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English Abstract

This dissertation presents new results on structures of digraphs obtained during this
authors PhD studies. More concretely three graph problems are considered and new
results are obtained for each of these. The first problem is the linkage problem,
where we are looking for disjoint paths between predefined vertices. We consider
generalizations of tournaments and find both polynomial algorithms and sufficient
conditions in these digraphs.

The second problem is the problem of partitioning a digraph into disjoint subdi-
graphs, such that each of the partitions induces a digraph with certain properties. We
consider variations of minimum degree properties and find some, but not all, polyno-
mial algorithms for tournaments and semicomplete digraphs.

The third problem, is the problem of finding sufficient conditions for a semicom-
plete digraph to contain a spanning k-strong tournament. We improve the best known
bound for k = 3, by showing that every 6-strong semicomplete digraphs contains a
3-strong spanning tournament. This does not confirm a conjecture by Bang-Jensen
and Jordán saying that 5-strong is sufficient, and we discuss how one might obtain
this bound.

The material found in this dissertation is both a presentation of results from two
published papers and of new unpublished results.
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Danish Abstract

Denne afhandling præsenterer nye resultater omhadlende strukturelle egenskaber i
digrafer fundet i løbet af denne forfatters PhD studier. Mere konkret er der betragtet
tre grafproblemer og nye resultater for hver af disse er opnået. Det første af disse
problemer, er det såkaldte linkage problem, søger man efter disjunkte veje mellem
prædefinerede knuder. Vi har betragtet generaliseringer af turneringer og for disse
både fundet polynomielle algoritmer og tilstrækkelige betingelser i disse grafer.

Det andet problem vi har betragtet er problemet med at opdele grafens knuder,
således at hvert knudesæt inducerer en digraf med prædefinerede egenskaber. For
disse problemer har vi set på forskellige variationer af minimum-valens egenskaber og
fundet nogle, men ikke alle, polynomielle algorithmer for problemet på semikomplette
digrafer og turneringer.

I det tredje problem forsøges der at opstille nødvendige betingelser for den stærke
sammenhængsgrad af semikomplette digrafer, således at vi er sikret at de indeholder
en k-stærk udspændende turnering. Vi forbedre det bedst kendte grænse for k = 3,
ved at vise at en 6-stærk semikomplet digraf indeholder en 3-stærk udspændende
turnering. Dette bekræfter ikke en formodning af Bang-Jensen og Jordán som siger
at 5-stærk er nok, og vi diskuterer hvordan man kan opnå denne grænse.

Indholdet i denne afhandling er både en præsentation af resultater fra to publis-
erede artikler og af nye upubliserede resultater.
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Preface

In February 2014 I started my PhD in discrete mathematics. Through the last 5 years
I have studied a variety of problems on digraphs, and especially considered structural
problems on tournaments or generalizations of tournaments. This has resulted in two
published papers and a handful of unpublished results.

Apart from research I have contributed with a variety of tasks at the department
such as teaching, exam correction and project supervision. I have followed courses
that not only broaden my knowledge in mathematics and computer science, but also
given me more applicable tools for future use. I have participated in the conferences
ICGT 2014, GT2015 and ARCO November 2016, the last with a contributed talk,
while a mistimed illness prohibited me to participate and give a talk at BGW16. I
also gave a presentation at DTU during my environmental change. This dissertation
now marks the end of my life as a PhD student.

In this dissertation I will present much of my research, both published and unpub-
lished. Three graph problems are considered and the dissertation is divided in three
parts accordingly. The structure of each part is the same: First I give a ’state-of-the-
art’ introduction to the problem, then my contribution to the field is presented and
third a discussion and summary of open problems is given. While the presentation
of published results will be done by extracting certain elements, new results will be
followed by full proofs and illustrations. The dissertation ends with a short recap of
open problems that, had time permitted it, would have been subject to future work.
On a technical note, all published results is marked by citation, while unpublished
work is marked on the form [NEW: name of author(s)]. Sometimes results have been
proven but not explicitly stated, and for these results I write [’NEW’: name of au-
thor(s)]. Onward I will refer to the author(s) as we, and only when needed to clarify
that it is my opinion/claim write ’this author’.

Now a short introduction to the main contributions found in this dissertation.
Part I considers the k-linkage problem and Chapter 3 contains the main results of
the paper ’Disjoint paths in decomposable digraphs’. In this paper we proved that
for a wide class of digraphs, the k-linkage problems is polynomial. The most promi-
nent digraphs covered by this are the locally semicomplete, extended semicomplete,
round decomposable and quasi-transitive digraphs. We also confirm two conjectures
by proving sufficient strong connectivity on round decomposable digraphs respectively
locally semicomplete digraphs to be k- respectively 2-linked. Now it is known that
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there exists a function f(k) such that every f(k)-strong locally semicomplete digraph
is k-linked and Bang-Jensen conjectured that f(k) is linear. In Chapter 4 we prove
(for the first time) that this is true. The bound of f(k) is, not unexpectedly, strongly
related to the equivalent bound for semicomplete digraphs. Hence improving this
bound for semicomplete digraphs will directly imply an improvement on the bound
for locally semicomplete digraphs.

In Part II, we consider partition problems, where we wish to decide or find a
partition of the vertices of a digraph, such that each part induces a digraph with
certain properties. In the paper ’Degree constrained 2-partitions of semicomplete
digraphs’, we prove a number of such results on semicomplete digraphs. We describe
all these in Chapter 6. To mention some; We prove that partitioning a semicomplete
digraph such that each partition induces digraphs with minimum out-degree k can be
done in polynomial time, while it is NP complete for general digraphs. On the other
hand we could not prove or disprove similar polynomial algorithm for semicomplete
digraphs in the case where one part induces a digraph with minimum out-degree k1
and the other a digraph with minimum in-degree k2, unless k1 = 1. In Chapter 7
we prove a new result, by deriving an algorithm to find a partition where each part
induces a tournament with minimum semi-degree at least k, given that the minimum
semi-degree is large in the original digraph. This algorithm improves the best known
algorithm derived from an existence proof of the partition by Lichiardopol.

Finally in Part III we consider the problem of finding a k-strong spanning tour-
nament in a g(k)-strong semicomplete digraph. While the best known result for this
problem was obtained by Guo, showing that a (3k − 2)-strong semicomplete digraph
contains a k-strong spanning tournament, Bang-Jensen and Jordán conjectured that
the correct bound is 2k − 1. In Chapter 10 we consider the problem for k = 3. We
prove three subresults which all improves Guo’s ’7’ for k = 3, but none of them reaches
the conjecture of Bang-Jensen and Jordán. One of the three results is that every 6-
strong semicomplete digraph contains a 3-strong spanning tournament. In Chapter 8,
we discuss whether the correct bound might be 2k+ 1 and suggest how the conjecture
can be proven both for k = 3 and for general k.

I hope you will enjoy reading this dissertation and might even be inspired to solve
some of the open problems found here.
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Chapter 1

Terminology, preliminaries and
graph classes

In this chapter we will introduce most of the terminology and preliminary results used
in this dissertation. As this is standard notation and results, a fast skim through
should be sufficient for readers familiar with directed graph theory.

This chapter also contains an introduction to graph classes. Again most are well-
known and can also be found in [10]. An exception to this is the refined structure of
the class evil locally semicomplete digraph. This was introduces in [7] and should
be read to understand the proofs in Chapter 2.

1.1 Terminology and preliminaries

We will often have to pick an index belonging to a set of integers. For this reason we
will use the simplified notation [k]={1, 2, . . . , k}, while [l, k] is the set {l, l + 1 . . . , k}
for 1 < l < k. Sets and set-operations are standard. If X,Y are two sets containing
the same type of elements, then X − Y denotes the set of elements that are in X and
not in Y . The number of elements in a set X is denoted |X| and we will either call
this number the cardinality, the size or the order of X. If we have a set consisting
of just one element we may skip the brackets to simplify notation, i.e if X = {x} we
write X = x.

A digraph D is defined by the two sets: the vertices V (D) and the arcs A(D).
When clear in the context. (D) is omitted, and we just write V , respectively A. The
small letter n is reserved for the size of V . All digraphs considered are simple (no
two arcs between the same pair of vertices and in the same direction) and without
loops (arc where both ends are identical).
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Let a = uv ∈ A be an arc of D, then u is called the tail of a, v the head of a and
u, v are the ends of a. We say that u is adjacent to v and v is adjacent from u.
We may also say that a is incident with u, if u is either the head or tail of a and
when specifying direction we say incident to or incident from.

Given a digraph D, a subdigraph of D is a digraph obtained by taking a subset
of the vertices of D and a subset of the arcs among those arcs with both ends in this
chosen vertex set. If D′ is the subdigraph with vertexset X ⊆ V and it contains every
arc with both ends in X, then D′ is called an induced subgraph of D and is denoted
D〈X〉. For Y ⊆ V , we simplify notation by writing D − Y instead of D〈V − Y 〉.
Similarly, for E ⊆ A, we may write D−E to denote the digraph obtained by deleting
the arcs E from the digraph D.

Let v ∈ V (D), then d+(v) (d−(v)) denotes the number of arcs that has tail (head)
in v and is called the out-degree (in-degree) of v. Furthermore, N+(v) (N−(v))
is the set of out-neighbours (in-neighbours) of v. More general let X ⊂ V (D),
then N+[X] is the union of the out-neighbours of the elements of X and N+(X)

= N+[X] − X. The smallest out-degree (in-degree) of a vertex in D is called the
minimum out-degree (minimum in-degree) of D and is denoted δ+(D) (δ+(D))
and the minimum semi-degree of D is δ0(D) = min{δ+(D), δ−(D)}. Similar the
largest out-, in- and semi-degree is denoted ∆+(D), ∆−(D) and ∆0(D). If we need
to specify which digraph these refer to, we add a subscript D. We say that a digraph
is regular or k-regular if δ0 = ∆0 = k.

A sequence of numbers is said to be a degree sequence of a (di)graph D if its
vertices has (out/in) degree accordantly to this sequence. For the class of digraphs
called tournament (se later) this sequence is also called the score sequence.

Let X and Y be disjoint subsets of V (D). Then we say X dominates Y , and
write X → Y , if every vertex in X is adjacent to every vertex in Y . Further, if no
vertices of Y is adjacent to any vertex of X and want to clarify this we write X⇒Y
and say that X completely dominates Y 1.

A (directed) path in D is a subdigraph consisting of a sequence of distinct vertices
P = v1v2, . . . v|V (P )| and arcs vivi+1 for all i ∈ [|V (P )| − 1]. The length of the path
is the number of arcs in P . The internal vertices of P is v2, v3, . . . , v|V (P )|−1, while
the first (last) vertex of the path is the tail (head) and is denoted t(P ) (h(P )). We
may also say that the path starts in v1 and ends in v|V (P )|. For each i ∈ [2, |V (P )|],
vi is the predecessor of vi+1 and for j ∈ [|A(P )|] vj is the successor of vj−1. For

1For tournaments where 2-cycles are not allowed we will say X dominates Y though the correct
formulation is X completely dominates Y
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two distinct vertices u, v ∈ V (D) a (u, v)-path is a path with tail u and head v and a
minimal (u, v)-paths in D is a path in D that among all (u, v)-path uses the fewest
number of vertices. If vi, vj ∈ V (P ) and i < j then we denote by P [vi, vj ] the
subpath of P with tail vi and head vj .

Consider two paths P,Q. Then P is internally disjoint from Q if no internal
vertices of P belongs to Q. Furthermore P and Q are internally disjoint if both P
is internally disjoint from Q and Q is internally disjoint from P . If P and Q do not
share any vertices, then we say that P and Q are vertex disjoint.

A linkage, L, in a digraph D is a collection of vertex disjoint paths, though we
may sometimes allow the ends of these paths to be shared. Further a k-linkage is
a linkage consisting of k paths. Once again t(L) is the tail of the linkage and is the
collection of the tails of the paths in the linkage. Similar h(L) is the head of the
linkage and is the collection of the heads of the paths in the linkage.

The collection of all heads and tails in a linkage is also called the terminals of L.

A cycle in a digraph is a path P where h(P ) = t(P ) and a proper cycle is a
cycle consisting of more than one vertex. To specify the length of a cycle, a cycle of
k vertices is called a k-cycle.

A digraph D is acyclic if it does not contain any cycles. For such digraphs
there always exist an acyclic ordering (though not necessary unique) of the vertices
v1, v2, . . . vn, such that if vivj is an arc of D for some i, j ∈ [n] then i < j· A feedback
vertex set of D is a set X ⊂ V such that D−X is an acyclic digraph. A digraph D
is said to be transitive if there for every pair of arcs uv and vw also is the arc uw.
A digraph that do not contain any cycles of length 2 is called an oriented graph

A connected digraph is a digraph where the underlying undirected graph is con-
nected, i.e a graph where there is an undirected path between every pair of vertices. A
strong digraph is a digraph where there for every pair of distinct vertices u, v ∈ V (D)

exist a (u, v)-path and a (v, u)-path in D. A strong component of a digraph D is a
maximal induced subdigraph of D which is strong. A strong component is trivial if
it has size 1. Let D be a non-strong digraph with strong components D1, D2, . . . , Dp

for p ≤ 2. Then the strong component digraph SC(D) is the digraph obtained by
replacing Di with a single vertex vi for each i ∈ [p] and deleting every parallel arcs.
Clearly SC(D) is an acyclic digraph and its acyclic ordering gives a natural acyclic
ordering of the strong components of D.

If D is strong, then a set S of vertices is said to be a separator of D, if D − S
are not strong. D is k-strongly connected or k-strong if |V | ≥ k + 1 and D has
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no separator of less than k vertices. The largest integer k such that D is k-strong
is called the vertex strong connectivity. If S is a separator, but S′ ⊂ S is not
a separator for any subset S′, then S is a minimal separator. Further, for a pair
of distinct vertices u, v ∈ V an (u, v)-separator is a set S′ ⊆ V − {u, v} such that
there is no (u, v)-path in D − S′. For such a pair we call the minimum size of such
an (u, v)-separator for the local connectivity of (u, v) and its size is denoted κ(u, v).
The following result by Thomassen and Bang-Jensen gives a usefull relation between
disjoint paths and the local connectivity in digraphs.

Proposition 1.1. [4, 48] Let D be a digraph and x, y, u, v be distinct vertices of D.
Assume that κ(u, v) ≥ q + 2 and P1, P2, . . . , Pp are internally disjoint (x, y)-paths in
D such that D〈V (P1) ∪ · · · ∪ (V (Pp)〉 has no (x, y)-path of length less than or equal to
3 and the predecessor of y on Pj dominates that successor of x on Pi for all i, j ∈ [p].
Then D has q internally disjoint (u, v)-paths, the union of which intersects at most 2q

of the paths P1, . . . , Pp.

When we want to remove arcs instead of vertices, the equivalence to a separator
is called a cut. This is a collection of arcs C in a strong digraph D such that D − C
is not strong. Now we can state the classical result by Menger.

Theorem 1.2. [39] Let D be a digraph and u, v be distinct vertices of D. Then the
following holds:

1. The maximum number of arc-disjoint (u, v)-paths is equal to the size of a mini-
mum (u, v)-cut of D.

2. If uv is not an arc of D, then the maximal number of vertex-disjoint (u, v)-paths
in D is equal to the minimum size of a (u, v)-separator of D.

A subset X ⊆ V (D) is said to be an independent set in D if there are no arcs
between any pair of vertices in X. The cardinality of the maximal independent set in
D is called the independence number of D and is denoted α(D). The opposite of
an independent set is a clique(or a complete graph) and is a set where every pair of
vertices are adjacent. The classical result by Turan gives a bound on the number of
edges (undirected arcs) in a graph not containing large cliques.

Theorem 1.3. [51] Let D be a graph without any cliques of size r+1, then the number
of edges in G is at most (

1− 1

r

)
n2

2
.

A 2-partition of a digraph D is a partition of V (D) into disjoint sets V1 and V2
such that V1 ∪ V2 = V (D). Similarly, an r-partition of D is a partition of V (D)
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into exactly r disjoint sets V1, V2, . . . , Vr such that V = ∪i∈[r]Vi. Let P1, P2 be graph
properties, then (V1, V2) is a (P1,P2)-partition, if V1 induces a digraph with property
P1 and V2 induces a digraph with property P2.

1.2 Graph classes

We can now define the different graph classes that will be used in the dissertation.
A tournament is a digraph, where there between any pair of vertices are exactly

one arc, while a semicomplete digraph is a tournament where we allow an arc
in both direction. A locally in-semicomplete digraph is a digraph where N−(v)

induced a semicomplete digraph for every vertex v ∈ V (D). Similar a locally out-
semicomplete digraph is a digraph where N+(u) induces a semicomplete digraph
for every vertex u ∈ V (D). Now a digraph that is both locally in-semicomplete
and locally out-semicomplete is called a locally semicomplete digraph. In Section
1.2.1, we will describe locally semicomplete digraphs in more detail. We may replace
’semicomplete’ with ’tournament’ in the above and define local in-tournament, local
out-tournament and local tournament similarly.

As mentioned in the last section, if D is a non-strong digraph, then SC(D) has
an acyclic ordering. Now if D is a (local) semicomplete digraphs, then this order-
ing is unique. We will use this ordering to label the strong components of D,
D1, D2, . . . , Dp, p ≥ 2. D1 is called the initial component or source andDp the ter-
minal component or sink of D. When we know that D is a tournament, we replace
′D′ with ′T ′ to empathize this, i.e the strong components is denoted T1, T2, . . . , Tp.
An acyclic tournament, or a tournament where all strong components are trivial, is
also called a transitive tournament.

We may construct a new digraph on the ’backbone’ on another digraphs. Let D be
a digraph with vertices v1, v2, . . . vn and let G1, G2, . . . Gn be n pairwise vertex disjoint
digraphs. Then we define the composition C =D[G1, . . . Gn] to be a digraph where
each vertex vi of D is replaced by the digraph Gi, and where an arc vivj of D implies
that Gi⇒Gj . A special composition graph, is the one where vertices are replaced by
independent sets, this is called the extension of D.

Let Φ be a class of digraphs. Then we say that a digraph D is Φ-decomposable,
if either D ∈ Φ or D = H[S1, . . . Sh] for some H ∈ Φ with h = |V (H)| ≥ 2 and some
choice of digraphs S1, S2, . . . Sh. We call D = H[S1, . . . Sh] the Φ-decomposition of
D. Further, a digraph D is totally Φ-decomposable if either D ∈ Φ or there exists
a Φ-decomposition D = H[S1, . . . Sh] such that each Si is totally Φ-decomposable.
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A round digraph is a digraph where there exist an enumeration v1, v2, . . . vn of
the vertices of D such that for each vertex vi, N+(vi) = {vi+1, vi+2, . . . vi+d+(vi)}
and N−(vi) = {vi−d−(vi), vi−d−(vi)+1, . . . vi−1} and a round decomposable digraph
D = R[S1, . . . Sr] is a digraph where R is a round local tournament, r ≥ 2 and Si are
strong semicomplete digraphs. We call R[D1, D2 . . . , Dr] a round decomposition of
D.

A quasi-transitive digraph is a digraph where for every pair of arcs uv and uw
there will either be an arc uw or an arc wu. Notice quasi-transitive digraph is not
generally transitive. Bang-Jensen and Huang found a complete classification of the
quasi-transitive digraphs.

Theorem 1.4. [13] Let D be a quasi-transitive digraph.

1. If D is not strong, then there exist a transitive acyclic digraph T on t vertices
and strong quasi-transitive digraphs H1, ...,Ht such that D = T [H1, ...,Ht]

2. If D is strong, then there exist a strong semicomplete digraph S on s vertices and
quasi-transitive digraphs Q1, ..., Qs such that each Qi is either a single vertex or
is non-strong and D = S[Q1, ..., Qs].

Moreover one can find the above decomposition in polynomial time.

We will end this section with two classes of graphs:

Φ1 := { Semicomplete digraphs }
⋃
{ Acyclic digraphs }

Φ2 := { Semicomplete digraphs }
⋃
{ Round digraphs }

Notice that Theorem 1.4 shows that quasi-transitive digraphs are totally Φ1-
decomposable. Also extended semicomplete digraphs are totally Φ1-decomposable.
Furthermore, there exist an algorithm that decides and finds a Φ2-decomposable.
Now combining that we can decide in polynomial time whether a digraph is round
decomposable with polynomial algorithms for totally φi-decomposition obtained by
Bang-Jensen and Gitin [10], we can find Φi-decompositions of totally φi-decomposable
digraphs.

Theorem 1.5. [10] For each i ∈ [2], there exists a polynomial algorithm that finds s
total Φi -decomposition of every totally Φi-decomposable digraphs.
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1.2.1 Locally semicomplete digraphs

In this section we will describe locally semicomplete digraph and introduce a number
of results for this class. We will especially give a detailed description of a subclass that
in many cases has proven to be the most difficult and tedious subclass to handle. For
this reason this subclass is also called the evil class. Most of the results presented
here are also collected in [10], while the refinement of the evil class were introduced
in [7]. This refinement plays a major role in the proof of the main theorem in [7] (Se
Chapter 2). As this refinement is self-contained, it seemed natural to introduce this
here together with a new Lemma. One could hope that these might help to prove
other results for the evil class.

As mentioned above, a locally semicomplete digraph is a digraph where both
the in-neighbourhood and out-neighbourhood of each vertex induces a semicomplete
digraph. If the neighbourhood induces tournaments for every vertex, then the digraph
is called a local tournament.

We will not mention all results on locally semicomplete digraphs. There are many
results on semicomplete digraphs that also applies to locally semicomplete digraphs.
For example one could mention the existence of Hamiltonian path and Hamiltonian
cycle in connected respectively strong locally semicomplete digraph [3].

As mentioned in the last section non-strong locally semicomplete digraphs has a
unique acyclic ordering, and we denote the strong components D1, D2, . . . , Dp fol-
lowing this ordering. Furthermore, if we consider a strong locally semicomplete di-
graph with separator S, then D1, D2, . . . , Dp is the strong components of D − S and
Dp+1, . . . , Dq is the strong components of S.

