Pairwise independence

Definition

The random variables X_1, X_2, \ldots, X_n are said to be **pairwise independent** if, for all $i \neq j$ and any values a, b

$$Pr((X_i = a) \cap (X_j = b)) = Pr(X_i = a)Pr(X_j = b)$$

Pairwise independence is a much weaker requirement than mutual independence.
A random bit Y is uniform if $\Pr(Y = 0) = \Pr(Y = 1) = \frac{1}{2}$. We show a method to derive $m = 2^b - 1$ uniform and pairwise independent bits from b mutually independent uniform random bits X_1, \ldots, X_b. Enumerate the $m = 2^b - 1$ nonempty subsets of $\{1, 2, \ldots, b\}$ in some order and let S_j denote the jth subset. Define Y_j as

$$Y_j = \left(\sum_{i \in S_j} X_i \right) \mod 2.$$
Lemma

The Y_j are pairwise independent uniform bits.

Proof: We use the method of deferred decisions to show that Y_j is a uniform bit. Let z be the largest element in S_j. Then whatever the parity of the sum of the first $|S_j| - 1$ bits of S_j is the sum of this number a and z will be 0, resp. one with probability $\frac{1}{2}$ since z is independent of the other bits in S_j and uniform.
Now let Y_k and Y_r be two of the random variables and let S_k, S_r be the corresponding sets. As $S_r \neq S_k$ we can pick $z \in S_r \setminus S_k$. Consider, for any values of $c, d \in \{0, 1\}$

$$\Pr(Y_r = d | Y_k = c).$$

We claim that this equals $\frac{1}{2}$. Again we use deferred decisions: After revealing $S_k \cup S_r - \{z\}$ the variable Y_k is determined but Y_r is not so conditioning on $Y_k = c$ does not change that Y_r is equally likely to be 0 as 1, since z is uniform and independent of all other bits.
We argued that $Pr(Y_r = d|Y_k = c) = \frac{1}{2}$. Hence

$$Pr((Y_k = c) \cap (Y_r = d)) = Pr(Y_r = d|Y_k = c)Pr(Y_k = c)$$

$$= \frac{1}{4}$$

$$= Pr(Y_r = d)Pr(Y_k = c)$$

As this holds for all choices of k, r and all choices of c, d we have proved pairwise independence.
Recall the randomized algorithm for finding as large cut in a graph $G = (V, E)$: assign each vertex $v \in V$ a random color from $\{0, 1\}$ and keep all edges that are properly colored (with 0 and 1). The expected size of this cut is $m/2$, where $m = |E|$. Suppose now that we have $Y_1, Y_2, \ldots < Y_n$ pairwise independent bits, where $n = |V|$. Define the cut by putting all vertices with $Y_i = 0$ on one side and those with $Y_j = 1$ on the other side.
How many edges cross the cut?
For each edge $ij \in E$ let Z_{ij} be the random variable that is 1 if ij crosses the cut and zero otherwise and let $Z = \sum_{ij \in E} Z_{ij}$ be the number of edges crossing the cut.
Since Y_i and Y_j are pairwise independent

$$Pr(Z_{ij} = 1) = Pr(Y_i \neq Y_j) = \frac{1}{2}$$

So

$$E[Z] = E\left[\sum_{ij \in E} Z_{ij} \right] = \sum_{ij \in E} E[Z_{ij}] = m/2$$
How many random bits did we need? Only \(b = \log_2 (n + 1) \)! (we need \(b \) such that \(2^b - 1 \geq n \))

By the probabilistic method, there is some setting of the \(b \) bits so that the resulting \(Y_i \)'s define a cut with at least \(m/2 \) edges accross.

Thus we can try all the \(2^b = O(n) \) possible values of the \(b \) bits:

For a given choice of values to these

- Calculate the values of \(Y_1, Y_2, \ldots, Y_n \)
- Run though all edges and keep those \(ij \) where \(Y_i \neq Y_j \).
- If we get at least \(m/2 \) edges stop, otherwise take the next choice of values for the \(b \) bits
Running time:

- It takes $O(n)$ time to generate all the 2^b different bit-settings.
- For a given bitstring (b-bits) we can find the values of each Y_i in time $O(nb) = O(n \log n)$.
- Now we can count edges across (and find those) in time $O(m)$.

Altogether our algorithm finds a good cut in time $O(n^2 \log n + nm)$.

The $\log n$ factor can be removed by ordering the vertices appropriately (lexicographical ordering of subsets of $\{1, 2, \ldots, b\}$).
Running time is worse than our derandomized algorithm using conditional expectations!
BUT: this new algorithm can be parallellized easily: use n processors, one for each setting of the b bits. This gives an $O(m)$ parallel algorithm, same complexity as the other derandomized algorithm.
If we used $O(nm)$ processors, one per combination of an edge and a setting of bits, we can decide, for each edge in constant time whether it crosses the cut and then collect the results (one result for each of the $O(n)$ bit-settings) in time $O(\log n)$ (we can find the sum of n numbers in time $O(\log n)$ using $O(n)$ processors).
Perfect Hashing

Goal: Store a static disctionary of \(n \) items in a table of \(O(n) \) space such that any search takes \(O(1) \) time.
Universal hash functions

Definition

Let U be a universe with $|U| \geq n$ and $V = \{0, 1, \ldots, n-1\}$. A family of hash functions \mathcal{H} from U to V is said to be k-universal if, for any elements x_1, x_2, \ldots, x_k, when a hash function h is chosen uniformly at random from \mathcal{H},

$$\Pr(h(x_1) = h(x_2) = \ldots = h(x_k)) \leq \frac{1}{n^{k-1}}.$$
Example of 2-Universal Hash Functions

