition of Finite Languages.

Developments in Language Theory: Foundations, Applications, and
Perspectives.Eds. G. Rozenberg, W. Thomas. World Scientific. Scientific
(2000)

Ştefan Andrei is a Research Fellow in the National Univer-
sity of Singapore under the Singapore-MIT Alliance (SMA).
He has received his B.Sc. and M.Sc. in Computer Science, in
1994 and 1995, respectively, from Iaşi University, România
and PhD in Computer Science in 2000 from the Hamburg
University, Germany. Between 1997 and 2000, he got the fol-
lowing academic awards: DAAD scholarship, TEMPUS SJEP
11168-96 scholarship and World Bank Joint Japan Graduate
Scholarship at Fachbereich Informatik, Hamburg Universitaet,
Germany. He is currently working on formal languages, com-
pilers and real-time systems. More details about him can be
found athttp://www.infoiasi.ro/˜stefan

Wei Ngan Chin is an Associate Professor at the Depart-
ment of Computer Science, School of Computing, National

University of Singapore, and a Fellow in the Computer Science
Programme of the Singapore-MIT Alliance. He has received
his B.Sc. and M.Sc. in Computer Science, in 1982 and
1983, respectively, from University of Manchester, United
Kingdom, and PhD in Computing, in 1990 from the Impe-
rial College of Science, Technology and Medicine, United
Kingdom. His current research interests are functional pro-
gramming, program transformation, parallel systems, software
models and methods. More details about him can be found at
http://www.comp.nus.edu.sg/˜chinwn/