We will now present some of the structural results on locally semicomplete di-
graphs. Notice that these are presented given a natural flow in this dissertation, and
not by the order in which they are proven. First locally semicomplete digraphs might
be round decomposable, and we can decide whether this is the case in polynomial
time.

Theorem 1.6. [9] It can be decided (and found) in polynomial time whether a locally
semicomplete digraph is round decomposable, and if so the round decomposition D =

R[D1, D2, ..., Dr], r ≥ 2 is unique.

Considering a non strong locally semicomplete digraph D, then we will collect the
strong components of D into a unique ordering of semicomplete components in
the following way.

Theorem 1.7. [25] Let D be a non-strong locally semicomplete digraph. Then D can
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be decomposed into r ≥ 2 disjoint subdigraphs D′1, D
′
2, ..., D

′
r as follows:

D′1 = Dp, λ1 = p,

λi+1 = min{ j | N+(Dj) ∩ V (D′i) 6= ∅},

and D′i+1 = D〈V (Dλi+1
) ∪ V (Dλi+1+1) ∪ · · · ∪ V (Dλi−1)〉.

The subdigraphs D′1, D
′
2, ..., D

′
r satisfy the properties below:

(a) D′i consists of some strong components that are consecutive in the acyclic order-
ing of the strong components of D and is semicomplete for i = 1, 2, ..., r;

(b) D′i+1 dominates the initial component of D′i and there exists no arc from D′i to
D′i+1 for i = 1, 2, ..., r − 1;

(c) if r ≥ 3, then there is no arc between D′i and D
′
j for i, j satisfying |j−i| ≥ 2.

The unique sequence D′1, D′2, ..., D′r defined in Theorem 1.7 will be referred to as
the semicomplete decomposition of D.

Now considering strong locally semicomplete digraphs, it can be shown that mini-
mal separators either them-self are semicomplete, or leaves the remaining of the locally
semicomplete digraphs as a semicomplete digraph.

Lemma 1.8. [9] Let S be a minimal separator of a strong locally semicomplete digraph
D. Then either D〈S〉 is semicomplete, or D〈V − S〉 is semicomplete.

We will call a locally semicomplete digraph which is not semicomplete and not
round decomposable for an evil locally semicomplete digraph. With this definition
we can now present a full classification of locally semicomplete digraphs.

Theorem 1.9. [9] If D is a locally semicomplete digraph. Then it has the structure
of exactly one of the following and deciding which can be done in polynomial time.

(a) D = R[D1, D2, ..., Dr] is round decomposable with a unique round decomposition,
where R is a round local tournament on r ≥ 2 vertices.

(b) D is evil.

(c) D is a semicomplete digraph which is not round decomposable.

In the remaining of this section we will give detailed description on the structure
of the evil class. Let us call a separator S of a locally semicomplete digraph D good
if S is a minimal separator and D − S is not semicomplete.

Theorem 1.10. [9] Let D be an evil locally semicomplete digraph. Then D is strong
and satisfies the following properties.
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(a) There is a good separator S such that the semicomplete decomposition of D− S
has exactly three components D′1, D

′
2, D

′
3 (and D〈S〉 is semicomplete by Lemma

1.8);

(b) Furthermore, for each such S, there are integers α, β, µ, ν with λ2 ≤ α ≤ β ≤
p− 1 and p+ 1 ≤ µ ≤ ν ≤ p+ q such that

N−(Dα) ∩ V (Dµ) 6= ∅ and N+(Dα) ∩ V (Dν) 6= ∅,

or N−(Dµ) ∩ V (Dα) 6= ∅ and N+(Dµ) ∩ V (Dβ) 6= ∅,

where D1, D2, ..., Dp and Dp+1, ..., Dp+q are the strong decomposition of D − S
and D〈S〉, respectively, and Dλ2 is the initial component of D′2 (See Figure 1.1).

Dp+1 Dp+q Dλ2

D1

Dp

D′1

S D′2

D′3

Sbot D′2,top D′2,mid D′2,bot

D′3,top D′3,mid D′3,bot

Figure 1.1

Corollary 1.11. [9] If D is an evil locally semicomplete digraph, then it has indepen-
dence number at most 2.

The following lemma gives important information about the arcs in an evil locally
semicomplete digraph.

Lemma 1.12. [9] Let D be an evil locally semicomplete digraph and let S be a good
separator of D. Then the following holds:

(i) Dp ⇒ S ⇒ D1.

(ii) If sv is an arc from S to D′2 with s ∈ V (Di) and v ∈ V (Dj), then

Di ∪Di+1 ∪ . . . ∪Dp+q ⇒ D1 ∪ . . . ∪Dλ2−1 ⇒ Dλ2 ∪ . . . ∪Dj .

(iii) Dp+q ⇒ D′3 and Df ⇒ Df+1 for f ∈ [p+ q], where p+ q + 1 = 1.
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(iv) If there is any arc from Di to Dj with i ∈ [λ2 − 1] and j ∈ [λ2, p − 1], then
Da ⇒ Db for all a ∈ [i, λ2 − 1] and b ∈ [λ2, j].

(v) If there is any arc from Dk to D` with k ∈ [p + 1, p + q] and ` ∈ [λ2 − 1], then
Da ⇒ Db for all a ∈ [k, p+ q] and b ∈ [`].

We are now ready to refine the structure of the evil locally semicomplete digraph
D as done in [7]. In this paper D is assumed 5-strong, but in the following we will
assume k-strong for any integer k ≥ 1.

Refinement of k-strong evil locally semicomplete digraph:

The following indexes are well-defined by Theorem 1.10 (b):

• µ ∈ [q] is the smallest index such that there is an arc from Dp+µ to D′2
• γ ∈ [p− 1]λ2 is the largest index such that there is an arc from S to Dγ .

The blocks of D′2.

• D′
2,top is the union of the strong components of D′2 that are dominated by all

vertices of D′3. By Lemma 1.12 (ii), Dλ2 , Dλ2+1 . . . , Dγ , are all in D′2,top.

• D′
2,mid is the (possibly empty) union of those strong components of D′2−D′2,top

that are dominated by some vertex ofD′3. By Lemma 1.12 (iv) we have Dλ2−1 ⇒
D′2,top ∪D′2,mid.
• D′

2,bot is the (possibly empty) union of those strong components of D′2 that have
no neighbours in D′3.

The blocks of D′3.

• D′
3,top is the set of strong components of D′3 that are dominated by all vertices

of S.

• D′
3,bot is the set of strong components ofD′3 that dominate all vertices ofD′2,top∪

D′2,mid. By Lemma 1.12 (iv), Dλ2−1 is contained in D′3,bot.

• D′
3,mid is the (possibly empty)2 set of strong components of D′3−D′3,top−D′3,bot.

The blocks of S. Only one part of S plays a special role, namely Sbot which is the
union of the strong components Dp+µ, Dp+µ+1, . . . , Dp+q. By Lemma 1.12 (ii) every
vertex of Sbot dominates all of D′3.

With these definitions and by Theorem 1.10 respectively Lemma 1.12 we can con-
clude the following:

2Note that we may have D′3,top ∩D′3,bot 6= ∅ (in which case D′3,mid = ∅)
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E1) There is at least one arc sv from Sbot to D′2,top and at least one arc from D′2,top
to Sbot.

E2) The set S∗ = D′2,top ∪ D′2,mid is also a good separator. (Follows as there is no
arc from D′3 to D′2,bot ∪D′1 ∪ S).

Theorem 1.13. [7] Let D be a k-strong evil locally semicomplete digraph with semi-
complete decomposition D′1, D

′
2, D

′
3 and S minimal good separator. Furthermore, let

S∗ = D′2,top ∪ D′2,mid and
←−
D be the locally semicomplete digraph where all arcs of D

are reversed. Then we have the following semicomplete decomposition:

1. For
←−
D with minimal separator S, the semicomplete decomposition of

←−
D − S is:

1.1
←−
D′1 = D1, that is, the first strong component of D′3,top.

1.2
←−
D′2 =

←−
D′2,top ∪

←−
D′3 −

←−
D1.

1.3
←−
D′3 = D′2,mid ∪D′2,bot ∪D′1.

See Figure 1.2b.

2. For D with minimal separator S∗, the semicomplete decomposition of
D − S∗ is:

2.1 D′∗1 = Dλ2−1 is the last strong component of D′3,bot.

2.2 D′∗2 = S̃ ∪D′3 −D′∗1 .
2.3 D′∗3 = D′2,bot ∪D′1 ∪ S − S̃.

where S̃ ⊆ S is the set of vertices of S that dominate all vertices of D′3,bot. Notice
that, by Lemma 1.12 and the definition of Sbot, we have Sbot ⊆ S̃. See Figure 1.3a.

3. For
←−
D with minimal separator S∗, the semicomplete decomposition of

←−
D −S∗ is: The semicomplete decomposition

←−
D∗1,
←−
D∗2,
←−
D∗3 of

←−
D −S∗ has the following

form. If D′2,bot = ∅ (S∗ = D′2) then we have
←−
D∗1 = Dp,

←−
D∗2 = S and

←−
D∗3 = D′3.

Otherwise, r is defined, and we have

3.1
←−
D∗1 = Dr.

3.2
←−
D∗2 = X ∪Dp ∪ Y .

3.3
←−
D∗3 = D′3 ∪ S − Y .

See Figure 1.3b.
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Proof. First notice that the proof is a copy of Lemma 6.2, 6.3 and 6.4 of [7].
1: By the definition of the semicomplete decomposition,

←−
D′1 must be a strong

component of
←−
D − S and this dominates S in

←−
D , so

←−
D′1 = D1. For 1.2. notice first

that, by the definition of the semicomplete decomposition,
←−
D′2 is formed by those

strong components of
←−
D that dominate

←−
D′1. Thus, as the first component of D′3

dominates all other vertices of D′3 in D, clearly when reorienting the arcs, all other
vertices of D′3 dominate

←−
D′1. Secondly, by Lemma 1.12 (ii) D′2,top is dominated by all

vertices of D′3 implying that
←−
D′2,top dominates

←−
D′1 in

←−
D . By the definition of D′2,mid

and Lemma 1.12 (iv), no vertex in D′2,mid is dominated by a vertex in D1 in D. 1.3.
follows from Theorem 1.10 since the semicomplete decomposition of an evil locally
semicomplete digraph has exactly three components.

2: This is again based on the structural information from Lemma 1.12 and is very
similar to the proof of 1.

3: If D′2,bot 6= ∅, then let r ∈ [p− 1]λ2 be the smallest index such that Dr ⊆ D′2,bot
and let X = Dr+1 ∪ . . . ∪ Dp−1. Now, since every vertex of D′2,top dominates every
vertex of Dr we get that Dr ⇒ Dy for every y ∈ [p + q]p+1 such that there is an arc
from D′2,top to Dy and there is at least one such y by (E1)). Let y′ ∈ [p+ q]p+1 be the
largest index such that there is an arc from Dr to Dy′ and let Y = Dp+1 ∪ . . . ∪Dy′ .
If r is not defined above, then let X = ∅ (note that X is also empty if r = p− 1) and
Y = ∅. With this the result follows easy.

The following lemma shows that between any pair of vertices in an evil locally
semicomplete digraph, there is a path of length at most 4 and if there is no path
shorter than 4, then there is a path of length 4 containing non-adjacent vertices.

Lemma 1.14 (’New’: Bang-Jensen and Christiansen). Let D be an evil locally semi-
complete digraph, then for every x, y ∈ V (D) either D contains a (x, y)-path of length
at most 3, or yx ∈ A(D) and D contains a (x, y)-path of length 4 containing non-
adjacent vertices.

Proof. The proof repeatedly uses the dominating structure in D between the refined
blocks of semicomplete components of the evil locally semicomplete digraph (See Fig-
ure 1.2a). We will consider any possible position of x, y and for each of these show
that we can find a (x, y)-path fulfilling the statement of the theorem. We may assume
that xy is not an arc of D. Now the following three observations are almost identical
and will find the (x, y)-paths for almost all positions of x, y.

1. As Sbot⇒D′3⇒D′2,top⇒D′1⇒Sbot we have a collection of 4-cycles

C1 = {vsbv3v2tv1vsb | vsb ∈ Sbot, v3 ∈ D′3, v2t ∈ D′2,top, v1 ∈ D′1}.
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Dp+1 Dp+q Dλ2

D1

Dp

D′1

S D′2

D′3

Sbot D′2,top D′2,mid D′2,bot

D′3,top D′3,mid D′3,bot

(a) D with the blocks marked and the pair of evil arcs showed as dotted arcs.

←−
D′3

←−
D′2

←−
D′1 = D1

←−
S

Dp+1 Dp+q Dλ2

D1

Dp

D′1

(b) The semicomplete decomposition of
←−
D with respect to the separator

←−
S . The colored

sets indicate the four parts.

Figure 1.2
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←−
D′∗3

D′∗2 D′∗1

S∗

Dp+1 Dp+q Dλ2

D1

Dp

D′1

(a) The semicomplete decomposition of D with respect to S∗. The colored sets indicate
the four parts.

←−
D′∗3

←−
D′∗2

←−
D′∗1

←−
S ∗

Dp+1 Dp+q Dλ2 Dr

D1

Dp

D′1

(b) The semicomplete decomposition of
←−
D with respect to the separator

←−
S∗. The colored

sets indicate the four parts. The dotted arcs are in D and indicate the arcs with head y
respectively y′, where y,y′ are as defined before Theorem 1.13 E1).

Figure 1.3
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Furthermore for every C1 ∈ C1 and every vertex v ∈ V , there is a vertex of
C1 that dominates v and v dominates a vertex of C1. This implies that x, y ∈
(S − Sbot) ∪D′2,mid ∪D′2,bot.

2. As S⇒D′3,top⇒D′2,top⇒D′1⇒S we have the collection of 4-cycles

C2 = {vsv3tv2tv1vs | vs ∈ S, v3t ∈ D′3,top, v2t ∈ D′2,top, v1 ∈ D′1}.

Furthermore for every C2 ∈ C2 and every vertex v ∈ V , there is a vertex of
C2 that dominates v and v dominates a vertex of C2. This implies that x, y ∈
D′3,mid ∪D′3,bot ∪D′2,mid ∪D′2,bot.

3. As Sbot⇒D′3,bot⇒D′2,mid⇒D′1⇒Sbot we have the collection 3

C3 = {sbv3bv2tv1sb | vsb ∈ Sbot, v3b ∈ D′3,bot, v2t ∈ D′2,mid, v1 ∈ D′1}.

Furthermore for every C3 ∈ C3 and every vertex v ∈ V , there is a vertex of
C3 that dominates v and v dominates a vertex of C3. This implies that x, y ∈
(S − Sbot) ∪D′3,top ∪D′3,mid ∪D′2,top ∪D′2,bot.

Proof of 1. By considering the definitions of the blocks of the semicomplete com-
ponents, it is easy to realize that for every v ∈ V and every C1 ∈ C1 there is a vC1 and
a C1v arc in D. For example as D′2,top⇒(D′2,mid ∪D′2,bot) and (D′2,mid ∪D′2,bot)⇒D′1,
this is true for all v ∈ (D′2,mid ∪ D′2,bot). Now clearly if x, y ∈ C1 for some C1 ∈ C1
then we have a (x, y)-path P of length at most 4, and if is has length 4 it contains
the non-adjacent vertices v1 and v3 and yx is an arc. Assume that x belongs to some
cycle C1 ∈ C1 and let C1 = xu1u2u3x. Furthermore i ∈ [3] be the smallest index such
that uiy ∈ A(D). Then C1[x, ui]y is a (x, y)-path. Furthermore if i < 3 this path has
length at most 3 and if i = 3 it has length 4 and contains the non-adjacent vertices
v1 and v3. Also as ui dominates x, y there is an arc between x and y and hence yx is
an arc of D. Similar can be argued if y ∈ C ′1 ∈ C1. Hence we can assume that neither
x nor y is on a cycle in C1 implying that x, y ∈ D′3,mid ∪D′3,bot ∪D′2,mid ∪D′2,bot.

2. and 3. follows by the exact same arguments. Hence the only position left for x, y
is D′2,bot. Now let v1 ∈ D′1, and sbv2t be an arc of D with sb ∈ Sbot and v2t ∈ D′′2,top.
Then xv1sbv2ty is an (x, y)-path of length 4 and as y ∈ D′2,bot it is not adjacent with
sb. This completes the proof.

3If D′2,mid = ∅ then this do not exist, but in this case we do not need these 4-cycles
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Linkages in digraphs





Chapter 2

Introduction to the Linkage
problem

Consider a digraph D and a set of vertices (terminals) Π = {s1, t1, s2, t2, . . . , sk, tk}
of V . Deciding whether D has k vertex disjoint (si, ti)-paths is called the k-linkage
problem or k-path problem. If the k paths exist for every set of 2k terminals of D,
then D is said to be k-linked.

In the following we will only consider the k-linkage problem in digraphs where k
is a fixed integer. For this problem we will both consider the complexity and whether
it is possible to set up sufficient conditions for the digraph to be k-linked.

Starting with the complexity. Fortune, Hopcroft and Wyllie [22] proved that the
k-linkage problem is NP complete for general digraphs already when k = 2. On the
other hand they proved that the problem is polynomial on acyclic digraphs.

Theorem 2.1. [22] The k-linkage problem is polynomial on acyclic digraphs.

In the proof of this, they constructed an auxiliary digraph in polynomial time and
proved that a single path in this will always induce the k-linkage in the acyclic graph
given that such a k-linkage exist. Both the result and the approach proving this has
later been used to obtain other polynomial results on the k-linkage problem. Johnson,
Seymour and Thomas [30] found polynomial algorithms for digraphs with bounded
directed tree-width and digraphs with bounded DAG-width. Later Bang-Jensen and
this author [15] 1 did the same for digraphs with bounded circumference.

Now Thomassen considered strong digraphs and proved that the k-linkage prob-
lem is also NP complete for these [50], while Schrijver proved that the problem is

1Changed last name in 2016 to Christiansen
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polynomial in planar digraphs [42]. Until 2015 only small progress had been made
on semicomplete digraphs, where Bang-Jensen and Thomassen had proved that the
2-linkage is polynomial [17]. Then Chudnovsky, Scott and Seymour did not only con-
firm polynomial k-linkage for semicomplete digraphs, but also for a larger class they
call d-path dominant digraph. For d = 1 this is exactly the semicomplete digraphs.

Theorem 2.2. [19] The k-linkage problem is polynomial on d-path dominant digraphs
for all fixed integer d.

Proving this is non-trivial, but is also another example of the useful approach first
used on acyclic digraph. They construct an auxiliary digraph and find a single path
in this inducing a k-linkage in the d-path dominant digraph. Later Chudnovsky, Scott
and Seymour were able to expand their result to also apply to digraphs consisting of
disjoint semicomplete components.

Theorem 2.3. [20] The k-linkage problem is polynomial on digraphs consisting of
unions of disjoint semicomplete digraphs.

With the affirmative answer for semicomplete digraphs, one of the next natural
question to consider is on the complexity for locally semicomplete digraphs. This
together with some totally Φ-decomposable digraphs, was done in [7]. Here Bang-
Jensen, Maddaloni and this author proved that the k-linkage problem is polynomial
on both round and round decomposable digraphs.

Theorem 2.4. [7] Let D = R[S1, S2, . . . , Sr] for r ≥ 2, then k-linkage problem is
polynomial on D, also when |Si| = 1 for all i ∈ [2].

As the subclass of locally semicomplete digraphs, called the evil class, can be
covered by the union of three semicomplete components and as locally semicomplete
digraphs, which is not evil, is either semicomplete or round decomposable, Theorem
2.2, 2.3 and 2.4 implies that the k-linkage problem is polynomial on locally semicom-
plete digraphs.

Theorem 2.5. [7] The k-linkage problem is polynomial on locally semicomplete di-
graph.

Bang-Jensen proved that the 2-linkage problem is polynomial for quasi-transitive
digraphs and extended this to also apply to extended semicomplete digraphs.

Theorem 2.6. [4] Let Φ be a class of strongly connected digraphs and denote by Φ0,
the class of all extensions of graphs in Φ. Finally let

Φ∗ = {F [D1, D2, . . . , D|F |] : F ∈ Φ, Di arbitrary digraph }
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Then there exist a polynomial algorithm for the 2-linkage problem in Φ∗, if and only
if there exist one for all digraphs in Φ0.

In [7] we extended this result by proving that we can decide the k-linkage prob-
lem in polynomial time for certain classes of totally Φ-decomposable digraphs. The
following is an implication of this result:

Theorem 2.7. [7] The k-linkage problem is polynomial on the quasi-transitive and
extended semicomplete digraphs.

Let us now turn to the problem of finding sufficient conditions for a digraph to be
k-linked. In 1985 Heydemann and Sotteau [28] imposed conditions on the degree of
the vertices and proved that δ0 ≥ n/2 + 1 is sufficient for 2-linkage in a digraph. In
1990 Manoussakis conjectured2 [38] that δ0 ≥ n/2 + k − 1 is sufficient for all integers
k . Kühn and Osthus confirmed this for large digraphs and proved that it is best
possible.

Theorem 2.8. [33] Let k ≥ 2 and D be a digraph of order n ≥ 1600k3 such that
δ0(D) ≥ n/2 + l − 1. Then D is k-linked.

Proposition 2.9. [33] Let k ≥ 2 be a fixed integer. For every n ≥ 2k there exist a
digraph on n vertices and δ0 ≥ n/2 + k − 2 which is not k-linked.

Later Ferrara, Jacobsen and Pfender proved the following that not only applies to
large digraphs.

