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Many extremal graph conjectures turned out to be solvable, but many
degenerate ones (where the excluded graph is bipartite) are still very hopeless.
We know the approximate edge-density only in a very few cases.

Embedding a fixed k-vertex tree Tk into an n-vertex graph Gn turned out
to be one of the most difficult problems of the solvable ones. In my lecture
I shall discuss the following beautiful conjecture.

Conjecture 1 (Erdős-T. Sós conjecture). If Tk is a fixed tree of k vertices,
then every graph Gn of n vertices and

e(Gn) >
1

2
(k − 2)n (1)

edges contains Tk.

Our main result is that

Theorem 1 (Ajtai-Komlós-Simonovits-Szemerédi). There exists an integer
k0 for which, if k > k0 then Conjecture 1 holds.

I will sketch the proof of the Erdős-Sós conjecture. In the first part of
the proof a weakened Erdős-T. Sós conjecture is proved, according to which
for every η > 0 there exists an integer n0(η) such that if n, k > n0(η) and a
graph G on n vertices contains no Tk then

e(Gn) ≤ 1

2
(k − 2)n+ ηn.
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That proof, combined with some stability methods shows that in most cases
either we know that Tk ⊆ Gn even under the weaker condition (1) or we
can prove that the structure of Gn is very near to the conjectured extremal
graphs: it is the union of small complete blocks or some almost complete
bipartite graphs. Then, for k > k0, applying some elementary arguments,
we can embed Tk into Gn using only (1).

This is a joint work with Miklós Ajtai, János Komlós, and Endre Sze-
merédi. It is strongly connected to the solution of the Loebl-Komlós-Sós
conjecture, by Hladký, Komlós, Piguet, Simonovits, Maya Stein, and Endre
Szemerédi (see e.g. Arxiv): while in the Erdős-Sós Conjecture we assume
that the average degree is large, in the Loebl-Komlós-Sós Conjecture the
median degree is assumed to be large to ensure a subtree Tk in Gn.
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