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Many extremal graph conjectures turned out to be solvable, but many
degenerate ones (where the excluded graph is bipartite) are still very hopeless.
We know the approximate edge-density only in a very few cases.

Embedding a fixed k-vertex tree T}, into an n-vertex graph G,, turned out
to be one of the most difficult problems of the solvable ones. In my lecture
I shall discuss the following beautiful conjecture.

Conjecture 1 (Erdés-T. Sés conjecture). If T is a fized tree of k vertices,
then every graph G, of n vertices and

e(Gy) > ;(k: —2)n (1)

edges contains T,.
Our main result is that

Theorem 1 (Ajtai-Komlés-Simonovits-Szemerédi). There exists an integer
ko for which, if k > ko then Conjecture 1 holds.

I will sketch the proof of the Erdés-Sés conjecture. In the first part of
the proof a weakened Erdos-T. Sés conjecture is proved, according to which
for every n > 0 there exists an integer ng(n) such that if n,k > ng(n) and a
graph G on n vertices contains no 7} then

e(Gy) < =(k —2)n +nn.
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That proof, combined with some stability methods shows that in most cases
either we know that 7, C G, even under the weaker condition (1) or we
can prove that the structure of GG, is very near to the conjectured extremal
graphs: it is the union of small complete blocks or some almost complete
bipartite graphs. Then, for k > ky, applying some elementary arguments,
we can embed T} into G,, using only (1).

This is a joint work with Miklos Ajtai, Janos Komlds, and Endre Sze-
merédi. It is strongly connected to the solution of the Loebl-Komlds-Sés
conjecture, by Hladky, Komlés, Piguet, Simonovits, Maya Stein, and Endre
Szemerédi (see e.g. Arxiv): while in the Erdés-Sés Conjecture we assume
that the average degree is large, in the Loebl-Koml6s-Sés Conjecture the
median degree is assumed to be large to ensure a subtree T}, in G,,.