Lemma 2.10. [21] Let D be a digraph and k ≥ 1 a fixed integer. Furthermore let
σ2 = minu,v∈V {d+(u) + d−(v)}. If σ2 ≥ |V |+ 3k − 4, then D is k-linked

The bound on the minimum semi-degree, though tight, also demands many arcs
and one would hope that ’more usable’ sufficient conditions could be found. The
probably most obvious condition to consider is the strong connectivity of a digraph.
Remember that a k-strong digraph is a digraph where there are k disjoint paths be-
tween every pair of vertices. For general digraphs Thomassen proved in 1991 that there
exists a family of k-strong digraphs that are not even 2-linked, and hereby disproving
this intuition [50]. Ferrara, Jacobsen and Pfender combined strong connectivity and
degree conditions to obtain the following general result

Theorem 2.11. [21] Let D be a (9/2)k-strong digraph and let σ2 = minu,v∈V {d+(u)+

d−(v)}. If σ2 ≥ |V |+ 1
2k − 2, then D is k-linked.

2Manoussakis also finds a sufficient condition on number of arcs, but we will not repeat this here.



22 Introduction to the Linkage problem

Now for tournaments and generalizations of tournaments a lot more can be said.
Thomassen proved that there is an exponential function f(k), such that every f(k)-
strong tournament is k-linked [48]. This bound was first improved by Kühn, Lapinskas,
Osthus and Patel to 104k log k [35] and later by Pokrovskiy to 452k. In [11] Bang-
Jensen and Havet generalized the proof of Pokrovskiy to also apply to semicomplete
digraphs.

Theorem 2.12. [40, 11] 452k-strong semicomplete digraphs are k-linked.

For small k Kim, Kühn and Osthus improved Pokrovskiys bound as they proved
that (k2 + 3k)-strong tournaments contains a k-path-factor between 2k predefined
vertices.

Theorem 2.13. [31] Let D be a (k2 + 3k)-strong tournament. For any set {x1, y1,
. . . , xk, yk} of distinct vertices, D contains a k-path factor P1 ∪P2 ∪ · · · ∪ pk such that
Pi is an (xi, yi)-path for i ∈ [k].

Now Pokrovskiy constructed a family of nearly 2k-strong tournaments that are not
k-linked and posed the following conjecture, stating that the correct bound to ensure
k-linkage in semicomplete digraphs is close to 2k.

Conjecture 2.14. [40] For every fixed integer k there exist a function d(k) such that
every 2k-strong tournament with δ0 ≥ d(k) is k-linked.

In a preprinted version Girão and Snyder give evidence towards this conjecture.

Theorem 2.15. [23] For every positive integer k there exists a function f(k) such
that every 4k-strong tournament T with δ+(T ) ≥ f(k) is k-linked.

Considering generalizations of semicomplete digraphs Bang-Jensen proved that
(3k− 2)-strong round decomposable locally semicomplete digraphs are k-linked. This
was improved by Bang-Jensen, Maddaloni and this author. We proved that the nec-
essary bound on 2k − 1 strong connectivity is also sufficient.

Theorem 2.16. [7] Let D be a round or round decomposable digraph on at least 2k

vertices that are not semicomplete. Then D is (2k − 1)-strong if and only if it is
k-linked.

Now for locally semicomplete digraphs Bang-Jensen prove that there exist a func-
tion f(k), such that every f(k)-strong locally semicomplete digraph are k-linkage.

Theorem 2.17. [4] For every fixed integer k, there exist a function such that every
f(k)-strong locally semicomplete digraph is k-linked.
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The function f(k) is not linear in k, but as both round decomposable and semi-
complete digraphs are k-linked when a linear function on the strong connectivity is
imposed, it seems reasonable to believe that this do also applies to locally semicom-
plete digraphs. Bang-Jensen also conjectures this in [11] and in Chapter 4 we will
prove that this conjecture is true.

Conjecture 2.18. [11] There exists a constant B such that every Bk-strong locally
semicomplete digraph is k-linked.

Finally Bang-Jensen and Thomassen, proved that 5-strong semicomplete digraphs
and quasi-transitive digraphs are 2-linked [48, 4]. Bang-Jensen conjectured that this
is also true for locally semicomplete digraph, and we confirm this in [7].

Conjecture 2.19. [4] Every 5-strong locally semicomplete digraph is 2-linked.

In the next chapter we will give a more detailed introduction to the results ob-
tained in [7]. First we will introduce the notion of linkage ejector, which give us the
necessary tool to prove the polynomial k-linkage for classes of totally Φ-decomposable
digraphs. Then we consider the sufficiency result of the paper, and while only restat-
ing Theorem 2.16, we will go into detail with the proof for Conjecture 2.19. In this
description we will extract certain self-contained results from the original proof, while
also giving a sketch of the proof. A few subresults are proven to give the reader a good
understanding both of the proof, and also of the usefulness of the refined structure
of evil locally semicomplete digraph that were introduced in Section 1.2.1. Finally
in Chapter 4 we will prove Conjecture 2.18, using one of the self-contained results of
Chapter 3. We will also mention a few open problems and related results.





Chapter 3

Disjoint paths in decomposable
digraphs

In this chapter we will introduce the results found in the paper ’Disjoint paths in
decomposable digraphs’, published in Journal of Graphs Theory 2016 [7]. This is joint
work of this author, Jørgen Bang-Jensen and Alessandro Maddaloni and the full paper
can be found in Part IV. In the first part of the paper we consider the complexity of the
k-linkage problem and prove that it is polynomial for locally semicomplete digraphs
and several classes of decomposable digraphs, amongst others extended semicomplete
digraphs, round decomposable digraphs and quasi-transitive digraphs. In the second
part of the paper we consider whether strong connectivity on round decomposable
digraphs and locally semicomplete digraphs will ensure that the digraphs is k-linkage.
Here we prove that (2k − 1)-strong round decomposable digraphs are k-linked and
5-strong locally semicomplete digraphs are 2-linked. Both is best possible and the last
answers Conjecture 2.19 from 1990.

3.1 Polynomial k-linkage

We consider different classes of decomposable digraphs, D = S[M1,M2, . . . ,Ms]. We
start by defining a property, a linkage ejector, of such classes of decomposable
digraphs and describe a polynomial algorithm for the k-linkage problem for all classes
having this property.

Definition 3.1. We say that a class Φ of digraphs is a linkage ejector if

1. It is polynomial to find a total Φ-decomposition for every totally Φ-decomposable
digraph.

2. For fixed k, it is polynomial to solve the k-linkage problem on Φ.
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3. The class Φ is closed with respect to blow-up 1

4. It is polynomial to construct a digraph of Φ given the totally Φ-decomposition
digraph D = S [M1, . . . ,Ms], where the construction replaces arcs inside each of
the modules, Mi.

Theorem 3.2. Let Φ be a linkage ejector. For every fixed k, there exists a polynomial
algorithm to solve the k-linkage problem on totally Φ-decomposable digraphs.

To prove this theorem we distinguish between terminal pairs, where both belongs
to the same module (internal pairs Πi), and terminal pairs where the vertices are
in distinct modules (external pairs Πe). We notice that every minimal path in a
decomposable digraph with ends in different modules do not use any arcs inside a
module. Hence in a Π-linkage in D, the external paths (path not using arcs inside any
module) uses at most 2 vertices in each module. This will give a polynomial algorithm.
Consider every partition of the internal terminal pairs Πi = Π1 ∪ Π2 and check if D
has a (Πe ∪ Π1)-linkage consisting only of external paths and Π2-linkage consisting
only of internal paths. In order for these to be disjoint, we preserve vertices of each
module to one of the two linkages. As the external paths uses at most |(Πe ∪ Π1)|
vertices in each module, there are only a bounded number of partition of each module
to consider.

Having established Theorem 3.2 we can prove polynomial linkage of two totally
Φ-decomposable digraphs, by showing that each of these are linkage ejectors. First

Φ1 := { Semicomplete digraphs }
⋃
{ Acyclic digraphs }

is a linkage ejector. This is obtained by combine Theorem 1.5, Theorem 2.2 and
Theorem 2.1. Secondly in order to prove that

Φ2 := { Semicomplete digraphs }
⋃
{ Round digraphs }

is also a linkage ejector, we prove that the k-linkage problem is polynomial for round
digraphs using Theorem 2.1. Combining this with Theorem 1.5 it will imply that Φ2

is a linkage ejector.

Theorem 3.3. [7] Let k be fixed, then the k-linkage problem is polynomial for the
classes of digraphs Φ1 and Φ2.

Now by Theorem 1.4, quasi-transitive digraphs are totally Φ1-decomposable. Also
the extended semicomplete digraphs are totally Φ1-decomposable. Hence Theorem 3.3

1Blowing up a vertex v to K, means that v is replaced by K in the digraph.
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implies polynomial k-linkage for both these classes. Now the final complexity result
obtained is on locally semicomplete digraphs.

Theorem 2.5. [7] The k-linkage is polynomial for locally semicomplete digraph.

Remember that locally semicomplete digraphs is either round decomposable, evil
or semicomplete (See Theorem 1.9 in Section 1.2.1). Chudnovsky, Scott and Seymour
have proved two parts of this theorem. First semicomplete digraphs in Theorem 2.2
and then unions of semicomplete digraphs in Theorem 2.3. Here the evil class can
be covered by three semicomplete digraphs (D′3, D′2 and D〈V (S) ∪ V (D′1)〉 where D′1,
D′2 and D′3 are the semicomplete decomposition of D − S, see Section 1.2.1). Now
the theorem follows as we can recognize a round decomposable locally semicomplete
digraph in polynomial time by Theorem 1.6.

3.2 Sufficient conditions of k-linkage

The second part of the paper considers sufficient conditions for a digraph to be k-
linked. We first prove that (2k− 1)-strong connectivity is equivalent to k-linked when
considering digraphs that are not semicomplete but round decomposable digraphs.
Then proof of this is an application of earlier results in the paper and some structural
observations.

Theorem 2.16. [7] Let D be a round or round decomposable digraph on at least
2k vertices that are not semicomplete. Then D is (2k − 1)-strong if and only if it is
k-linked.

Finally we prove that 5-strong locally semicomplete digraphs are 2-linked. This
confirms Conjecture 2.19 by Bang-Jensen from 1999.

Theorem 3.4. [7] Every 5-strong semicomplete digraph is 2-linked

As Thomassen already proved this for semicomplete digraphs [48] and as the result
follows for round decomposable digraphs by Theorem 2.16, it remains to prove this for
evil locally semicomplete digraphs. The proof of this is very technical and it is here
the refined structure of the evil locally semicomplete digraphs introduced in Section
1.2.1 are used.

Theorem 3.5. [7] Let D be a 5-strong evil locally semicomplete digraph. Then D is
2-linked.
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3.2.1 Sketch of proof of Theorem 3.5

In this section we will give an outline of the proof of Theorem 3.5 together with the
proof of some of sub-results in order to illustrate the techniques used. Before reading
this section it is important that the reader has understood the refined structure of the
evil locally semicomplete digraphs described in Section 1.2.1. The figures illustrating
this refined structure of D together with the reversing of arc and choosing new good
separators are presented again in Figure 3.1 and Figure 3.2. Notice that D is 5-strong
and if we reverse all arcs of D we obtain a 5-strong digraph

←−
D . Furthermore if we

are looking for a {s1, t1, s2, t2}-linkage in D, then this corresponds to a {t1, s1, t2, s2}-
linkage in

←−
D . Hence by interchanging the names of the terminals when reversing all

arcs, we obtain a new equivalent linkage problem.

We start by restate two lemmas from Section 1.2.1 together with a new one. While
the first lemma is presented as a separate lemma in the original paper, the remaining
are integrated parts in the original proof. This author has chosen to extract these here
for two reasons. It makes the sketch of the proof more clean and secondly as these
preliminary do not dependent on the specific problem (5-strong imply 2-linked) they
can be used to solve other problems.

Lemma 1.8. [9] Let S be a minimal separator of a strong locally semicomplete digraph
D. Then either D〈S〉 is semicomplete, or D〈V − S〉 is semicomplete.

The following lemma shows a nice structural result on minimal paths in evil locally
semicomplete digraph. The proof can be found in Section 1.2.1.

Lemma 1.14 (’New’: Bang-Jensen and Christiansen). Let D be an evil locally semi-
complete digraph, then for every x, y ∈ V (D) either D contains a (x, y)-path of length
at most 3, or yx ∈ A(D) and D contains a (x, y)-path of length 4 containing non-
adjacent vertices. 2

Notice the nice connection between Lemma 1.8 and 1.14. If we have a pair of
vertices x, y where the minimal (x, y)-path has length 4 and D is 5-strong, then we
have a (x, y)-path that induces a good separator of D.

Now a (x1, x2)-out-switch S is a collection of at least 4 vertices x1, x2, y1, y2 such
that in D〈S〉 there are disjoint (xi, yi)- and (x3−i, y3−j)-paths for both i, j ∈ [2]. A
(x1, x2)-out-switch of order l is a (x1, x2)-out-switch containing at most l vertices.
We will call x1, x2 the start vertices and y1, y2 the end vertices of S. If we want to

2Corresponds to equivalent to Claim 3 and Claim 4
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Dp+1 Dp+q Dλ2

D1

Dp

D′1

S D′2

D′3

Sbot D′2,top D′2,mid D′2,bot

D′3,top D′3,mid D′3,bot

(a) D with the blocks marked and the pair of evil arcs showed as dotted arcs.

←−
D′3

←−
D′2

←−
D′1 = D1

←−
S

Dp+1 Dp+q Dλ2

D1

Dp

D′1

(b) The semicomplete decomposition of
←−
D with respect to the separator

←−
S . The coloured

sets indicate the four parts.

Figure 3.1
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←−
D′∗3

D′∗2 D′∗1

S∗

Dp+1 Dp+q Dλ2

D1

Dp

D′1

(a) The semicomplete decomposition of D with respect to S∗. The sets indicate the four
parts.

←−
D′∗3

←−
D′∗2

←−
D′∗1

←−
S ∗

Dp+1 Dp+q Dλ2 Dr

D1

Dp

D′1

(b) The semicomplete decomposition of
←−
D with respect to the separator

←−
S∗. The colored

sets indicate the four parts. The dotted arcs are in D and indicate the arcs with head y
respectively y′, where y,y′ are as defined before Theorem 1.13 part 3.

Figure 3.2
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Figure 3.3: Three different (x1, x2)-out-switched of order 5.

specify the end vertices instead of the start vertices, we consider a (y1, y2)-in-switch3.
In Figure 3.3 three kinds of (x1, x2)-out-switches of order 5 is shown. The following
lemma shows that finding a (x1, x2)-switch of order k in a k-strong digraph directly
implies that x1, x2 are linked with almost all other vertices of D.

Lemma 3.6 (NEW: Christiansen). Assume that D is a k-strong digraph and let S
be a (x1, x2)-out-switch of order k in D. Then for every v1, v2 ∈ V − S there exist
disjoint (xi, vi)-paths in D for i ∈ [2].

Proof. This follows by Menger’s theorem. As D − (S − {y1, y2}) is at least 2-strong
and we disjoint (y1, v1)-path and (y1, v2)-path, call these P1, P2. Similarly we have
disjoint (y2, v1)-path and (y2, v2)-path, call these Q1, Q2. Now if Pi is disjoint from
Q3−i for some i ∈ [2], we are done. We need to show that for each i ∈ [2] and hence
we have disjoint (yi, vj)-path for i, j ∈ [2]. Now we use the property of the switch to
link xj to vj for each j ∈ [2].

We are now ready to give the outline (of the remaining) of the proof of Theorem
3.5.

Outline of proof of Theorem 3.5. The proof is by contradiction and the approach is to
consider four terminal vertices {s1, t1, s2, t2} and prove that no matter where the four
vertices are positioned in D, we can find vertex disjoint (s1, t1)- and (s2, t2)-paths.

Let Di = D − {s3−i, t3−i}. If there is a (si, ti)-path Pi of length at most 3 in
Di, then D − Pi is strong and the (s3−i, t3−i)-path can be found. Hence we may
assume that every (si, ti)-paths in Di has length at least 4. Considering {si, ti, ŝj , t̂j}-
linkage in Di, where ŝj is an out-neighbour of sj and t̂j is an in-neighbour of tj , we

3Kühn, Lapinskas, Osthus and Patel introduced the notion switch in [35] when proving that
104k log k-strong semicomplete digraphs are k-linked
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use Proposition 1.1 to conclude that Di is not semicomplete and Theorem 2.16 to
conclude that Di is not round decomposable. Hence for each i ∈ [2], Di is evil locally
semicomplete digraph. Lemma 1.14 then implies that we have a (si, ti)-path Pi of
length 4 such that D〈Pi〉 is not semicomplete and that tisi ∈ A(D). Hence si, ti is
adjacent to all but at most 3 vertices in Di for i ∈ [2] and by Lemma 1.8 Pi is a good
separator of Di.

Through a number of claims, we eliminate positions of the terminals for any good
separator of D. We will only prove the following claim, but many other positions are
proved using the same type of arguments. The most important tool is to consider the
4 different semicomplete decompositions of D described in Section 1.2.1.

Claim 1. 4 For every good separator S and semicomplete decomposition D′1, D
′
2, D

′
3

of D − S, |V (D′3) ∩ {s1, s2}| = 1 and |V (D′1) ∩ {s1, s2}| = 1

Proof of claim. We will repeatedly find a (s1, s2)-out-switch S of order 5 inD−{t1, t2}.
Then it follows by Lemma 3.6. Suppose first that s1, s2 ∈ D′3, then s1, s2 are adjacent
as D′3 is a semicomplete component, and we assume without loss of generality that
s1s2 ∈ A(D). If |N+(s1)∩N+(s2)| ≥ 2 we have a (s1, s2)-out-switch of order 4 and as
tisi ∈ A it is a switch disjoint from t1, t2. Hence we may assume that |D′2,top| = 1. If
we consider the semicomplete decomposition D′∗1 , D′∗2 , D′∗3 with the good separator S∗,
then the last component ofD′3,bot is theD

′∗
1 component. Hence as all other components

of D′3 dominates the last component we conclude that s2 ∈ D′3,bot. Also as |S∗| = 5

we conclude that s1 /∈ D′3,bot, as this would again impose two common out-neighbours
of s1, s2. Thus every out-neighbour of s1 is in D′3. But s1 must dominate a vertex w
in D′3−{s2, t2} which dominates a vertex in D′2,mid. This will induce a (s1, s2)-switch
of order 5. This proves that |V (D′3) ∩ {s1, s2}| = 1.

Now to realize that |V (D′1) ∩ {s1, s2}| = 1, we simply consider the semicomplete
decomposition D′∗1 , D

′∗
2 , D

′∗
3 with the good separator S∗. Then it follows as D1 ⊂

D′∗3 . �

After eliminating most of the position for the terminals for all good separator, we
pick a good separator S and an orientation of D such that there are no terminals in
D′1. Then we prove that for this choice of separator {s1, t1} ∈ D′2 and {s2, t2} ∈ S
and it remains to considering two cases, depending on the adjacency between D1 and
D′2.

Case 1. D1 dominates D′2
4Corresponds to Claim 7 and 8 in the original proof
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Proof of case. Pick w ∈ D′2 − {s1, t1}, s ∈ S − {s2, t2}, q ∈ D′1 and p ∈ D′3,top. Then
P = s2pwqt2 and Q = s1qspt1 are both paths that induce digraphs which is not
semicomplete. Let P1, P2, P3 be internally disjoint minimal (s1, t1)-paths in D1. Then
for j ∈ [3] each Pj intersects P , and hence each contains exactly one of the vertices
{p, w, q}. Let αi, βi denote, respectively, the successor of s1 and the predecessor of t1
on Pi. Then wlog α1 = q, β2 = p. Now if α2 ∈ D′2, then pα2 and α2q would give
a (s2, t2)-path s2pα2Pt2 disjoint from P3, a contradiction. Hence α2 ∈ D′1 and D′1 is
non-trivial. Considering 3 internally disjoint (s2, t2)-paths Q1, Q2, Q3 in D2 we use
similar arguments to conclude that D′3 contains at least two vertices. But then both
P and D − V (P ) is not semicomplete, a contradiction with Lemma 1.8. ♦

Case 2. There exists p ∈ D1, x ∈ D′2 so that p and x are not adjacent

By a similar approach considering 3 disjoint (si, ti)-paths in Di we also prove this
case. This completes the proof of Theorem 3.5.





Chapter 4

Further results and open problems
on the Linkage problem

In this chapter we will prove Conjecture 2.18 and formulate a few so far not mentioned
problems that lies in natural extension to the problems considered in this part.

4.1 Linear function ensuring k-linked locally semicomplete
digraphs

In Theorem 2.16 and Theorem 2.12 we saw that a linear bound on the strong con-
nectivity of round decomposable respectively semicomplete digraphs are sufficient to
ensure that they are k-linked. Naturally Bang-Jensen conjectured (Conjecture 2.18)
that this is also true for locally semicomplete digraphs. In this section we will verify
this conjecture by proving that every 454k-strong locally semicomplete digraphs are
k-linked. Remember that Theorem 1.9 implies that locally semicomplete digraphs are
either semicomplete, round decomposable or evil. We will start by considering the
evil class, and use Lemma 1.14 that says that between any pair of vertices in an evil
locally semicomplete digraphs there is a path of length at most 4.

Theorem 4.1 (NEW: Christiansen). Let k > 1 be a fixed integer. Then every f(k)-
strong evil locally semicomplete digraph is k-linked. Furthermore f(k) ≤ 454k − 1.

Proof. The proof is by induction over k. First k = 2 follows by Theorem 3.5, so
assume that the theorem is true for all k − 1 > 1 and consider a f(k)-strong evil
locally semicomplete digraph. Let Π = {s1, t1, s2, t2, . . . , sk, tk} be an arbitrary set
of k pairs of disjoint terminals in D. Furthermore let Πi = Π − {si, ti} and let
Di = D − Πi. If siti ∈ A(D) for some i ∈ [k], then it follows easily by considering
D − siti. So we may assume that for all i ∈ [k], siti /∈ A(D).
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Assume first that there exists an i ∈ [k] such thatDi is an evil locally semicomplete
digraphs. Then Lemma 1.14 implies that Di has a (si, ti)-path P of length at most 4

and the theorem follows by induction as D−P is at least f(k)− 5 ≥ f(k− 1)-strong.
Now consider Di for any i ∈ [k]. Then as sjtj /∈ A(D) for each j ∈ [k] we have

|N+(sj) ∩Di| ≥ f(k)− 2(k − 1) + 1 ≥ 3k − 2

|N−(tj) ∩Di| ≥ 3k − 2.