Universe \(U = \{0, 1, 2, \ldots, m - 1\} \)
Table keys \(V = \{0, 1, 2, \ldots, n - 1\} \), with \(m \geq n \).
A family of hash functions obtained by choosing a prime \(p \geq m \),

\[
h_{a,b}(x) = ((ax + b) \mod p) \mod n,
\]
and taking the family

\[
\mathcal{H} = \{h_{a,b} \mid 1 \leq a \leq p - 1, 0 \leq b \leq p\}.
\]

Lemma

\(\mathcal{H} \) is 2-universal.
Lemma

Assume that \(m \) elements are hashed into an \(n \) bin chain hashing table, using a hash function \(h \) chosen uniformly at random from a 2-universal family. For an arbitrary element \(x \), let \(X \) be the number of items at the bin \(h(x) \).

\[
E[X] \leq \begin{cases}
\frac{m}{n} & \text{if } x \notin S \\
1 + \frac{m-1}{n} & \text{if } x \in S.
\end{cases}
\]

Proof.

Let \(X_i = 1 \) if the \(i \)-th element of \(S \) is in the same bin as \(x \) and 0 otherwise. \(\Pr(X_i = 1) \leq 1/n \)

If \(x \notin S \), \(E[X] = E[\sum_{i=1}^{m} X_i] = \sum_{i=1}^{m} E[X_i] \leq m/n \),

If \(x \in S \) (assume \(x \) is \(s_1 \)),

\[
E[X] = E[\sum_{i=1}^{m} X_i] = 1 + \sum_{i=2}^{m} E[X_i] \leq 1 + (m - 1)/n.
\]
Lemma

If \(h \in \mathcal{H} \) is chosen uniformly at random from a 2-universal family of hash functions mapping the universe \(U \) to \([0, n-1] \), then for any set \(S \subset U \) of size \(m \), the probability of \(h \) being perfect is at least \(1/2 \) when \(n \geq m^2 \).

Proof.

Let \(s_1, s_2, \ldots, s_m \) be the \(m \) items of \(S \). Let \(X_{ij} \) be 1 if the \(h(s_i) = h(s_j) \) and 0 otherwise. Let \(X = \sum_{1 \leq i < j \leq n} X_{ij} \).

\[
E[X] = E \left[\sum_{1 \leq i < j \leq n} X_{ij} \right] = \sum_{1 \leq i < j \leq m} E[X_{ij}] \leq \binom{m}{2} \frac{1}{n} < \frac{m^2}{2n},
\]

Markov’s inequality yields \(\Pr(X \geq m^2/n) \leq \Pr(X \geq 2E[X]) \leq \frac{1}{2} \). When \(n \geq m^2 \), \(\Pr(X < 1) \geq 1/2 \), and a randomly chosen hash function is perfect with probability at least \(1/2 \).
The two-level approach gives a perfect hashing scheme for \(m \) items using \(O(m) \) bins.

Level I: use a hash table with \(n = m \). Let \(X \) be the number of collisions,

\[
\Pr(X \geq m^2/n) \leq \Pr(X \geq 2\mathbb{E}[X]) \leq \frac{1}{2}.
\]

When \(n = m \), there exists a choice of hash function from the 2-universal family that gives at most \(m \) collisions.
Level II: Let c_i be the number of items in the i-th bin. There are $\binom{c_i}{2}$ collisions between items in the i-th bin, thus

$$
\sum_{i=1}^{m} \binom{c_i}{2} \leq m.
$$

For each bin with $c_i > 1$ items, we find a second hash function that gives no collisions using space c_i^2. The total number of bins used is bounded above by

$$
m + \sum_{i=1}^{m} c_i^2 \leq m + 2 \sum_{i=1}^{m} \binom{c_i}{2} + \sum_{i=1}^{m} c_i \leq m + 2m + m = 4m.
$$

Hence the total number of bins used is only $O(m)$.
Definition

A family of k-perfect hash functions from $\{1, 2, \ldots, n\}$ to $\{1, 2, \ldots, k\}$, where $k < n$ is a family \mathcal{H} of hash functions such that for every subset S of $\{1, 2, \ldots, n\}$ with $|S| = k$ at least one of the hash functions $h \in \mathcal{H}$ is perfect on S, that is h is a 1-1 map of S onto $\{1, 2, \ldots, k\}$.

Theorem (Schmidt and Segal, 1990)

For all n, k with $n > k$ there exists a k-perfect family \mathcal{H} of hash functions of size $2^{O(k)} \log^2 n$ (we can specify each function in \mathcal{H} with $O(k) + 2 \log \log n$ bits). For each function $h \in \mathcal{H}$ and $i \in \{1, 2, \ldots, n\}$ we can calculate $h(i)$ in $O(1)$ time.
Derandomizing color-coding algorithms

What we need is a family of k-colorings of G such that for each $V' \subset V$ with $|V'| = k$ there is at least one of the colorings where all vertices of V' receive distinct colors. This is exactly the property of a k-perfect family of hash functions. So the derandomization is done by going through the $2^{O(k) \log^2 n}$ different functions in such a family and for each of these testing, using e.g. the dynamic programming algorithm for k-path, whether there is a colorful k-path. Since \mathcal{H} is k-perfect, if G does have a k-path, at least one of the hash functions will reveal this path (it will become colorful).