As 3k − 2 ≥ 2(k − 1), there exist a set of 2(k − 1) disjoint vertices in Di

Π̂i = {ŝ1, t̂1, . . . , ŝi−1, t̂i−1, ŝi+1, t̂i+1, . . . , ŝk, t̂k}

such that for each such j ∈ [k], with j 6= i, ŝj is an out-neighbour of sj and t̂j is an
in-neighbour of tj . Furthermore it is not hard to extend a Π̂i∪{si, ti}-linkage in Di to
a Π-linkage in D. Now the theorem follows by Theorem 2.16 and Theorem 2.12: If Di

is round decomposable then as Di is at least 2k−1 strong it has a Π̂i∪{si, ti}-linkage
and if Di is semicomplete then as Di is at least 452k-strong it has a Π̂i ∪ {si, ti}-
linkage.

Looking at the proof we saw that it is the case where Di is semicomplete for every
i ∈ [k] which bounds f(k). For Di evil and round decomposable it would be sufficient
with f(k) = 5(k− 1). As Pokrovskiy conjectured (Conjecture 2.14) the correct bound
for semicomplete digraphs is close to 2k, and if so f(k) = 5(k − 1) will be sufficient.
One could also try to improve directly on f(k). WhenDi is semicomplete for all i ∈ [k],
then one can realize that (a subset of) the terminals are positioned in a well-ordered
way; If Di is semicomplete, Πi must contain all vertices of D′3 or all vertices of D′1,
and this has to apply for all i ∈ [k] and any semicomplete decomposition of D. This
observation together with the refined structure defined in Section 1.2.1 might either
give the existence of a short (si, ti)-path in Di for some i ∈ [k], or give a contradiction
with Di semicomplete for all i ∈ [k]. This leads to the following conjecture.

Conjecture 4.2 (NEW: Christiansen). Every 5(k−1)-strong evil locally semicomplete
digraph is k-linked.

Now the general bound on locally semicomplete digraph follows by the structure
of the locally semicomplete digraphs (Theorem 1.9).

Corollary 4.3 (NEW: Christiansen). There exists a linear function g(k), such that
every g(k)-strong locally semicomplete digraphs are k-linked. Furthermore g(k) ≤
454k − 1.

Proof. This follows by combining the results for semicomplete (Theorem 2.12), round
decomposable (Theorem 2.16) and locally semicomplete digraphs (Theorem 4.1) and
the bound is the maximum for the three g(k) ≤ max{452k, 2k − 1, f(k)}.
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4.2 Other related results and conjectures

We will end with a small collection related conjectures and open problems not stated
elsewhere. Remember that we in the previous have considered both the complexity
version and setting up sufficient conditions for a digraph to be k-linked.

Starting with complexity related problems. Bang-Jensen conjectured that it is
also polynomial to decide if locally in- (and out-) semicomplete digraphs are k-linked.
Even for k = 2, this is unproven.

Conjecture 4.4. [11] For fixed k, the k-linkage problem is polynomial on locally in-
semicomplete digraphs.

Now Chudnovsky, Seymour and Scott showed that the k-linkage problem is poly-
nomial on digraphs consisting of union of p semicomplete digraphs (Theorem 2.3).
This is a special type of digraphs with independence number p. They ask what the
complexity for all digraphs with bounded independence number is.

Problem 4.5. [20] Determine the complexity of the k-linkage problem in digraphs
with bounded independence number

Moving on to sufficient conditions in order of a digraph to be k-linked, we do not
know of any general results on Φ-decomposable digraphs. Bang-Jensen proved [4]
that every 5-strong quasi-transitive digraphs are 2-linked and we proved that 2k − 1-
strong round decomposable digraphs are k-linked. It would be interesting if we could
generalize these results in two ways; Finding a sufficient condition for a quasi-transitive
digraph to be k-linked and prove that for some class of Φ-decomposable digraphs which
are also f(k)-strong, they are all k-linked.

Finally we will mention two complexity results on the k-linkage problem, when k
is part of the input. Notice that it follows directly from Fortune, Hopcroft and Wyllie
[22] that this problem is NP complete for general digraphs, as it is when k is fixed.

Theorem 4.6. [43] The k-linkage problem i W [1]-hard for acyclic digraphs when k is
part of the input.

Theorem 4.7. [17] The k-linkage is NP complete in tournaments when k is part of
the input.
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Chapter 5

Introduction to partition problems

Remember that a (P1,P2)-partition of a digraphD is a partition (V1, V2) of the vertices
of D such that Vi induces a graph with property Pi. It is natural to study whether
there exist partitions of the vertices (arcs) of a (di)graph such that some properties
is ’maintained’ in each partition. For example does there exist a function f(k1, k2)

such that every digraph with minimum out-degree f(k1, k2) has a (δ+ ≥ k1, δ+ ≥ k2)-
partition. For undirected graphs this and the similar problem for connectivity was
proved by Thomassen [47] and the bound on these have later been improved by Hanjal
[27], Stiebitz [45] and Kühn and Osthus [32].

In 1995-1996 Alon [1] and Stiebitz [44] independently posed the equivalent problem
for minimum out-degree in digraphs. It is not hard to see that the answer is yes if
and only if there exist a function f ′(k1, k2) ≥ k1 +k2 + 1 such that every digraph with
minimum out-degree f ′(k1, k2) has a ([cycle, δ+ ≥ k1] , [cycle, δ+ ≥ k2])-partition. As
high out-degree is sufficient to guarantee disjoint cycles (See Thomassen [46] and Alon
[1]) and as out-degree 3 guarantees two disjoint cycles this implies that out-degree 3

is sufficient for partitions with out-degree 1 in each. The problem of finding partitions
where we want the out-degree to be more than 2 is for general digraphs still open.

Figure 5.1: A (δ+ ≥ 1, strong)-partition.
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In 2012 Lichiardopol, proved this and the related result for minimum semi-degree in
tournaments.

Theorem 5.1. [37] Let k1, k2 be integers and let T be a tournament with minimum
out-degree at least k21+3k1+2

2 + k2. Then T has a (δ+ ≥ k1, δ+ ≥ k2)-partition.

Theorem 5.2. [37] Let k1, k2 be integers and let T be a tournament with minimum
semi-degree at least k21 + 3k1 + 2 + k2. Then T has a (δ0 ≥ k1, δ0 ≥ k2)-partition.

Both results can be generalized to semicomplete digraphs. Also similar results
on digraphs with bounded independence number can be found using the same
techniques as seen in [37]. Alon, Bang-Jensen and Bessy have recently shown that for
large constants the bound found in Theorem 5.1 and Theorem 5.2 are not the best
possible.

Theorem 5.3. [2] There exist an absolute constant c1 such that every semicomplete
digraph S with minimum out-degree at least 2k + c1

√
k has a (δ+ ≥ k, δ+ ≥ k)-

partition.

Theorem 5.4. [2] There exist an absolute constant c2 such that every semicomplete
digraph S with minimum semi-degree at least 2k + c1

√
k has a (δ0 ≥ k, δ0 ≥ k)-

partition.

In the above we only consider 2-partitions, but it is not hard to generalize these
results to larger partitions with corresponding larger functions.

Instead of looking for a function that guarantees the existence of a partition,
one could ask for the complexity of the given partition problem. In [12] and [8] Bang-
Jensen, Cohen1 and Havet determined the complexity of 120 such 2-partition problems
for general digraphs. Bang-Jensen and this author further investigated these problems
[6], and focused on partitions with certain minimum degree properties. We proved,
that apart for the ’trivial’ (δ+ ≥ 1, δ+ ≥ 1)-partition, the (δ+ ≥ k1, δ+ ≥ k2)-partition
is NP complete for general digraphs.

Theorem 5.5. [6] Let k1, k2 be fixed integers such that k1 + k2 ≥ 3, then it is NP
complete to decide if a semicomplete digraph contains a (δ+ ≥ k1, δ+ ≥ k2)-partition.

Together with the results of Bang-Jensen, Cohen and Havet, this implies that all
variations (except (δ+ ≥ 1, δ+ ≥ 1)-partition) of minimum degree partition problems
are NP complete for general digraphs and naturally we considered these problems on

1Cohen is only co-author on [8]
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semicomplete digraph. Here we found that the (δ+ ≥ k1, δ
+ ≥ k2)-partition and the

(δ+ ≥ 1, δ− ≥ k2)-partition problem are polynomial for all k1, k2 and for the special
case where k1 = k2 = 1 we produce constructive proofs for the (δ+ ≥ 1, δ− ≥ 1)-
partition, the (δ0 ≥ 1, δ− ≥ 1)-partition and the (δ0 ≥ 1, δ0 ≥ 1)-partition problem.
The complexity of remaining problems has not been found. We conjecture that all of
these are polynomial. All results of [6] will be further described in Chapter 6.

Knowing that a partition exist, we could also ask if we can find the partition
and if so, how fast. In [6] all proofs are constructive, but no work has been done in
order to improve the runtime. In Chapter 7 we will improve the runtime on one of
the problems. Here we describe an O(n2) algorithm that finds a (δ0 ≥ k1, δ

0 ≥ k2)-
partition in a semicomplete digraph, given the semicomplete digraph has minimum
semi-degree O(k21). This is significantly better than the obvious runtime obtained by
using Theorem 5.2.

We will end this part in Chapter 8 where we will discuss the issues and problems
found in the work with degree constrained partition. Here we will also mention other
partition results and give some open problems.





Chapter 6

Degree constrained 2-partitions of
semicomplete digraphs

6.1 Introduction

In this chapter we will give an introduction to the results from the article ’Degree
constrained 2-partitions of semicomplete digraphs’, which is joined work between this
author and Bang-Jensen [6]. The full paper can be found in Part IV. As mentioned
in the introduction, Bang-Jensen, Havet and Cohen determined the complexity of 120

partition problems in [8] and [12]. The following three motivates the work done in the
paper ’Degree constrained 2-partition of semicomplete digraphs’.

Theorem 6.1. [8] The following three partition problems are NP-complete on general
digraphs:

• The (δ+ ≥ 1, δ− ≥ 1)-partition problem.

• The (δ0 ≥ 1, δ− ≥ 1)-partition problem.

• The (δ0 ≥ 1, δ0 ≥ 1)-partition problem.

Now for fixed integers k1, k2 we obtain the following results.

• If k1 + k2 ≥ 3, then the (δ+ ≥ k1, δ
+ ≥ k2)-partition problem is NP-complete

for general digraphs (for k1 + k2 = 2 it is polynomial). See Section 6.2.

• If k1, k2 ≥ 1, then the (δ+ ≥ k1, δ
+ ≥ k2)-partition problem is polynomial for

semicomplete digraphs and digraphs with bounded independence number. See
Section 6.3.

• The (δ+ ≥ 1, δ− ≥ 1)-partition problem, (δ0 ≥ 1, δ− ≥ 1)-problem and (δ0 ≥
1, δ0 ≥ 1)-problem is polynomial solvable for semicomplete digraphs. See Section
6.4.
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• The (δ+ ≥ 1, δ− ≥ k)-partition problem is polynomially solvable for semicom-
plete digraphs. See Section 6.5

• The ([strong, tournament], [strong, tournament])-partition problem is NP-complete
for semicomplete digraphs, i.e the problem of finding a partition where both par-
titions induce a strong digraph without 2-cycles. See Section 6.6.

Notice that in each of these problems an obvious necessary condition is that the
digraph has at least k1+k2+2 vertices and such a partition can only be obtained when
the digraph is a biorientation of the complete graph. In the following we will assume
that the digraph always has order at least k1 + k2 + 2. Also other trivial necessary
condition such has δ+(D) ≥ k when looking for a (δ+ ≥ k, δ+ ≥ k)-partition will be
assumed true below.

Before a more detailed presentation on the results obtained, we need a few extra
definitions. Given a digraph D with minimum out-degree at least k and a subset X
of its vertices, we say that a set X ′ ⊆ V is X-out-critical if X ⊆ X ′, δ+(D〈X ′〉) ≥ k
and δ+(D〈X ′ − Z〉) < k for every ∅ 6= Z ⊆ X ′−X. Notice that if δ+(D〈X〉) ≥ k, then
X is the only X-out-critical set in D. Also every digraph of minimum out-degree at
least k contains at least one X-out-critical set for every subset X of vertices (including
the empty set). Furthermore considering a (δ+ ≥ k1, δ+ ≥ k2)-partition problem in a
digraph D, a vertex v is said to be out-dangerous if d+(v) < (k1 + k2)− 1.

6.2 Complexity for (δ+ ≥ k1, δ
+ ≥ k2)-partition problem

In [8] one result missing is the complexity of (δ+ ≥ k1, δ
+ ≥ k2)-partition problem

when k1+k2 ≥ 3. We prove that it is NP-complete using a reduction from monotone 1-
IN-3-SAT 1. The construction makes a digraph on the backbone of the 3-SAT instance
that forces certain vertices in a certain set to get a valid (δ+ ≥ k1, δ+ ≥ k2)-partition.
A valid partition will then correspond to a yes-instance. With this construction we
can prove that if there is a (δ+ ≥ k1, δ+ ≥ k2)-partition then we can find a satisfying
assignment and conversely. As this construction can be made in polynomial time, the
complexity then follows.

13-SAT problem where there are no negated literals and where a truth assignment has exactly one
true literal in each clause.
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6.3 The (δ+ ≥ k1, δ
+ ≥ k2)-partition problem of digraphs

with bounded independence number

In [37] Lichiardopol proved Theorem 5.1. We noticed that the same technique can
be used to prove a similar bound for semicomplete digraphs. We can also use the
techniques to develop a polynomial algorithm to find such a partition. Actually, as also
mentioned in our paper, similar approach can be used to find bound and polynomial
algorithm for digraphs with bounded independence number. Below we will present
this result for digraphs of bounded independence number. Notice that these proofs
are not presented in [6] but are almost identical to the proofs for the corresponding
results on semicomplete digraphs found in [6].

The first lemma is a corollary of Turan’s theorem 1.3.

Lemma 6.2 (’NEW’: Bang-Jensen and Christiansen). Let k1, k2, α be fixed integers
and let D be a digraph with independence number at most α. Then the number of
out-dangerous vertices of D is at most α(2(k1 + k2)− 3).

Proof. Let X be the set of out-dangerous vertices of D. Then the number of arcs in
D〈X〉 is at most |X|(k1 + k2 − 2). On the other hand Turan’s theorem implies that
the number of arcs in D〈X〉 are at least

|X|(|X| − 1)

2
−
(

1− 1

α

) |X|2
2

=
|X|
2

( |X|
α
− 1

)
.

Collecting these two we obtain the result

|X| ≤ α(2(k1 + k2)− 3)

The following lemma is closely related to the result of Lichiardopol. While Lichiar-
dopol only considered critical sets, we consider critical sets containing some predefined
vertices X, the X-out-critical set.

Lemma 6.3 (’NEW’: Bang-Jensen and Christiansen). Let k, α be fixed integers and
let D be a digraph with independence number at most α, and with minimum out-degree
at least k. Furthermore let X ⊆ V (D). Then every X-out-critical set X ′ of D will
have size at most α

2 ((k + 1)(k + 2)) + |X|.

Proof. Suppose that for some set X ⊂ V there is an X-out-critical set X ′ of size at
least α

2 ((k+ 1)(k+ 2)) + |X|+ 1. Consider the digraph with independence number at
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most α induced by X ′, D′ = D〈X ′〉. LetM be the set of vertices that have out-degree
exactly k in D′ and let m = |M |. As each v ∈M has out-degree k in D′

|N+
D′ [M ]| ≤ m+mk − m

2
(
m

α
− 1) = − 1

2α
m2 +

(
3

2
+ k

)
m =: P (m).

Now P (m) has global maximum at α(3/2+k) with value P (α(3/2)+k) = α
2 (32+k)2

and integer maximum at α
2 ((k + 1)(k + 2)). Hence as |X ′| > α

2 ((k + 1)(k + 2)) + |X|
there exists a vertex u ∈ X ′− (N+

D′ [M ]∪X) such that δ+(D′〈X ′ − u〉) ≥ k. But then
the set Z = {u} is contained in X ′ − X and δ+(D〈X ′ − Z〉) ≥ k, contradicting the
fact that X ′ is an X-out-critical set in D.

Theorem 6.4 (’NEW’: Bang-Jensen and Christiansen). For every fixed integers k1,k2,α
there exist a polynomial algorithm that either construct a (δ+ ≥ k1, δ+ ≥ k2)-partition
of a given digraph D with independence number at most α, or correctly outputs that
none exist.

Proof. Let (O1, O2) be a given partition of the out-dangerous vertices of D. Let
X ⊆ V − O2 be a set containing O1 such that |X| ≤ α

2 ((k + 1)(k + 2)) + |O1| and
δ+(D〈X〉) ≥ k1 (if no such set exists, we stop considering the pair (O1, O2)). The
following sub-algorithm B will decide whether there exists a (δ+ ≥ k1, δ

+ ≥ k2)-
partition (V1, V2) with X ⊆ V1, O2 ⊆ V2: Starting from the partition (V1, V2) =

(X,V − X), and moving one vertex at a time, the algorithm will move vertices of
V2 − O2 which have d+

D〈V2〉(v) < k2 to V1. If, at any time, this results in a vertex

v ∈ O2 having d+
D〈V2〉(v) < k2, or V2 = ∅, then there is no (δ+ ≥ k1, δ

+ ≥ k2)-

partition with X ⊆ V1 and O2 ⊆ V2 and the algorithm B terminates. Otherwise B will
terminate with O2 ⊆ V2 6= ∅ and hence it has found a (δ+ ≥ k1, δ

+ ≥ k2)-partition
(V1, V2) with Oi ⊆ Vi, i = 1, 2.

The correctness of B follows from the fact that we only move vertices that are not
dangerous and each such vertex has at least k1 + k2 − 1 out-neighbours in D. Hence,
as the vertex that we move does not have k2 out-neighbours in V2, it must have at
least k1 out-neighbours in V1, so δ+(S〈V1〉) ≥ k1 will hold throughout the execution
of B.

By Lemma 6.2, the number of out-dangerous vertices is at most α(2(k1 + k2)− 3)

and hence the number of (O1, O2)-partitions of the set of out-dangerous vertices is
at most 2α(2(k1+k2)−3) which is a constant because k1, k2 are fixed. Furthermore,
by Lemma 6.3, the size of every O1-critical set is also bounded by a function of
k1 and hence for each (O1, O2)-partition there is only a polynomial number of O1-
critical sets that are disjoint from O2. Thus we obtain the desired polynomial time
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algorithm by running the sub-algorithm B for all possible partitions (O1, O2) of the
out-dangerous vertices and all possible choices of sets X with O1 ⊆ X and |X| ≤
α
2 ((k + 1)(k + 2)) + |O1|. Note that we do not need to check whether X is O1-out-
critical, we just check all possible supersets of O1 of size at most α2 ((k+1)(k+2))+|O1|.

6.4 Partitions of semicomplete digraphs where both con-
stants are 1

We prove that (δ+ ≥ 1, δ− ≥ 1)- (δ0 ≥ 1, δ− ≥ 1)- and the (δ0 ≥ 1, δ0 ≥ 1)-partition
problems are all polynomial and that each of these can be found in polynomial time.
Clearly disjoint cycles are necessary for all three problems, and for the first two we
prove that two disjoint cycles are also sufficient. Polynomial then follows easily, by
finding two disjoint cycles of length 3 in the semicomplete digraph.

Now for the (δ0 ≥ 1, δ0 ≥ 1)-partition problem, disjoint cycles is not sufficient but
complementary cycles are. Reid [41] proved that every 2-strong tournament of at least
8 vertices contains complementary cycles, and Guo and Volkmann improved this to
also apply to semicomplete digraphs [26]. As Bang-Jensen and Nielsen [16] found a
polynomial algorithm to decide if a semicomplete digraph is 2-strong, we are left with
analysing the following cases for the (δ0 ≥ 1, δ0 ≥ 1)-partition problem.

1. D is a semicomplete digraph of at most 7 vertices.

2. D is a semicomplete digraph which is not strong.

3. D is a semicomplete digraph that is strong but not 2-strong.

While 1 can be decided by brute force, 2 follows considering the first and last strong
component of D and applying the corresponding algorithms for the (δ+ ≥ 1, δ+ ≥ 1)-,
(δ+ ≥ 1, δ− ≥ 1)- and (δ0 ≥ 1, δ− ≥ 1)-partition problem. Now to prove 3 we consider
a separator x of D and the semicomplete decomposition D1, D2, . . . , Dr of D− x. By
case analysis we either find a partition, reduces the problem to a problem on a smaller
semicomplete digraph or concludes that none exist. For example Figure 6.1 shows
how a structure where only Dr is non-trivial and x dominates Dr−1 can be reduced
to the same problem on a smaller semicomplete digraph. Another example is seen in
Figure 6.2. Here both D1, Dr are non-trivial strong components and every vertex y of
D1 (z of Dr) that x dominates (is dominated by) is a separator of D1 (Dr) such that
D1 − y (Dr − z) is a transitive tournament. In this case there is only a solution, if x
belongs to a cycle disjoint from D1 and Dr.
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x

DiD2D1 Dr−1 Dr

x′

Dr

Figure 6.1: One of the cases in the analysis of 3. In the figure to the left the semi-
complete digraph D is seen and all vertices except Dr is marked with blue. On the
right the blue vertices is replaced by just one vertex x′. Here x′ is dominated by the
same vertices of Dr that x where, and x′ dominates all vertices of Dr (notice that it
is a semicomplete digraph and hence 2-cycles is allowed).

x

DiD2

y

D1

Dr−1

z

Dr

Figure 6.2: Another of the cases in the analysis of 3. Here we see that {x, y, z} is a
feedback vertex set and there is only a (δ0 ≥ 1, δ0 ≥ 1)-partition if x belongs to a
cycle disjoint from D1 and Dr.



6.5 The (δ+ ≥ 1, δ− ≥ k)-partition problem for semicomplete digraphs 51

Notice that Lichiardopol in Theorem 5.2 proved that all tournaments (semicom-
plete digraphs) with minimum semi-degree 7 has an (δ+ ≥ 1, δ− ≥ 1)- (δ0 ≥ 1, δ− ≥ 1)

and (δ0 ≥ 1, δ0 ≥ 1)-partition. As we proved that two disjoint cycles are sufficient for
(δ+ ≥ 1, δ− ≥ 1)- and (δ0 ≥ 1, δ− ≥ 1)-partition 2 minimum out-degree 3 (minimum
in-degree 3) is sufficient for these problems. Now by inspection of the construction of
the (δ0 ≥ 1, δ0 ≥ 1)-partition one realizes that minimum semi-degree at least 3 will al-
ways be sufficient. This follows as every no-instance has vertices with in- or out-degree
less that 3. Consider for example the case where D is not strong and δ0(D) ≥ 3. Then
the initial strong component D1 will have minimum in-degree at least 3 and the termi-
nal strong component Dr will have minimum out-degree at least 3. But then D1 has a
(δ0 ≥ 1, δ− ≥ 1)-partition, (P1, P2) and Dr has a (δ0 ≥ 1, δ+ ≥ 1)-partition, (Q1, Q2)

and it follows that (Pi∪Qj , P3−i∪Q3−j∪D2∪· · ·∪Dr−1) is a (δ0 ≥ 1, δ0 ≥ 1)-partition
for every i, j ∈ [2]. If D is strong and x is a separator, then considering the strong
components of D−x, D1 and Dr will always be non-trivial, and we will never end up
in the case illustrated in Figure 6.2.

Corollary 6.5. [’NEW’: Bang-Jensen and Christiansen] Every semicomplete digraph
with minimum semi-degree 3 contains a (δ0 ≥ 1, δ0 ≥ 1)-partition.

6.5 The (δ+ ≥ 1, δ− ≥ k)-partition problem for semicom-
plete digraphs

We start by proving the following lemma.

Lemma 6.6. Let k be a fixed integer and D a semicomplete digraph. Furthermore let
X1, X2 be disjoint subsets of V such that

(a) V −X1 −X2 induces a transitive tournament.

(b) If there is a vertex v of X1 such that d+X1
(v) = 0 then v is dominated by at most

k − 1 vertices of V −X1 −X2.

Then there exist a polynomial algorithm that decide whether D has a (δ+ ≥ 1, δ− ≥ k)-
partition (V1, V2) with Xi ⊂ Vi for i ∈ [2] and find such a partition when it exists.

Then using this lemma, the following two are proved using similar techniques.

Theorem 6.7. [6] There exists a polynomial algorithm that either finds a (δ+ ≥
1, δ− ≥ 2)-partition of a semicomplete digraph D or correctly outputs that none exist.

2actually also (δ+ ≥ 1, δ+ ≥ 1)-partition
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Theorem 6.8. [6] For every fixed integer k ≥ 1 there exists a polynomial algorithm
that either constructs a (δ+ ≥ 1, δ− ≥ k)-partition of a semicomplete digraph D or
correctly outputs that none exist.

The following is a short sketch of the proofs. For each 3-cycle Ci of the semi-
complete digraph D we want to check if D has a partition (V1, V2), where Ci ⊂ V1,
δ+(V1) ≥ 1 and δ−(V2) ≥ 2 (δ−(V2) ≥ k). We call such a partition a good partition
of D. We start by letting V1 = C and V2 = V −C1. Then vertices of V2 not having 1

(k) in-neighbours in V2 are moved to V1. If we do not terminate in this process, then
V2 induces a semicomplete digraph with minimum in-degree at least 2 (k), while there
is a vertex v ∈ V1 that is dominated by all other vertices in V1. Now we prove that
either

• V2 contains a collection of short cycles C that can be moved from V2 to V1 giving
a good partition.

• or we find a feedback vertex set F of S〈V2〉.

To do this notice that v /∈ Ci and hence was moved to V1 because it did not have
sufficiently many in-neighbours, meaning that v is dominated by at most 1 (k − 1)
vertices of V2. Hence if the collection of short cycles C has size least 2 (k) vertices,
then V1 ∪ C will induce a semicomplete digraph with minimum out-degree 1. We look
for C amongst vertices that will not decrease the out-degree of V2 below the threshold
of 1 (k). If C does not exist, then all such collections of short cycles is dominated by
vertices of low out-degree in V2. Together with some additional vertices this will lead
to a feedback vertex set of V2.

Now if D has a good partition (V̂1, V̂2) then some subset (possible empty) of F
belongs to V̂1. Considering a partition of F , (F1, F2), we check if D has a good
partition with F1 ∪ Ci using Lemma 6.6.

To realize that this can be done in polynomial time notice that we can list and find
all cycles of length at most 3 in D. Also as F is bounded the number of partitions of
F is bounded, and we can check each of these in polynomial time using Lemma 6.6.

6.6 The (δ+ ≥ k, δ+ ≥ k)-partition of semicomplete di-
graphs such that each partition is a tournament

Like the first NP-complete proof of the paper, this is also done by a reduction from
3-SAT, this time NAE-3-SAT. Due to the fact that the digraph now has to be a
semicomplete digraph, this construction is even more complicated, and we will not go
into detail with the proof here.



Chapter 7

An efficient algorithm for finding a
(δ0 ≥ k1, δ

0 ≥ k2)-partition in
tournaments with high minimum
semi-degree

In Theorem 5.2 Lichiardopol proved that every tournament with minimum semi-degree
at least k21 + 3k1 + 2 + k2 contains a (δ0 ≥ k1, δ

0 ≥ k2)-partition. To prove this he
first considered tournaments with minimum semi-degree k and proved that there is a
subset X of V of size at most k2 + 3k+ 2, such that T 〈X〉 has minimum semi-degree
at least k. This will then imply that every tournament with minimum semi-degree at
least k21 +3k1 +2+k2 contains a (δ0 ≥ k1, δ0 ≥ k2)-partition. The proof directly leads
to an algorithm that finds such a partition; Let X1, X2, . . . , Xm be every subset of
V (T ) of size at most k21 + 3k1 + 2. For each i ∈ [m], we let V1 = Xi, V2 = V −Xi and
move vertices from V2 to V1 until T 〈V2〉 has minimum semi-degree k2 or V2 is empty.
If (V1, V2) is a (δ0 ≥ k1, δ0 ≥ k2)-partition, then the algorithm outputs this, otherwise
it moves to the next Xi set. The runtime of this algorithm is dominated by the time
it takes to find the Xi set, which is O(nk

2
1).

In 2014 Bang-Jensen and this author was inspired by a structural result on tour-
naments obtained by Kühn, Lapinskas, Osthus and Patel [35, 34] to consider the
(δ0 ≥ k1, δ0 ≥ k2)-partition problem for tournaments, unaware that Lichiardopol had
already proven Theorem 5.2. In the following we will present our result. Here we
show that increasing the minimum semi-degree slightly compared to Theorem 5.2 we
obtain an algorithm that find a (δ0 ≥ k1, δ

0 ≥ k2)-partition of a tournament in just
O(kn2) time.
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Theorem 7.1 (NEW: Bang-Jensen and Christiansen). Let k1, k2 be fixed integers and
define

q(k1, k2) = 4(k21 + k22) + 4(k1 + k2) + 4dlog2(4(k1 + k2)
2)e(k1 + k2).

Then every tournament T with minimum semi-degree δ0(T ) ≥ q(k1, k2) contains
a (δ0 ≥ k1, δ0 ≥ k2)-partition and such a partition can be found in O(kn2) time.

7.1 A few extra definitions and two easy results

Let D = (V,A) and k be a fixed integer non-negative. We say that a set X ⊆ V is
in-happy (out-happy) if each vertex v ∈ X has k in-neighbours (out-neighbours) in
D. X is happy if it is both in- and out-happy. A vertex that is not happy is said
to be sad and it is i-in-sad (i-out-sad) in D if the in-degree (out-degree) of this
vertex is k − i (for i ≤ k). Let Ii be the set of vertices in D that are i-in-sad. Then
the in-sadness of D is

σin(D) =

k∑

i=1

i|Ii|.

Similarly if Oi is the set of i-out-sad vertices then the out-sadness of D is

σout(D) =
k∑

i=1

i|Oi|.

Finally the sadness of D is σ(D) = σ(D)out + σ(D)in. Now consider the subdigraph
D′ = D〈X〉. A vertex v ∈ V − X is said to be safe with respect to D′ if adding v
to this subdigraph will not increase the sadness of D′. This means that a vertex is
safe if it dominates at least k vertices of X and is dominated by at least k vertices
of X. In the above definitions we assume that k is already specified, but when it is
not clear from the context which integer they refer to, we may add k explicitly in the
definitions. For example, we may write k-happy, k-safe and σk(D).

Lemma 7.2 (NEW: Bang-Jensen and Christiansen). Given a tournament T on n

vertices and an integer k with k ≤ n. Then the out-sadness (in-sadness) of T is at
most k2+k

2 . Equality is obtained for transitive tournaments on at least k vertices.

Proof. We will only prove the result for out-sadness as the proof for in-sadness is
analogous. Let Z be the collection of out-sad vertices in T . Notice that every arc of
T 〈Z〉 leaves a vertex whose out-degree is less than k. Hence we have

σout(T ) ≤ |Z|k −
(|Z|

2

)
≤ k2 + k

2
,
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D′

w

u

v

Figure 7.1: Illustration of safe, sad and happy vertices with k = 2. Here v is a safe, u
is 1-in-sad and {w} is happy.

where the last inequality is attained with equality for |Z| ∈ {k, k + 1}. Considering
the vertices vn−k+1, vn−k+2, . . . , vn in an acyclic ordering of the vertices of a transitive
tournament T , we see that the set consisting of these vertices has k-out-sadness exactly
k2+k
2 in T .

Corollary 7.3 (NEW: Bang-Jensen and Christiansen). Let T be a tournament on n
vertices and k an integer with k ≤ n. Then σ(T ) ≤ k2 + k.

7.2 Proof of Theorem 7.9

Before proving the theorem we will give a short outline of the proof. The proof is
inspired by an approach used with great success in [35, 34]. We will start with the
empty sets V (0)

1 = V
(0)
2 = ∅ and will add vertices to the current sets V (i)

1 respectively
V

(i)
2 in three stages until the resulting sets V (3)

1 and V (3)
2 form a (δ0 ≥ k1, δ

0 ≥ k2)-
partition of T . First we find 2k1 + 2k2 vertex disjoint sets each inducing transitive
tournaments and add the first 2k1 of these to V (0)

1 to obtain V (1)
1 and the remaining

2k2 to V (0)
2 , obtaining V (1)

2 . These 2k1 + 2k2 sets have the property that after adding
them to V (0)

1 and V (0)
2 most of the vertices of V − (V

(1)
1 ∪ V (1)

2 ) will be k1-safe with
respect to V (1)

1 and k2-safe with respect to V (1)
2 . In the next stage we will add vertices

to V (1)
1 and V (1)

2 such that the resulting sets V (2)
1 , V

(2)
2 become k1-happy, respectively

k2-happy sets. This is mostly done by adding safe vertices from V − (V
(1)
1 ∪ V (1)

2 )

that have the connections to sad vertices of T 〈V (1)
1 〉 and T 〈V

(1)
2 〉. Finally we will add

each of the remaining vertices of T to either V (2)
1 or V (2)

2 (building V (3)
1 , V

(3)
2 ). In this

stage, if every vertex left would be either k1-safe with respect to V (2)
1 or k2-safe with

respect to V (2)
2 this would be easy as we could just add these to V (2)

1 respectively V (2)
2 .

This is though not necessarily the case, and we need to handle the non-safe vertices
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by adding them together with safe vertices in a specific order.

Now let T be a given tournament, k1 and k2 fixed integers and let k = k1 + k2.
For convenience we define the following sets, where V (i)

1 , V
(i)
2 denote the current

sets V (i)
1 , V

(i)
2 , for i ∈ [0, 3] (they change during the algorithm). The set E will be

defined in the next section.

V
(i)
rest = V − (V

(i)
1 ∪ V (i)

2 ) (7.2.1)

V̂ (i) = V
(i)
rest − E (7.2.2)

7.2.1 Constructing V
(1)
1 and V

(1)
2 by adding disjoint transitive tour-

naments

Let X = {x1, x2, . . . , xk} be the k vertices of lowest in-degree in T and let Y =

{y1, y2 . . . , yk} be the k vertices of V −X of lowest out-degree in T . Furthermore let

δ̂−(T ) = min
v∈V−X

d−(v), δ̂+(T ) = min
v∈V−Y

d+(v), δ̂0(T ) = min{δ̂+(T ), δ̂−(T )}

Now the 2k = 2k1 + 2k2 sets that we describe below will each induce a transitive
tournament either with sink xi ∈ X or source yi ∈ Y . The following results are found
in [35, 34]. For completeness, we will give the proof.

Lemma 7.4. [34] Let T be a tournament on n vertices, let v ∈ V (T ) and suppose
that c ∈ N. Then, in O(n2), we can construct disjoint sets A,EA ⊆ V (T ) such that
the following properties hold:

1. 1 ≤ |A| ≤ c and T 〈A〉 is a transitive tournament with sink v

2. A out-dominates V (T )− (A ∪ EA)

3. |EA| ≤ (1/2)c−1d−(v)

4. either EA = ∅ or EA is the common in-neighbourhood of all vertices in A

Proof. We will build A in such a way that in each step the size of the common in-
neighbourhood of A, EA, is decreased to at least half its size. First we let A1 = {v} =

{v1}. Then clearly A1 is a transitive tournament with sink v1. If EA1 fulfills 3, then
there is nothing to prove. So assume it does not, and that we have added the vertices
v1, v2, . . . , vi with i < c to obtain the set Ai in such a way that

|EAi | ≤
(

1

2

)i−1
d−(v) (7.2.3)
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If (7.2.3) is at most (1/2)c−1d−(v), then we are done and let A = Ai and EA = EAi .
Otherwise if (7.2.3) is strictly greater than (1/2)c−1d−(v), then consider the set EAi .
As EAi induces a tournament, there is a vertex vi+1 in EAi that are dominated by at
most |EAi |/2 vertices. Hence adding this vertex to Ai+1 we obtain

|EAi+1 | ≤
1

2
|EAi |.

Now either Ai+1 fulfills 3, or we repeat until at latest in step c we terminate with sets
Ac and EAc . Notice that |EAc | ≤ (1/2)c−1d−(v) and hence 3 will be fulfilled in step c.

Now for the runtime, notice that at step i, the size of EAi is at most n
2i−2 and

hence finding the vertex vi+1 can be done in O(
(

n
2i−2

)2
). As we repeat at most c times

and c is a fixed integer, this implies that the runtime is O(n2).

The following lemma can be proven similarly.

Lemma 7.5. [34] Let T be a tournament on n vertices, let v ∈ V (T ) and suppose
that c ∈ N. Then, in time O(n2), we can construct disjoint sets B,EB ⊆ V (T ) such
that the following properties hold:

1. 1 ≤ |B| ≤ c and T 〈B〉 is a transitive tournament with source v

2. B in-dominates V (T )− (B ∪ EB)

3. |EB| ≤ (1/2)c−1d+(v)

4. either EB = ∅ or EB is the common out-neighbourhood of all vertices in B

By applying each of these two lemmas k times, each time removing the vertices of
the transitive tournament just constructed and each time ensuring that the vertices
of X are only used as sinks (one for each Ai) and the vertices of Y are only used as
sources (one for each Bi) we have the following corollary (which can also be found in
[34])

Corollary 7.6. [34] Let c be a fixed integer. Then, in time O(kn2), we can construct
disjoint vertex sets Ai, Bi, EAi and EBi for i ∈ [k] fulfilling the following

1. 1 ≤ |Ai| ≤ c and T 〈Ai〉 is a transitive tournament with sink xi

2. Ai out-dominates V (T )− (D ∪ EAi)

3. |EAi | ≤ (1/2)c−1δ̂−(T )

4. either EAi = ∅ or EAi is common in-neighbourhood of all vertices in Ai

5. 1 ≤ |Bi| ≤ c and T 〈Bi〉 is a transitive tournament with source yi

6. Bi in-dominates V (T )− (D ∪ EBi)
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7. |EBi | ≤ (1/2)c−1δ̂+(T )

8. either E = ∅ or E common out-neighbourhood of all vertices in Bi

Furthermore by letting EA =
⋃k
j=1(EAi), EB =

⋃k
j=1(EBi) and E = EA ∪ EB we

have

|EA| ≤ k
(

1

2

)c−1
δ̂−(T )

|EB| ≤ k
(

1

2

)c−1
δ̂+(T )

Now let c := dlog2(4(k1 + k2)
2)e and use Corollary 7.6 to obtain 2k1 + 2k2 vertex

disjoint transitive tournaments. We will then let V (1)
1 =

⋃k1
i=1(Ai ∪ Bi) and V

(1)
2 =⋃k

i=k1+1(Ai ∪Bi). Assume below that |EA| ≤ |EB|. The proof in the opposite case is
analogous, and we leave it to the reader. Notice that by the choice of c we have

|EA| ≤
1

2(k1 + k2)
δ̂−(T ) (7.2.4)

|EB| ≤
1

2(k1 + k2)
δ̂+(T ) (7.2.5)

|E| ≤ 2|EB| ≤
1

(k1 + k2)
δ̂+(T ) (7.2.6)

Combining (7.2.6) with δ̂+(T ) < n
2 , we have

|E| < n

2(k1 + k2)
(7.2.7)

Now, given that the transitive tournaments with sinks xi, i ∈ [k] out-dominate
most of the vertices of V (1)

rest and the transitive tournaments with sources yi, i ∈ [k]

in-dominate most of the vertices of V (1)
rest, we have the safeness structure described in

the first step of the proof sketch.

Proposition 7.7. After constructing the transitive tournaments using Corollary 7.6
we have, for each j ∈ [2]

(1) All vertices in V (1)
rest− (EA) are kj-in-safe with respect to V (1)

j and all vertices in

V
(1)
rest − (EB) are kj-out-safe with respect to V (1)

j .

(2) All vertices in V̂ (1) are kj-safe with respect to V (1)
j .

(3) All vertices of
⋂
i∈[k](EAi ∩ EBi) are kj-safe with respect to V (1)

j .

(4) Let E1 =
⋃k1
i=1(EAi ∪ EBi) and E2 =

⋃k
i=k1+1(EAi ∪ EBi). Then all vertices of

E3−j − Ej are kj-safe with respect to V (1)
j



7.2 Proof of Theorem 7.9 59

EA1

EA2

EB1

EB2 A1

A2

B1

B2

V
(2)
1

Figure 7.2: The dominance structure between the E sets and the Ai and Bi sets in
V

(1)
1 when k1 = 2. Every arc missing between E vertices and the Ai and Bi sets is

an arc in the direction opposite to the direction of the corresponding black arcs. An
example is the red dotted arc between a EB1 − (EA1 ∪ EA2 ∪ EB2)) vertex and B1.

Proof. First notice that, by definition, there are kj Ai sets in V (1)
j and kj Bi sets in

V
(1)
j . This immediately implies that (1) and (2) hold. To prove (3) let v ∈ ⋂i∈[k](EAi∩
EBi). Then v dominates every vertex of

⋃
i∈[k]Ai and is dominated by every vertex

of
⋃
i∈[k]Bi. Hence as |Ai|, |Bi| ≥ 1 and as there are k1 Ai and k1 Bi sets in V (1)

1 v

is k1-safe with respect to V (1)
1 and similarly v is k2-safe with respect to V (1)

2 . The
correctness of (4) follows by similar arguments as the ones above.

7.2.2 Adding more vertices to ensure that V (2)
1 and V

(2)
2 are happy

We will now add vertices to V (1)
1 and V (1)

2 such that the resulting set V (2)
i induce a

ki-happy set for i ∈ [2]. To simplify notation we let T (j)
1 = T 〈V (j)

1 〉 and T
(j)
2 = T 〈V (j)

2 〉
for j ∈ [0, 3]. Notice that, by Corollary 7.3, we have

q(k1, k2) = 4(k21 + k22) + 4(k1 + k2) + 4c(k1 + k2)

≥ 4σ(T
(1)
1 ) + 4σ(T

(1)
2 ) + 4ck1 + 4ck2

Now let Xi = X ∩V (1)
i and Yi = Y ∩V (1)

i , i ∈ [2]. These vertices are of special nature
since they may have in- respectively out-degree smaller than δ̂0(T ). For this reason we
will start by ensuring that these vertices become happy. As the total sadness of the
vertices in X ∪ Y is at most σ(T

(1)
1 ) + σ(T

(1)
2 ) this is an upper bound on the number
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of neighbour vertices we need to pick from V
(1)
rest. Now since

δ0(T )− |V (1)
1 | − |V

(1)
2 | ≥ q(k1, k2)− |V

(1)
1 | − |V

(1)
2 |

≥ 4σ(T
(1)
1 ) + 4σ(T

(1)
2 ) + 4ck1 + 4ck2 − 2ck1 − 2ck2

= 4σ(T
(1)
1 ) + 4σ(T

(1)
2 ) + 2ck1 + 2ck2,

even if no two in-sad (out-sad) vertices of Xi∪Yi, i ∈ [2] have a common in-neighbour
(out-neighbour) in V

(1)
rest, there are a sufficient number of vertices in V

(1)
rest to choose

from. Add such a set of (greedily) chosen vertices to V (1)
1 respectively V (1)

2 to make
the vertices of Xi and Yi safe in the new induced subtournament T (1)

i . By Corollary
7.3, this will increase the size of V (1)

i by (at most) k2i +ki and again, by Corollary 7.3,
after this we also have that the sadness of the resulting set V (1)

i is at most k2i + ki.
We are now ready to add further vertices so that each of the resulting sets V (2)

i

induces a ki-happy tournament. We start by ensuring that every vertex in V (1)
i (includ-

ing the new ones added above) will be ki-in-happy in T (1)
i . Recall that, by Proposition

7.7, all vertices of V (1)
rest − (EA ∪ EB) are safe and that all the vertices in EB − EA

are ki-in-safe for i ∈ [2] since these vertices receive at least one arc from each Aj ,
j ∈ [k1 + k2].

Now by (7.2.4) we have

δ̂−(T )− |EA| ≥ δ̂−(T )− 1

2k
δ̂−(T )

≥ (1/2)δ̂−(T )

≥ (1/2)δ−(T )

≥ (1/2)q(k1, k2) (7.2.8)

≥ 2σ(T
(1)
1 ) + 2σ(T

(1)
2 ) + 2ck1 + 2ck2, (7.2.9)

and hence every vertex v ∈ V (1)
1 ∪ V (1)

2 satisfies

d−
T 〈v ∪ (V̂

(1)
rest − EA)〉

(v) ≥ δ̂−(T )− |EA| − |V (1)
1 | − |V

(1)
2 |

= 2σ(T
(1)
1 ) + 2σ(T

(1)
2 ) + 2ck1 + 2ck2 − |V (1)

1 | − |V
(1)
2 |

≥ σ(T
(1)
1 ) + σ(T

(1)
2 )

This implies that starting with the current V (1)
1 and after adding some vertices to

this set, proceeding to the current V (1)
2 , we may greedily pick distinct in-neighbours

in V
(1)
rest − EA for each in-sad vertex in V

(1)
i and add these in-neighbours to V (1)

i so
that after this we have added at most σin(T

(1)
i ) ≤ k2i + ki new vertices to V (1)

i for
i ∈ [2]. Now the resulting subtournaments T (1)

i , i ∈ [2] contain no in-sad vertices.
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By similar calculations as in (7.2.9) we obtain

δ̂+(T )− |E| ≥ (1/2)q(k1, k2) (7.2.10)

≥ 2σ(T
(1)
1 ) + 2σ(T

(1)
2 ) + 2ck1 + 2ck2,

and as adding the vertices above will increase |V (1)
i | by at most σin(T

(1)
i ) for i = 1, 2,

this implies that every vertex v ∈ V (1)
1 ∪ V (1)

2 satisfies

d+
T 〈v ∪ V̂ (1)〉

(v) ≥ δ̂+(T )− |E| − |V (1)
1 | − |V

(1)
2 |

≥ σ(T
(1)
1 ) + σ(T

(1)
2 )− σin(T

(1)
1 )− σin(T

(1)
2 )

≥ σout(T
(1)
1 ) + σout(T

(1)
2 )

Hence, as above, we can greedily pick distinct out-neighbours of every out-sad vertex
in V (1)

1 ∪ V (1)
2 from V̂ (1) such that after adding all these safe vertices, every vertex in

the resulting set V (2)
i is ki-happy in T (2)

i for i ∈ [2].
Notice that each of the three steps above can be done in O(k2) time. This follows

as at most k2 + k vertices are chosen greedily from V
(1)
rest respectively V

(1)
rest − EA

respectively V (1)
rest−E. Hence in O(k2) time we have added vertices to V (1)

i for i = 1, 2

obtaining V (2)
i .

7.2.3 Distributing the last vertices

Now that we have ensured that T (2)
i is happy for i ∈ [2], we will add each of the

remaining vertices of T to either V (2)
1 or V (2)

2 such that we obtain a real partition. As
noted earlier, if every remaining vertex is either k1-safe with respect to T (2)

1 or k2-safe
with respect to T (2)

2 then we would just add these vertices to their respective sets, and
we were done 1. This may though not be the case as we might still have vertices of
E left. As we will use the safe vertices of V̂ (2) to distribute the vertices of E we first
find a lower bound on the size of V̂ (2). First we have

|V (2)
1 |+ |V

(2)
2 | ≤ 2σ(T

(1)
1 ) + 2σ(T

(1)
2 ) + 2ck1 + 2ck2 =

1

2
q(k1, k2).

Furthermore by (7.2.7)

|V̂ (2)| − |E| > n− n

2(k1 + k2)
≥ n

2
+
n

4
.

1Note the special case where Ej = ∅ for some j ∈ [2], then all vertices of E can be added to V (2)
j

by Proposition 7.7 (4) and we are left with vertices that are safe with respect to both sets.
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Hence, by (7.2.7) and the fact that n > 2q(k1, k2)

|V̂ (2)| ≥ |V | − |E| − |V (2)
1 | − |V

(2)
2 |

≥ n

2
+
n

4
− |V (2)

1 | − |V
(2)
2 |

≥ (k1 + k2)|E|+
1

2
q(k1, k2)−

1

2
q(k1, k2)

= (k1 + k2)|E| (7.2.11)

We are now ready to distribute those vertices of E that have not already been
added to V (2)

1 ∪ V (2)
2 . The following theorem is similar to Claim 5 of [34].

Theorem 7.8 (NEW: Bang-Jensen and Christiansen). In time O(n) we can add the
vertices of E(2) = E − (V

(2)
1 ∪ V (2)

2 ) together with some additional V̂ (2) vertices to
obtain new sets V (3)

1 , V
(3)
2 satisfying that the resulting tournaments T (3)

1 and T (3)
2 are

happy.

Proof. We will assign vertices of E(2) to V (2)
1 or V (2)

2 by dividing the vertices into
three types, and handling each type in separate cases. Before describing these cases
notice the following property of vertices of E. For v ∈ E

(a) If |{i ∈ [k1] : v ∈ EAi}| ≤ |{i ∈ [k1] : v ∈ EBi}| then v has at least k1 in-
neighbours in V (2)

1 . Similarly, if |{i ∈ [k1 +1, k], v ∈ EAi}| ≤ |{i ∈ [k1 +1, k], v ∈
EBi}| then v has at least k2 in-neighbours in V

(2)
2 . We give the argument for

V
(2)
1 : as k1 = |{i ∈ [k1] : v /∈ EAi}|+ |{i ∈ [k1] : v ∈ EAi}| and this implies that
k1 ≤ |{i ∈ [k1] : v ∈ EBi}|+ |{i ∈ [k1] : v /∈ EAi}|.

(b) If |{i ∈ [k1] : v ∈ EAi}| ≥ |{i ∈ [k1] : v ∈ EBi}| then v has at least k1 out-
neighbours in V1. If |{i ∈ [k1 + 1, k], v ∈ EAi}| ≥ |{i ∈ [k1 + 1, k], v ∈ EBi}| then
v has at least k2 out-neighbours in V (2)

2 .

In Figure 7.3 |{i ∈ [k1] : v ∈ EAi}| ≤ |{i ∈ [k1] : v ∈ EBi}| is illustrated for
k1 = 2. On the left a specific v ∈ EA1 ∩ EB1 ∩ EB2 and the adjacency that give the
k1 in-neighbours. On the right an indication of which intersections of the E sets this
inequality is fulfilled.

We will now process the vertices of E(2) in the order corresponding to Case 1 to
3 below, that is, we only proceed to Case i+ 1 if no more vertices of E(2) satisfy the
condition of Case i.

Case 1: There is a vertex v ∈ E(2) for which there exists j1, j2 ∈ [2] such that j1
satisfies (a) and j2 satisfies (b).
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EA1

EA2

EB1

EB2

v

EA1 ∩ EB1 ∩ EB2

A1

A2

B1

B2

V
(2)
1

Figure 7.3: Illustration of the adjacency obtained by |{i ∈ [k1] : v ∈ EAi}| ≤ |{i ∈
[k1] : v ∈ EBi}|. On the left a specific intersection and on the right all sets fulfilling
this marked in red, where semi-filled indicate the places where equality holds.

1. If j1 = j2 then add v to V (2)
j1

. Otherwise assume below that j1 6= j2.

2. If v has kj1 out-neighbours in V̂ (2) then assign v and these kj1 out-neighbours to
Vj1 (Recall that V̂ (2) vertices are k1-safe with respect to V (2)

1 and k2-safe with
respect to V (2)

2 ). Then v is Vj1-safe by (a).

3. If v has kj2 in-neighbours in V̂ then assign v and these kj2 in-neighbours to Vj2 .
Then v is Vj2-safe by (b).

Note that one of the three conditions above will be fulfilled as (7.2.11) implies that
there are at least (k1 + k2) vertices in V̂ (2) to reserve for each vertex in E which still
has not been added to one of the sets V (2)

1 , V
(2)
2 . Hence if 1. and 2. is not fulfilled

then v must be adjacent from at least (kj1 + kj2)− (kj1 − 1) > kj2 (kj1 6= kj2 as 1. not
fulfilled ) of these k1 + k2 vertices and hence 3. is fulfilled.

Case 2: There is a vertex v where j = 1 and j = 2 satisfies (a). If v has at
least k1 out-neighbours in V

(2)
1 , then add v to V (2)

1 . Otherwise if v has at least k2
out-neighbours in V (2)

1 , then add v to V (2)
2 . Suppose none of these hold. We have by

(7.2.10)

d+(v)− |E| ≥ (1/2)q(k1, k2)

= 2(k21 + k22) + 2(k1 + k2) + 2c(k1 + k2)

≥ 6(k1 + k2)
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so v must have has at least 5(k1 + k2) out-neighbours in V̂ (2) and we can add v to-
gether with the required number of out-neighbours from V̂ (2) to V (2)

1 .

Note that when we are done with Case 2, we have that EB −EA = ∅. Indeed sup-
pose that v ∈ EB − EA. Then |{i ∈ [k] : v ∈ EAi}| = 0 and |{i ∈ [k] : v ∈ EBi}| ≥ 1

and hence each such vertex would have been assigned to V (2)
1 or V (2)

2 in either Case 1
or Case 2.

Case 3: There is a vertex v left in E(2) such that (b) holds for V (2)
1 and V

(2)
2 .

Now, by (7.2.8) and by similar arguments as in Case 2, v has at least

d(v)− − |EA| ≥ 6(k1 + k2)

in-neighbours not in EA. Hence we either find sufficiently many in-neighbours in V̂ (2)

or conclude that v is already V (2)
j -safe for some j ∈ [2].

Now for the complexity, each of these preforms the following two operations. For
each v ∈ E, it is decided which of (a) and (b) v belongs to and v is assigned to a
partition together that a constant number of greedily chosen safe neighbours. Both of
these can be done in constant time, and the only time-consuming factor is that Case
i has to be completed before Case i+1. This is done by checking all vertices of E for
Case i, before Case i+1, i.e each case takes O(|E|) = O(n) time.

Let V (3)
1 , V

(3)
2 be the resulting sets after the process above. If V (3)

1 and V
(3)
2 is

not a 2-partition of V (T ) yet, the only vertices of V that are still not contained in
V

(3)
1 ∪ V (3)

2 are V̂ (3) vertices. We may add these to V (3)
1 or V (3)

2 arbitrarily since they
are kj-safe with respect V (3)

j for j ∈ [2]. Hence we obtain a partition of V into V (3)
1

and V (3)
2 and T (3)

1 is k1-happy and T (3)
2 is k2-happy.

This completes the proof of Theorem 7.9 where the most time-consuming job is
the construction of V (1)

1 and V (1)
2 which takes O(kn2).

7.3 Concluding remarks

One thing to notice is that we cannot prove the existence of a minimum out-degree
function using similar techniques. This follows from the way we handled the E ver-
tices in Subsection 7.2.3. This depends strongly on the fact that the number of Ai
and Bi sets that are in each partition is the same. If we would use similar techniques
to find such an out-degree function, we would only construct k1 Bi sets for the first
partition and k2 Bi sets for the second partition, as these will be sufficient to make
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most vertices of V happy with respect to the out-degree constraint. But then when
trying to distribute the E vertices (indeed EB vertices) we do not have the adjacency
to Ai sets that helped us in our proof above.

In this chapter we have considered the (δ0 ≥ k1, δ
0 ≥ k2)-partition problem for

tournaments, and it would be natural to extend this to semicomplete digraphs. We
can do this by increasing the minimum semi-degree in Theorem 7.9 by a factor 2.
Then the result follows as a semicomplete digraph with minimum semi-degree 2k

contains a spanning tournament with minimum semi-degree at least k. It is though
not hard to prove Theorem 7.9 for semicomplete digraphs with the same bound on
the minimum semi-degree. This follows as Lemma 7.4, Lemma 7.5 and Corollary 7.6,
can be extended to semicomplete digraph. In [11], Bang-Jensen and Havet did this in
order to extend Pokrovskiys linear bound on linkage in tournaments (Theorem 2.12)
to semicomplete digraphs. We will give the intuition (which is also most the proof)
for Lemma 7.4: In the original proof of this Lemma the main argument is that every
tournament of order n contains a vertex with in-degree at most n/2. This is generally
not true for semicomplete digraphs, but it is true that semicomplete digraphs contains
a vertex that is completely dominated by at most n/2 vertices of D. This is sufficient
to prove the corresponding results for semicomplete digraphs.

Lemma 7.4. Let D be a semicomplete digraph on n vertices, let v ∈ V (D) and
suppose that c ∈ N. Then in time O(n2), we can construct disjoint sets A,EA ⊆ V (D)

such that the following properties hold:

1. 1 ≤ |A| ≤ c and D〈A〉 is a transitive tournament with sink v

2. A out-dominates V (D)− (A ∪ EA)

3. |EA| ≤ (1/2)c−1d−(v)

4. either EA = ∅ or EA is the common in-neighbourhood of all vertices in A

Now we can prove the following theorem by similar arguments as in proof of
Theorem 7.9.

Theorem 7.9 (NEW: Bang-Jensen and Christiansen). Let k1, k2 be fixed integers.
Then every semicomplete digraph D with minimum semi-degree δ0(T ) ≥ q(k1, k2)

contains a (δ0 ≥ k1, δ
0 ≥ k2)-partition and such a partition can be found in O(kn2)

time.





Chapter 8

Discussion on degree constrained
partitions

In this chapter we will mention and discuss some related partition problems. Notice
however that many problems on graphs can be described as partitioning problems,
and covering all of these would be to comprehensive compared to the aim of this
dissertation. To mention a few different problems, the three below were all considered
by Bang-Jensen, Cohen and Havet

• Deciding if a digraph has a connected feedback vertex set, i.e finding a connected
set such that removal the of this set leaves, the remaining digraph acyclic. This
is the (acyclic, connected)-partition problem and it is polynomial [12].

• Deciding if a digraph is bipartite. This is the (independent, independent)-
partition problem and it is polynomial [8].

• Deciding if a digraph has disjoint out- and in-branchings. This is the (out −
branching, in− branching)-partition problem at it is NP complete [12].

8.1 Other related partitioning problems

The most obvious partition problem to consider is probably the (strong, strong)-
partition. Bang-Jensen, Cohen and Havets proved that it is NP complete for general
digraphs [8]. For semicomplete digraphs finding complementary cycles is sufficient
since strong semicomplete digraphs are hamiltonian. As also noted in Section 6.4, 2-
strong connectivity of semicomplete digraphs implies the existence of complementary
cycles (Reid, Guo and Volkmann [41, 26]) and deciding whether semicomplete digraphs
is 2-strong is polynomial (Bang-Jensen and Nielsen [16]). Hence just as the (δ0 ≥
1, δ0 ≥ 1)-partition problem in Section 6.4, we may assume that the semicomplete
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digraph D is not 2-strong. Now Li and Shu found a sufficient condition for the
existence of complementary cycles.

Theorem 8.1. [36] Let T be a tournament of at least 6 vertices. If T is not the Paley
tournament P7

1 and max{δ−(T ), δ+(T )} ≥ 3, then T has a (strong, strong)-partition.

Not surprisingly (strong, strong)-partition demands more on the semicomplete
digraphs than the (δ0 ≥ 1, δ0 ≥ 1)-partition does. This is also seen by comparing with
the equivalent result from section 6.4.

Corollary 6.5 (’NEW’: Bang-Jensen and Christiansen). Every semicomplete digraph
D with δ0(D) = min{δ+(D), δ−(D)} ≥ 3 contains a (δ0 ≥ 1, δ0 ≥ 1)-partition.

Kühn, Osthus and Townsend proved the strong connectivity of tournaments, that
implies the existence of a (k − strong, k − strong)-partition. Multiplying this bound
on the strong connectivity by 3 (every 3k − 2 strong semicomplete digraph contains
a k-strong spanning tournament, See Part III) we can obtain similar results for semi-
complete digraphs.

Theorem 8.2. [34] There exists a constant c such that every ck7-strong semicomplete
digraph as a (k − strong, k − strong)-partition.

Combining conditions of strong connectivity and degree constrained conditions,
we might ask the following. Notice that Theorem 8.1 implies that g(1) = 3.

Problem 8.3. [6] Does there exist a function g(k) such that every strong semicomplete
digraph S with δ+(S) ≥ g(k) has a ([strong, δ+ ≥ k], [strong, δ+ ≥ k])-partition.

Another variation of the degree constrained partition could be to also demand
properties between partitions. For example, in Section 6.6, we demanded that all
2-cycles of the semicomplete digraph where between the two set. Alon, Bang-Jensen
and Bessy recently showed the following.

Theorem 8.4. [2] Let D be a semicomplete digraph which is not P7 and assume that
δ+(D) ≥ 3. Then D has a (δ+ ≥ 1, δ+ ≥ 1)-partition (V1, V2) such that the bipartite
digraph (V1, V2) also has minimum out-degree at least 1 2

Theorem 8.5. [2] There exist two absolute positive constants c1, c2 such that the
following holds.

1The Paley tournament P7, is a tournament of 7 vertices v1, v2, . . . , v7 where there is an arc vivj
if and only if ((j − i) mod 7) ∈ {1, 2, 4}

2They also shows that V1, V2 can be chosen such that |V1| − |V2| ≤ 1
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• Let S be a semicomplete digraph with minimum out-degree at least 2k + c1
√
k.

Then D contains a (δ+ ≥ k, δ+ ≥ k)-partition (V1, V2) such that the bipartite
digraph (V1, V2) also has minimum out-degree at least k 3

• For infinitely many values of k there is a tournament T with minimum out-
degree at least 2k + c2

√
k such that for any 2-partition (V1, V2) of V , either

δ+(T 〈V 1〉) < k or δ+(T 〈V 2〉) < k or δ+(T 〈[V1, V2]〉) < k.

8.2 Finding the complexity of the remaining problems

Lichiardopol showed that there exist functions of minimum out- in- and semi-degree
such that semicomplete digraphs are insured to contain a (δ+ ≥ k1, δ

+ ≥ k2)-, (δ+ ≥
k1, δ

− ≥ k2)-, (δ0 ≥ k1, δ
− ≥ k2)- and (δ0 ≥ k1, δ

0 ≥ k2)-partition. In our paper [6]
we proved that for a number of these problems, there is also a polynomial algorithm
that not only decides if such a partition exists, but also finds it if it does. We were
not able to find the complexity of all the related partitioning problems, but believe
that there exist polynomial algorithms for all of these.

Conjecture 8.6. [6] For every fixed integer k1, k2 ≥ 2, the following partitioning
problems are polynomial on semicomplete digraphs.

• (δ+ ≥ k1, δ− ≥ k2)-partition problem

• (δ0 ≥ k1, δ− ≥ k2)-partition problem

• (δ0 ≥ k1, δ0 ≥ k2)-partition problem

Consider the two polynomial algorithms found in Chapter 6. While the algorithm
for the (δ+ ≥ k1, δ

+ ≥ k2)-partition uses the nice symmetry in the problem, roughly
saying that if the vertex does not have the property (out-degree ki) in one part of the
partition, it will have the property (out-degree k3−i) in the other part. The algorithm
for the (δ+ ≥ 1, δ− ≥ k)-partition uses the nice structure and control of disjoint
cycles. None of these approaches can be generalized to prove the three problems in
the conjecture, and different approaches must be found.

8.3 Similar partitioning problems on other graph classes

Apart from finding the complexity for the remaining problems for tournaments and
semicomplete digraphs, it is natural to continue by considering generalizations of tour-
naments. As locally semicomplete digraphs often inherit the same structural results

3Again V1, V2 can be chosen balanced
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as semicomplete digraphs, this is an obvious class to consider next. Remember that
Theorem 1.9 and Corollary 1.11 says that locally semicomplete digraphs are either
semicomplete, round decomposable or digraphs with independence number at most 2.
In Section 6.3 we proved that (δ+ ≥ k1, δ+ ≥ k2)-partition is polynomial for digraphs
with bounded independence number. So in order prove that the (δ+ ≥ k1, δ

+ ≥ k2)-
partition problem is polynomial, we only need to prove that it is polynomial on round
decomposable digraphs.

Conjecture 8.7. [NEW: Christiansen] The (δ+ ≥ k1, δ
+ ≥ k2)-partition problem is

polynomial on round decomposable digraphs.

Conjecture 8.8. [NEW: Christiansen] Let k1, k2 be fixed integers. There exists a
function g(k1, k2) such that every locally semicomplete digraph D with δ+ ≥ g(k1, k2)

contains a (δ+ ≥ k1, δ+ ≥ k2)-partition.

Let us end this section by considering the (δ+ ≥ 1, δ− ≥ 1)-partition problem.
Clearly disjoint cycles are necessary for an (δ+ ≥ 1, δ− ≥ 1)-partition for any digraph
and in Section 6.4 we saw that disjoint cycles was sufficient when we consider semi-
complete digraphs. This is not the case for round decomposable digraphs. To see this
consider the following round decomposable digraph D = R[S1, S2, S3, S4, S5], where
S1, S3 and S5 are trivial components and S2, S4 are 3-cycles. It is not hard to see that
D does not have a (δ+ ≥ 1, δ− ≥ 1)-partition.

8.4 FPT

Another and very relevant issue to consider is the fixation of the constants k, k1, k2.
What would happen to the complexity if these become part of the input.

Problem 8.9. [6] Is the problem of deciding whether a semicomplete digraph has a
(δ+ ≥ k1, δ+ ≥ k2)-partition in FPT?

Problem 8.10. [6] Is the problem of deciding whether a semicomplete digraph has a
(δ+ ≥ 1, δ− ≥ k)-partition in FPT?
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III

Semicomplete digraphs con-
taining k-strong spanning
tournaments





Chapter 9

Introduction to the k-strong
spanning tournament problem

In 1989, after private talks with Jackson, Thomassen conjectured the following:

Conjecture 9.1. [49] For k integer, every 2k-strong digraph contains a k-strong span-
ning oriented digraph.

Considering the k’th power of a cycle of at least 2k+1 vertices and replacing every
arc with a 2-cycle, it is not hard to realize that this is best possible. Now even for
k = 2, this has not been proven, and it seems very hard to do so. Indeed restricting
the conjecture to semicomplete digraphs or generalizations of semicomplete digraphs,
the problem remains open for k ≥ 3. In 1990 [3], Bang-Jensen found an upper bound
on the strong connectivity of a locally semicomplete digraph containing a spanning
local tournament and posed the corresponding extension of Conjecture 9.1.

Theorem 9.2. [3] For every integer k every f(k)-strong locally semicomplete digraph
contains a spanning k-strong local tournament. Furthermore f(k) ≤ 5k. 1

Conjecture 9.3. [3] For every integer k, if D is a 2k-strong locally semicomplete
digraph, then D contains a spanning k-strong local tournament.

Later Bang-Jensen and Jordán [14] posed a slightly modified conjecture and proved
this for k = 3. They also gave a family of 2k−2 strong digraphs that does not contain
a k-strong spanning tournament and hereby proving that this is best possible.

Conjecture 9.4. [14] For every integer k, every (2k−1)-strong semicomplete digraph
of at least 2k + 1 vertices contains a k-strong spanning tournament.

1A remark states that the result for semicomplete digraphs was found together with Thomassen
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Theorem 9.5. [14] Every 3-strong semicomplete digraph of at least 5 vertices contains
a 2-strong spanning tournament.

Now both Huang [29] and Guo [24] considered the problem for locally semicomplete
digraphs and while Huang2 proved that k-strong round decomposable locally semicom-
plete digraphs contains a spanning k-strong local tournament, Guo [24] found a better
bound on the function f(k) in Theorem 9.2.

Theorem 9.6. [29] Every round decomposable k-strong locally semicomplete digraph
can be oriented as a k-strong local tournament.

Theorem 9.7. [24] For every integer k, if D is a (3k−2)-strong semicomplete digraph,
then D contains a k-strong spanning tournament.

For k = 2 this implies Conjecture 9.3 and it is the best possible. Modifying a
wrong proof of Guo [24], Bang-Jensen [5] proved the following theorem, leaving ’only’
the semicomplete version of Conjecture 9.3 (Conjecture 9.4) unanswered.

Theorem 9.8 ([5]). Let f(k) be an integer function such that f(1) = 1 and f(k) ≥
f(k − 1) + 2 for every k ≥ 1. Suppose that every f(k)-strong semicomplete digraph
contains a spanning k-strong tournament. Then every f(k)-strong locally semicomplete
digraph contains a k-strong spanning local tournament.

Combined with Theorem 9.7 this gives the best known result for locally semicom-
plete digraph:

Theorem 9.9 ([3]). Every (3k − 2)-strong locally semicomplete digraph contains a
spanning k-strong spanning local tournament.

In the next chapter we will in an attempt to prove Conjecture 9.4, obtain three
subresults. All of these improves the current best known result by Guo (Theorem
9.7), which says that 7-strong semicomplete digraphs contains a 3-strong spanning
tournament. We will also discuss how one might prove Conjecture 9.4 on the basis of
these three results and their proofs.

In Chapter 11 we will conjecture that the correct bound on strong connectivity for
which a semicomplete digraph contains a k-strong spanning tournament is 2k+ 1 and
give three conjectures that follows naturally from the results obtained in Chapter 10.
In this chapter we will also mention a few related problems and results.

2with corrections from Bang-Jensen [5]



Chapter 10

Semicomplete digraphs containing
3-strong spanning tournaments

In this chapter we will show that a semicomplete digraph D contains a spanning
3-strong tournament if D is 5-strong and satisfying one of the following conditions:

• D contains an induced 3-strong subtournament T ′.

• D is 6-strong.

• D has minimum semi-degree at least 7.

These are all improvements of the previous best known bound by Guo, saying that
every 7-strong semicomplete digraph contains a 3-strong spanning tournament. With
the knowledge obtained throughout these proofs we will in the end of the chapter
discuss if and how one might prove Conjecture 9.4, i.e prove that every 5-strong
semicomplete digraph contains a 3-strong spanning tournament.

10.1 A 3-strong subtournament

In this section we will prove that the existence of an induced 3-strong subtournament
T in a 5-strong semicomplete digraph D is sufficient to guarantee a spanning 3-strong
tournament. This will be done by cleverly orientating 2-cycles in D step wise and
moving vertices to a set G with T ⊆ G in such a way that two properties are preserved:
Every vertex in G can reach every other vertex in G by 3 vertex disjoint paths each
of which avoiding 2-cycles not yet oriented. Secondly vertices in V − T must remain
connected to all vertices other vertices in V − G by 5 vertex disjoint paths and to
vertices in G by at least 3 vertex disjoint paths.
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Lemma 10.1 (NEW: Christiansen). Let D be a digraph, and A be a subset of V (D)

that induces a k-strong digraph. If there for all v ∈ V (D) − A exist k vertex disjoint
(v,A)-paths and k vertex disjoint (A, v)-paths, then D is k-strong.

Proof. This follows by Menger’s theorem. For any u, v ∈ V (D) we will prove that
we cannot separate u, v with a set of fewer than k vertices. First if u, v ∈ A then it
follows directly as A is k-strong and hence do not have a separator of size k− 1. Now
assume that u ∈ A and v /∈ A and let S be an (u, v)-separator in D of size k − 1.
In D − S there are at least one (u,A)-path P1 ending in a vertex ua ∈ A and as A
is k-strong there is an (ua, v)-path P2 in A − S. Hence P1P2 is an (u, v)-path in D.
Finally let u, v /∈ A and assume again that S is an (u, v)-separator in D of size at
most k − 1. Then by assumption we have an (u, ua)-path P1 and a (va, v)-path P2 in
D − S for some ua, va ∈ A − S and together with (ua, va)-path P inside A − S we
obtain an (u, v)-path P1PP2.

Brualdi and Kiernan [18] use Rado’s theorem to prove the following generalization
of Landau’s theorem.

Theorem 10.2. [18] Let D be an oriented digraph with out-degree sequence s1, s2, . . . ,
sn. Furthermore, let r1, r2, . . . rn be a sequence of non-negative integers with si ≤ ri

for i ∈ [n]. Then D can be completed to a tournament with score sequence r1, r2, . . . , rn
if and only if

(|X|
2

)
+ |X|(n− |X|)− γ(X) ≥

∑

i∈X
(ri − si) (X ⊆ {1, 2, . . . , n}) (10.1.1)

where γ(X) is the number of arcs that has at least one end in X.

The following corollary is proved by similar techniques as Corollary 3.2 of [18].
The only difference is the extra information on maximal in- and out-degree which give
us a tight bound.

Corollary 10.3 (NEW: Christiansen). Let k be a fixed integer. Furthermore, let D
be an oriented digraph of n = 2k + 1 vertices, with ∆+(D) ≤ k and ∆−(D) ≤ k − 1.
Then D can be completed to a k-regular tournament if and only if every vertex of D
with out-degree k are adjacent.

Proof. Let D be an oriented digraph as described above and let s1, s2, . . . , sn be a
degree-sequence of the vertices of D. Clearly if D has two non-adjacent vertices of
out-degree k, then completing D to a tournament, at least one vertex will have out-
degree at least k + 1 and cannot be k-regular.
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Now assume that D do not have non-adjacent vertices with out-degree k. We will
prove that equation (10.1.1) of Theorem 10.2 holds when r1, r2, . . . , rn = k. Clearly
si ≤ k = ri for all i ∈ [n]. By simple algebraic manipulations it can be shown that
this equation is equivalent to the following:

k|X| −
(|X|

2

)
≥ γ∗(X) (X ⊆ {1, 2, . . . , n})

where γ∗(X) is the number of arcs into the set X in D. To prove that this equations
holds, we start by bounding the size of γ∗(X). First each vertex in V (D)−X has at
most k out-neighbours and hence contributes with at most k arcs into X. But each
non-adjacent pair of vertices in V (D)−X with out-degree k can only contribute with
2k − 1 arcs into X, and we need to subtract one for each such pair. Hence

γ∗(X) ≤ k(n− |X|)−
(
n− |X|

2

)

Now the result follows by further simple algebraic manipulations.

γ∗(X) ≤ k(n− |X|)−
(
n− |X|

2

)

=
−n2 + n(2k + 1) + 2|X|n− 2k|X| − |X|2 − |X|

2

=
2|X|(2k + 1)− 2k|X| − |X|2 − |X|

2

=
2k|X| − |X|2 + |X|

2

= k|X| −
(|X|

2

)

Theorem 10.4 (NEW: Christiansen). Let D be a 5-strong semicomplete digraph and
T a 3-strong induced subtournament of D, then D contains a 3-strong spanning tour-
nament.

Proof. Let T be a 3-strong subtournament of D and define D̂ = D−←→A , where
←→
A is

the set of arcs in 2-cycles of D. Also let G be the set of vertices of V (D) such that
for each vertex v ∈ G, there exist 3 vertex disjoint (v, T )-paths and 3 vertex disjoint
(T, v)- paths in D̂. If V (D) = G, then by Lemma 10.1, D̂ induces a 3-strong digraph,
and D̂ can be completed to a 3-strong spanning tournament by adding an arbitrary
arc between non-adjacent vertices in D̂. We will prove that while V (D) 6= G there
exist a set A′ ⊆ ←→A , where A′ does not contain both arcs of any 2-cycle, such that
updating G for the semicomplete digraph D −A′, the following remains true.
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(I) For every v ∈ V (D)−G there are at least 5 vertex disjoint (G, v)-paths in D−A′
and 5 vertex disjoint (v,G)-paths in D −A′.

Case 1. There is a vertex v ∈ V (D) − G that dominates at most |G| − 3 in vertices
of G and is dominated by at most |G| − 3 vertices of G in D −A′.

Proof of case. It is not hard to see that we can delete arcs in 2-cycles between v and G
such that v completely dominates at least 3 vertices of G and is completely dominated
by 3 vertices of G. After deleting these arcs (adding them to A′), v will become a
vertex of G and (I) remains true. ♦

Now all vertices of V (D)−G belong to one of the following two sets.

• Vertices that have at least |G| − 2 out-neighbours (at most 2 in-neighbours) in
G in D −A′. We call the set of these vertices for Gin.

• Vertices that have at least |G| − 2 in-neighbours (at most 2 out-neighbours) in
G in D −A′. We call the set of these vertices for Gout.

Case 2. There is a 2-cycle uv in D−A′ with u ∈ G and v ∈ Gout or there is a 2-cycle
uv in D −A′ with u ∈ Gin and v ∈ G.

Proof of case. Assume uv is a 2-cycle with v ∈ Gout and u ∈ Gin. As v has at most
2 out-neighbours in G, u must be one of these. Then v is dominated by at least
|G| − 2 + 1 ≥ 6 vertices of G. Now by deleting uv from D, we delete a path from
G to v, but v will still have 5 disjoint in-neighbours in G and hence 5 vertex disjoint
(G, v)-paths. As all other vertices of V (D) − G can only use v once in the 5 vertex
disjoint paths, (I) remains true. Hence for every such 2-cycle we add uv to A′.

The argument for 2-cycles between G and Gin is analogous.
♦

Case 3. There is a 2-cycle uv in D −A′ with v ∈ Gout and u ∈ Gin.

Proof of case. We will delete uv (add uv to A′). This will possibly delete a path from
G to v and a path from u to G. But v ∈ Gout and is dominated by at least |G|−2 ≥ 5

vertices of G and u ∈ Gin and dominates at least 5 vertices of G. So after deletion (I)
remains true. ♦

Repeating the three cases, we may now assume that all remaining 2-cycles of D
belong to either Gin or Gout.

Case 4. Gin 6= ∅ (Gout 6= ∅).
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G

Gin Gout

(a) Structure of D.

XWGin

(b) Observation in Case 4. W contains a set of at least 3 vertices
with in-degree 2 in D̂.

Figure 10.1

Proof of case. Now by (I) every vertex of Gin can be reached by 5 vertex disjoint
paths from G in D − A′. Menger’s theorem implies that we can obtain min{5, |Gin|}
vertex disjoint (G,Gin)-paths using these paths. Let P1, P2, . . . , P5 be such 5 minimal
(G,Gin)-paths, where duplication of 5−|Gin| heads is allowed. By minimality, it is not
hard to see that |V (Pi)| ≤ 3: First Pi will only contain one vertex of G and one vertex
of Gin and if Pi = v1v2 . . . vr for some i ∈ [5] and r > 3, then v2, . . . , vr−1 ∈ Gout. But
vr−1 is dominated by at least 5 vertices v11, v21, . . . , v51 of G, and hence for each j ∈ [5],
P ji = vj1vr−1vr is also a (G,Gin)-path. Now pick j ∈ [5] such that vj1 is disjoint from
t(Pl) for all l ∈ [5] with l 6= i and obtain a contradiction by replacing Pi by P

j
i . Hence

|V (Pi)| ≥ 3. Let

W = {h(P1), h(P2), h(P3), h(P4), h(P5)} = {w1, w2, . . . , w5} ⊆ Gin

and let

D̂
′
= D̂〈W ∪G ∪Gout〉.

Notice that each vertex v ∈ Gin is dominated by at most 2 vertices in G ∪ Gout.
This follows as each vertex in Gout is dominated by 5 disjoint vertices in G and
hence three in-neighbours in G ∪ Gout would induce 3 vertex disjoint (G, v)-paths in
D − A′. This directly implies that |W | ≥ 4. Furthermore if |W | = 4, then we see
that W contains only 2-cycles as all vertices in Gin must have in-degree at least 5 in
D−A′ but they have only 2 in-neighbours outside Gin. Completing W to a 1-regular
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tournament (adding the opposite to A′), we obtain an orientation where all vertices
of W can be reached be 3 vertex disjoint paths in D̂. Hence W is moved to G.

Finally consider the case where |W | = 5. If wi has 2 in-neighbours, say wj , wj′ in
W then Pi, Pjwi, Pj′wi are three disjoint (G,wi)-paths in D̂

′
. Hence every vertex in

W is dominated by at most one other vertex in W . Now either W can be completed
to a 2-regular tournament, or there is a vertex inW with out-degree 3. But then these
three vertices can be completed to a 1-regular tournament, and we obtain the three
paths for each of these. Hence adding the corresponding opposite arcs to A′, we move
this 1-regular tournament of W to G.

Similarly arguments can be made if Gout 6= ∅. ♦

By repeating Case 1-4 we see that we can eliminate all 2-cycles of D while main-
taining 3 vertex disjoint paths between any pair of vertices inside G, and 5 vertex
disjoint path between vertices of V (D)−G and G. Then, as noted in the start, when
G = V (D), we have obtained a 3-strong spanning digraph D̂〈G〉 = D〈G〉 and by com-
pleting this arbitrarily to a tournament we obtain a 3-strong spanning tournament.
This completes the proof.

We can adapt the proof above to obtain a polynomial algorithm that finds a 3-
strong spanning tournament.

Corollary 10.5 (NEW: Christiansen). If D is a 5-strong semicomplete digraph and T
is a given induces 3-strong subtournament of D, then we can find a 3-strong spanning
tournament in O(nm2) time, where m = |A(D)|.

Proof. We will describe a high level pseudo-algorithm. First the subroutine UPDATE
G(D,G) runs through all vertices of v ∈ V (D) − G and checks if there are 5 vertex
disjoint (v,G)- and 5 vertex disjoint (G, v)-paths in D avoiding every 2-cycle of D. If
so it moves the vertex v to G. Now the algorithm that finds the 3-strong spanning
tournament is the following:

1. Input: A semicomplete digraph D and a 3-strong subtournament T .

2. Let G = V (T ) and run UPDATE G. Then find the sets Gin, Gout and Gmid,
where Gmid are the vertices not in G ∪Gin ∪Gout,

3. While there is a 2-cycle with ends in two different sets G, Gin, Gout and Gmid1,
then delete an arc in D according to case 1-3.

4. UPDATE G and if there are 2-cycles between sets G, Gin and Gout then go to
step 3.

1Gmid will only exist in the first iteration
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5. If |Gin| 6= ∅ find the set W described in Case 4. and delete arcs of 2-cycles
accordant to case 4. Move all vertices incident to deleted 2-cycles to G and
UPDATE G. If there are 2-cycles between sets G, Gin and Gout go to 3, otherwise
repeat this step

6. If G = V (D) then delete arbitrarily arcs in the remaining 2-cycles and output
D.

To see that the algorithm terminates, we only need to notice that in Step 3 and 5 at
least one arc is deleted in each run and Step 4 is always followed by 3 or 5. Hence
after at most |A(D)| = m steps all 2-cycles are deleted and all vertices of V has been
moved to G. To see the runtime, consider first step 5. We can find W and direct
the respective arcs in constant time (as |W | ≤ 5). Now every time we run UPDATE
G, at least one 2-cycle has been deleted and UPDATE G runs in O(nm), using a
flow-algorithm n times. This gives a runtime on O(nm2).

10.2 A 2-strong spanning tournament

We will now show that if we either ensure that the 5-strong semicomplete digraph has
minimum semi-degree at least 7, or increase the demand to 6-strong connectivity, then
we can also find a spanning 3-strong tournament. To do this we find a 2-strong span-
ning tournament, chosen optimal (will be clear later) and assuming by contradiction
that the semicomplete digraph do not have a 3-strong spanning tournament.

We will start with a few lemmas.

Lemma 10.6. [14] Let D be a k-strong digraph and xy be an arc of D. If D contains
at least k+1-internally disjoint (x, y)-paths of length at least 2, then D′ = D−xy+yx

is k-strong. Furthermore, if D′ is not k + 1 strong, then every minimum separator S′

of D′ is also a minimum separator of D.

The following is a well-known fact, but is added to simplify formulation in the
proof of Theorem 10.8.

Lemma 10.7. Let T be a strong tournament of at least 4 vertices, then T has at most
2 vertices with out-degree (in-degree) 1.

Proof. Let T be a strong tournament and consider 3 vertices of T . If they all have
out-degree 1, then they must form a 3-cycle in T .

But there are at least 4 vertices in T and T is strong. Hence there must be an arc
from {v1, v2, v3} to V (T )− {v1, v2, v3} and hence for some i ∈ [3], d+(vi) ≥ 2.
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We are now ready to prove the main result of this chapter. The approach of taking
a 2-strong spanning tournament with certain properties are similar to that used in the
proof of Theorem 9.5 and Theorem 9.7.

Theorem 10.8 (NEW: Christiansen). Every 6-strong semicomplete digraph D of at
least 7 vertices contains a 3-strong spanning tournament.

Proof. First if n = 7 then D is the biorientation of the complete graph and clearly
contains a 3-strong spanning tournament. So we may assume that n > 7. Assume
by contradiction that D is a 6-strong semicomplete digraph that does not contain a
3-strong spanning tournament. By Theorem 9.5 we know that D contains a 2-strong
spanning tournament. Choose such a tournament T such that

(T.1) T has the fewest number of minimum separators.

(T.2) Among the tournaments with the fewest number of minimum separator choose
T and a separator S = {s1, s2} of T that leaves the fewest number of strong
components in T .

We may assume without loss of generality that s1s2 is an arc of T . Let T1, T2, . . . ,
Tr be the strong components of T − S for some integer r ≥ 2 and denote a trivial
strong component Ti by ti. Also we denote the semicomplete digraph induced by the
vertices of Ti by Di, i.e Di = D〈V (Ti)〉. Observe first that we by Theorem 10.4 may
assume that all strong components T1, T2, . . . , Tr is a most 2-strong. Now we will call
arcs of T that are 2-cycles in D, for important arcs. Through a number of cases we
find one or more important arcs that can be reversed such that reversing this/these
will give a better choice of T , and hereby contradicting the current one. The better
choice are i many cases obtained by reducing the number of strong components in the
tournament T −S, while ensuring that the number of separators in T do not increase.

Now by Lemma 10.6 we see that an important arc uv can be reversed if T contains
three internally disjoint (u, v)-paths of length at least 2. Such triplets of (u, v)-path
are often found in one of the three following forms (for uv ∈ T − S).

• Type 0 (u, v)-paths, three (u, v)-paths of length at least 2 in T − S. Typically
these are found as |N+(u) ∩N−(v)| ≥ 3.

• Type 1 (u, v)-paths, two (u, v)-paths in T − S and one using a vertex of S.

• Type 2 (u, v)-paths, one (u, v)-path in T − S and two using the vertices of S.

Though D is 6-strong we will in the following, until otherwise stated, only use that
D is 5-strong.
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Case 1. r = 2 and T1, T2 are both non-trivial strong components.

Proof of case. As D is 5-strong there are at least 3 disjoint important arcs between
T1 and T2, say uivi for i ∈ [3]. If n > 8 then there either are at least 4 vertices in
T1 or at least 4 vertices in T2, say in T1. Hence by Lemma 10.7 there exist ui with
out-degree at least 2 in T1. Then |N+(ui) ∩ N−(vi)| ≥ 3 as ui also dominates the
in-neighbour of vi in T2. Hence we find Type 0 (ui, vi)-paths in T , and we can reverse
uivi contradicting the choice of T .

Assume now that n = 8. Then T1 and T2 are 3-cycles and |N+(ui) ∩N−(vi)| = 2

for all i ∈ [3]. Hence we need prove that T − (N+(ui) ∩N−(vi)) contains an (ui, vi)-
path for some i ∈ [3]. As T is 2-strong there exists a j ∈ [3] such that vjs1 is an arc
of T . Also all ui are dominated by at least one vertex of S. But then

uivjs1(s2)uj′vi

is an (ui, vi)-path of T disjoint from N+(ui) ∩N−(vi), where vj is the out-neighbour
of vi in T2 and uj′ the in-neighbour of ui in T1. ♦

Case 2. r ≥ 5 and there exists an i ∈ [3, r − 2] such that Ti is trivial a trivial strong
component.

Proof of case. As D is 5 strong D − S − ti is at least 2-strong and hence there must
be two important arcs, u1v1 and u2v2 with u1, u2 ∈ T1 ∪ · · · ∪ Ti−1 and v1, v2 ∈
Ti+1 ∪ · · · ∪ Tr. Furthermore as |T1 ∪ · · · ∪ Ti−1|, |Ti+1 ∪ · · · ∪ Tr| > 1 we can assume
u1 6= u2 and v1 6= v2, for otherwise we find a separator of D of size less than 5.
Assume without loss of generality that u1 dominates u2 in T . If v2 dominates v1 then
|N+(u1) ∩ N−(v1)| = 3, and we find Type 0 (u1, v1)-paths. Hence we may assume
that v1 dominates v2. Notice that this implies that |N+(uj) ∩ N−(vj)| ≥ 2 for both
j ∈ [2] as ti is a trivial strong component between the strong components containing
u1, u2 respectively v1, v2. Now as n ≥ 8 there is a vertex w ∈ T − S. Let Tu1 (Tv2
) denote the strong component containing u1 (v2). If w ∈ Tu1 ∪ · · · ∪ Tv2 , one can
easily realize that |N+(ui)∩N−(vi)| ≥ 3 for some i ∈ [2]. Hence we may assume that
w belongs to a strong component before Tu1 or after Tv2 , i.e Tu1 6= T1 or Tv2 6= Tr.
Assume without loss of generality that w ∈ T1. Then we obtain Type 1 (u1, v1)-paths
by the following three paths

u1u2v1

u1Tiv1

u1TrSwv1

Where Tr might be the vertex v2. ♦
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Case 3. r ≥ 4 and there exist i, j ∈ [2, r − 1] with i < j such that Ti and Tj are
non-trivial strong components.

Proof of case. Assume first that i = j − 1. Then as D is 5-strong there are at least
3 important arcs ujvj over the cut (Ti ∪ · · · ∪ Ti, Ti+1 ∪ · · · ∪ Tr). If uj /∈ V (Ti)

for some j ∈ [3], then |N+(uj) ∩ N−(vj)| ≥ |Ti| ≥ 3, and we have Type 0 (uj , vj)-
paths. So we may assume that uj ∈ V (Ti) for all j ∈ [3]. Similarly vj ∈ Ti+1 for all
j ∈ [3]. Now it is not hard to find Type 1 (uj , vj)-paths for any j ∈ [3], by combining
|N+(uj) ∩N−(vj)| ≥ 2 with the path ujTrST1ti+1.

Now if i < j − 1 then there is a l ∈ [i + 1, j − 1] such that Tl is trivial. Also
i + 1 ≥ 3, j − 1 ≤ r − 2 and r ≥ 4 + 1 = 5. Hence this is covered by the previous
case. ♦

Case 4. r ≥ 3 and |T1| ≥ 3 (|Tr| ≥ 3).

Proof of case. There are three important arcs out of T1, and they are disjoint in both
ends as otherwise we find a separator of D of size less than 5. Let these be ujvj
for j ∈ [3]. If |N+(uj) ∩ N−(vj)| ≥ 3 we are done. This implies that |T3| ≥ 3 and
v1, v2, v3 ∈ T2. By the same argument we conclude that |T1|, |T2| = 3 for otherwise at
least one vertex vj has out-degree 2 in T1 or one vertex uj has in-degree two T2 also
giving |N+(uj) ∩ N−(vj)| ≥ 3. Now a vertex of s′ ∈ S dominates a vertex z ∈ T1

which is an in-neighbour of uj for some j ∈ [3]. Hence we find Type 1 (uj , vj)-paths
by using N+(uj) ∩N−(vj) and the path ujTrs′zvj . ♦

Case 5. r = 4 and |T3| ≥ 3 (r = 4 and |T2| ≥ 3) and all other are trivial strong
components.

Proof of case. Assume that T3 is the only non-trivial strong component (if T2 then
reverse all arcs and obtain the same problem).

Now for any vertex z ∈ T3 with at least 2 in-neighbours inside T3, t1z respectively
t2z is not an important arc. This follows as otherwise we can find Type 0 (t1, z)-paths
respectively Type 1 (t2, z)-paths. Using Lemma 10.7 and the fact that D is 5-strong
we can conclude that t1t2, t1v1, t1v2, t2u1 and t2u2 are important arcs of T , where
v1, v2, u1, u2 ∈ T3. Furthermore, |T3| = 3 for otherwise either one of the vertices
{v1, v2, u1, u2} has in-degree 2 or {S, u1, u2} is a separator of D of size 4. If there is
an arc sjvi for some i, j ∈ [2] we find Type 1 (t1, vi)-paths by using t4. Hence v1, v2
dominates S. But now, as there are three important arcs in T −S with head in t4, at
least one has tail vi for some i ∈ [2]. Then the paths vis1t1t4 and vis2t2t4 are disjoint
from N+(vi) ∩N−(t4), and we find Type 2 (vi, t4)-paths. ♦
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The remaining cases are r = 2 and r = 3, where T2 is the only component which
is non-trivial. Before considering these cases, let us make a few observations and
assumptions. Notice that for every important arc t1v, |N−(v) ∩ T2| ≤ 2 for otherwise
we find Type 0 (t1, v)-paths. We will call the head v an in-critical vertex if |N−(v)∩
T2| = 2 and will denote it vcrit. Similarly for important arcs wt3 we have |N+(w) ∩
T2| ≤ 2 and the tail w is an out-critical vertex if |N+(w) ∩ T2| = 2. In this case
w is denoted wcrit. As D is 5-strong there are at least three important arcs t1v1, t1v2
and t1v3 (w1t3, w2t3, w3t3) and by Lemma 10.7 and the fact that n ≥ 8 there exist at
least one i ∈ [3] (j ∈ [3]) such that vi (wj) is an in-critical (out-critical) vertex. In the
following vi (wi) will always denote the head (tail) of an important arc t1vi (wit3).

Before considering T2 in more detail and looking at the two cases, observe the
following that implies Theorem 10.10 which is stated after this proof.

Claim 1. There are at most four arcs from t1 to T2 which are important arcs.

Proof of Claim 1. Assume that there are 5. If |T2| ≥ 6, then at least one of the vi
vertices has in-degree 3, implying the existence of Type 0 (t1, vi)-paths. If |T2| = 5

then as each vi vertex has in-degree at most 2, we see that T2 is a 2-regular tournament.
Label the vertices v1, v2, . . . , v5 in T2, such that N+(vi) = {vi+1, vi+2} (mod 5) for all
i ∈ [5]. As T is 2-strong there is a vertex vi that dominates s1. If vi−1 is dominated
by s1, then the path t1vis1vi−1 together with N+(t1)∩N−(vi) gives Type 1 (t1, vi−1)-
paths. Hence vi−1 dominates s1. Repeating this argument we conclude that T2→s1.
But then as T is 5-strong, there is an arc s2v′i for some i′ ∈ [5]. Now t1vi′+1s1s2vi′

together with N+(t1) ∩N−(vi′) will give Type 1 (t1, vi′)-paths. �

Now as T2 contains most of the vertices of T , it is worth considering this subtour-
nament in more detail. We will pick T2 such that, while maintaining the property of
T :

T2.1) The number of in-critical and out-critical vertices (in T2) are maximal.

T2.2) T2 has the fewest number of separators and S′ is the separator that leaves the
fewest number of strong components in T2 − S′.

For any separator S′ of T2 we denote the strong components of T2 − S′ by T2,1,
T2,2, . . . , T2,r′ and again if we know T2,i is a trivial component it is denoted t2,i.

Case 6. r = 3 and T2 is the only non-trivial strong component.

Proof of case.
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s1

s2

S

t1 t3

T2

w2

w1

w3

v2

v1

v3

Figure 10.2: Structure of T in Case 6. Arcs between S and T2 and arcs inside T2 are
left out. In dashed blue the important arcs with ends in t1 or t3.

Claim 2. Every in-critical vertex vcrit dominates S and every out-critical vertex wcrit
is dominated by S.

Proof of Claim 2. Otherwise we find Type 1 (t1, vcrit)-paths using t3 or find Type 1
(wcrit, t2)-paths using t1. �

Claim 3. If vi is not an in-critical vertex, then vi dominates at least one vertex of
S. Similarly if wi is not an out-critical vertex, then wi is dominated by at least one
vertex of S.

Proof of Claim 3. Assume wlog that v1 is not an in-critical vertex and that S domi-
nates v1. Then if v1 dominates a vertex z ∈ T2 that dominates a vertex of S, then it
is not hard to find Type 2 (t1, v1)-paths using z, S, t3 and the in-neighbour of v1. As
vcrit dominates S, this implies that vcrit is the only in-neighbour of v1, S dominates
T2−vcrit and that the last vi vertex (say v2) is not an in-critical vertex. But then con-
sider v2. This is dominated by v1, dominates vcrit and, we find Type 2 (t1, v2)-paths
using v1, vcrit, t3, S, a contradiction.

Similar can be proved for wi vertices. �

Claim 4. vi 6= wj for all i, j ∈ [3] and n ≥ 10.
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Proof of Claim 4. Claim 2 and 3 implies that vi 6= wcrit for any i ∈ [3] and wj 6= vcrit

for any j ∈ [3]. But as |T2| ≥ 4 (n ≥ 8), every vertex of T2 has out- or in-degree at
least 2. This implies that vi 6= wj for any i, j ∈ [3] and |T2| ≥ 6. �

Claim 5. There is no important arcs viwj for i, j ∈ [3].

Proof of Claim 5. Assume that viwj is an important arc for some i, j ∈ [3]. Using
t1, t3 and S together with Claim 2 and 3 it is not hard to see that T contains at two
(vi, wj)-paths of length at least 2 internally disjoint from T2. So if we find a (vi, wj)-
path of length at least 2 in T2 then viwj can be reversed, and we have a contradiction
of T2.1). Now if |T2| > 6, then it follows as |N+(vi) ∩ N−(wj)| ≥ 1. Otherwise by
Claim 4 |T2| = 6, in which case we find a path of length 3 using the fact that T2 is
strong. �

Claim 6. For each i ∈ [2], we may assume that si has at least two out-neighbours and
at least two in-neighbours in T2.

Proof of Claim 6. Assume that there is an i ∈ [2] such that si only has one out-
neighbour in T2. Then there is only one out-critical vertex wcrit. By Claim 3, we see
that the two vertices w1, w2 that are not out-critical dominates si and are dominated
by s3−i. As D is 5-strong, there must be an important arc zsi with z ∈ T2. If z has
two out-neighbours in T2 then we find three (z, si)-paths of length at least 2

zx1si

z(wcrit)x2si

zt3si

where x1 6= x2 ∈ T2 and by Lemma 10.6 we may reverse the arc zsi giving a
tournament where si dominates and is dominated by at least 2 vertices of T2. Notice
that both property T2.1) and T2.2) of T2 is maintained. First z is not a wi vertex(out-
degree 2 in T2 but not wcrit), so we do not decrease the out-degree of such a vertex.
Secondly we reverse an arc with only one end in T2 and hence do not change the
nature of T2.

If z only has one out-neighbour in T2, then z = wj for some j ∈ [2] by Lemma
10.7. Assume wlog that z = w2. But then there is another important arc z′z of T2
(notice that t1 is not an out-neighbour of z in D). Assume first that z′ has another
out-neighbour u in T2. Then either u dominates z or every out-neighbour of u dom-
inates z. (See Figure 10.3a). In any case we find Type 2 (z′, z)-path ((z′, wj)-paths)
contradiction T2.1). Hence z′ has exactly one out-neighbour and must be w1. Again
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si

s3−i

S

t1 t3

T2

z=w2 z′

u

(a) The case where z′ has at least 2 out-
neighbours in T2.

si

s3−i

S

t1 t3

T2

z=w2 z′=w1

z′′
u

(b) Then case where z is the only out-
neighbour of z′ in T2.

Figure 10.3: Claim 6. Dashed blue arcs are important arcs and dotted arc corresponds
to a possibly shorter (u,w2)-path in T2.

w1 has an in-neighbour z′′ that is an important arc and for this arc we are guaranteed
one internal path in T2 of length at least 2, as this in-neighbour has out-degree at
least 2 by Lemma 10.7 (See Figure 10.3b). Hence we have found Type 2 (w1, z

′′)-
paths and after reversing this w1 becomes an out-critical vertex that dominates si, a
contradicting the choice of T as w1t3 can now be reversed.2.

Similarly, by considering the vj vertices, we can prove that both vertices of S is
dominated by at least two vertices of T2. �

Claim 7. wcrit (vcrit) is completely dominated by (dominates) s1 (s2) in D and at
least one of the important arcs incident to wcrit (incident with vcrit) belongs to T2.

Proof of Claim 7. Assume first that s1wcrit is an important arc in T . Then the follow-
ing three (s1, wcrit)-paths implies that s1wcrit can be reversed giving a contradiction
with the choice of T , as wcrit then have three out-neighbours in T − t3.

s1t1wcrit

s1s2wcrit

s1P (T2)wcrit

2z′′ might be wcrit, but this does not matter
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Secondly wcrit has at least 5 out-neighbours in D and s1, t1 are not among them.
This implies at least three of these out-neighbours are in T2. As wcrit only has 2

out-neighbours in T2, this implies that there is at least one important arc incident to
wcrit in T2. �

Claim 8. T2 is 2-strong.

Proof of Claim 8. Assume by contradiction that T2 is only 1-strong and let S′ = s′

be the minimal separator of T2 leaving the fewest number of strong components in
T2 − s′. Furthermore, let j ∈ [r′] be the maximal index such that for some i ∈ [3],
vi ∈ V (T2,j). We define the set

X =
⋃

m∈[j]
T2,m

As D is 5-strong there are at least two disjoint paths from t3 to X in D−{s1, s2, s′}
and hence at least two important arcs incident to X in T2 − s′. Call these important
arcs ab and a′b′. Notice that as X contains all vi vertices that belongs to T2 − s′,
|X| ≥ 2. This implies that a 6= a′, and we assume wlog that aa′ ∈ A(T ).

Assume first that |V (T2) − {X, s′}| ≥ 2. Then neither a nor a′ is a wcrit vertex
(and hence b, b′ ∈ T2). This follows as either both has out-degree at least 3 in T2 or
if a′ only has out-degree 2, then a′ = T2,j = vi (Claim 4). As we have the path t3St1
either |N+(a)∩N−(b)| ≥ 2 or |N+(a′)∩N−(b′)| ≥ 2 would imply Type 1 paths, and
therefore we can conclude:

• bb′ ∈ A(T ).

• The last (second last) component of X is the vertex a′ (a)

• The first (second) component of X is the vertex b′ (b).

As |V (T2)| ≥ 6 (Claim 4) we have r′ ≥ 5 and either a 6= T2,1 or b′ 6= T2,r′ . Assume
wlog a 6= T2,1. Then we find Type 1 (a, b)-paths contradiction T2.2) (See Figure 10.4):

aa′b

aT2,r′s
′T2,1b

at3St1b.

Now consider the case where |V (T2)−{X, s′}| ≤ 1 and notice that since |V (T2)| ≥ 6

we have |X| ≥ 4. But then as there exist i ∈ [3], such that vi belongs to the last strong
component ofX, T2,j , we can conclude that j ≤ 2 and T2,j is the only non-trivial strong
component of X. As r′ ≥ 2 this implies one of the following two:
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s1

s2

S

t1 t3

b′

s′

T2

b

X

a a′T2,1

Figure 10.4: The case where ab and a′b′ are contained in T2, b′ ∈ T2,r′ and a /∈ T2,1.
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1. r′ = 3, |V (T2,1)| = |V (T2,3)| = 1 and T2,2 is a non-trivial strong component.

2. r′ = 2, |V (T2,2)| = 1 (|V (T2,1)| = 1) and T2,1 (T2,2) is a non-trivial strong
component.

Notice that the non-trivial strong component is just 1-strong. For the first case this
follows as T2,2 contains a wi vertex, and if this has out-degree 2 in T2,2 it has out-degree
3 in T , as t2,3 is also an out-neighbour of wi. In the following z is the out-neighbour
of a wcrit vertex in T2,2 and hence a separator of T2,2.

Proof of 1: See Figure 10.5. Assume first that there is no important arc inside
T2,2 with head wcrit. Then by Claim 7 either t2,1wcrit or s′wcrit is an important arc.
But as wcrit is dominated by a vertex of T2,2 and s′ we find Type 1 (t2,1, wcrit)-path
contradicting T2.2). On the other hand if s′wcrit is the only important arc incident to
wcrit in T2, then as wcrit has out-degree at least 5 in D, also s2wcrit is an important
arc. If s2s′ ∈ A(T ) then

s2t1wcrit

s2s
′wcrit

s2P (T2)wcrit

are three disjoint (s2, wcrit)-paths of length at least 2. Here we use that s2 dominates
at least two vertices of T2 (Claim 6). Similar if s′s2 ∈ A(T ), then

s′s2wcrit

s′t2,1wcrit

s′t3s1wcrit

are three disjoint (s′, wcrit)-paths of length at least 2. So in each case we find an arc
that can be reversed such that wcrit has three out-neighbours in T−t3, a contradiction
with the choice of T . Hence we may conclude that there is at least one important arc
u1wcrit in T2,2.

Notice that there are two disjoint paths of length 4 between any pair of vertices
in T2,2 by using {t2,3, s′, t2,1, t3, s1, s2, t1} and that such two path can be constructed
avoiding si for specified i ∈ [2]. To avoid Type 1 (u1, wcrit)-path for the important arc
u1wcrit, we can conclude that in T2,2, wcrit is dominated by T2,2−{z} and u1 is domi-
nated by T2,2−{wcrit}. If there exist u2 ∈ T2,2 such that u2u1 is an important arc, then
u2wcritzu1 is an (u2, u1)-path of length at least 2 in T2,2. Hence we may reverse u2u1.
But then u1u2wcrit together with the two external paths will give Type 1 (u1, wcrit)-
paths and reversing u1wcrit we obtain a contradiction with the choice of T . Hence the
5 out-neighbours of u1 in D must be in the set {t1, t2,1, wcrit, t2,3, t3, s1, s2, s′}.
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s1
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u2 u1

z

T2,2

wcrit

Figure 10.5: The main structure used in the argument of 1.

As u1 has at least two in-neighbours in T2,2 and one in t2,1 we know t1u1 is
not an important arc. Furthermore, as u1 is dominated by S in T , we may use
similar arguments that concluded that t2,1wcrit and s1wcrit were not important arcs
to conclude that t2,1u1 and s1u1 are not important arcs. Hence {wcrit, t2,3, t3, s2, s′}
is the set of 5 out-neighbours of u1 in D. But then either the path of important arc
s2u1wcrit (when s2s) or s′u1wcrit (when s′s2) can be reversed using same arguments
as above.

Proof of 2: Now consider T2,1 − z and let T2,1,1, T2,1,2, . . . , T2,1,r′′ be the strong
components of T2,1 − z. Then T2,1,r′′ = t2,1,r′′ = wcrit. Furthermore, there is at least
one vi vertex in T2,1− z, and we let j ∈ [r′′− 1] be the maximal index such that there
exist i ∈ [3] with vi ∈ V (T2,1,j). Define

X ′ =
⋃

m∈[j]
T2,1,m

As there is at least one (t3, X
′)-path in D − {s1, s2, s′, z}, there is an important
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Figure 10.6: The main structure in the proof of 2. The coloured dashed arcs illustrate
the three different possibilities of the important arc ab.

arc ab incident to X ′. See Figure 10.6.
If b = t3, then a = wi′ for some i′ ∈ [3]. But as vi 6= wi′ this implies that T2,1,j

is a non-trivial strong component. Then |N+(a) ∩N−(t3)| ≥ 3, and we have Type 1
(wi′ , t3)-paths.

If b = t2,2 and T2,1,j is non-trivial or a /∈ T2,1,j , then we find Type 1 (a, b)-paths.
Hence a = vi and b = t2,2. By Claim 4 b 6= wi′ for any i′ ∈ [3] and as all vertices of
X ′ − a has at least 3 out-neighbours in T2, {w1, w2, w3} = {s′, z, wcrit}. Claim 2 and
Claim 3 gives a vish arc for some h ∈ [2] and as s′ is an out-critical vertex (dominates
S and wcrit) s′sh is an arc of T , and we find Type 2 (a, b)-paths.

The final case is that b = wcrit. As a 6= vi by Claim 5, there is a vertex w ∈
N+(a) ∩N−(b) ∩X ′, and we find Type 1 (a, b)-paths

awb

at2,2s
′wcrit

at3sit1wcrit

�
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Claim 9. When T2 is 2-strong any important arc between S and T2 can be reversed.

Proof of Claim 9. As T2 is 2-strong all vi vertices have in-degree exactly 2 in T2 and
hence are all in-critical and dominate S. Using visj for i ∈ [3], j ∈ [2], that T2 is
2-strong and the vertex t3 we find at least 3 disjoint (u, sj)-paths of length at least
2 for every u ∈ T2. Hence an important arc usj can be reversed. Notice that this
especially implies that vi completely dominates S in D.

Similarly it can be proved that wj is completely dominated by S in D and that
all other important arc with tail in S and head in T2 can be reversed. �

Now consider T2. As W = {w1, w2, w3} is completely dominated by S in D, there
must be 4 out-neighbours to each wi in D2, though only 2 in T2. We will show that
one of these important arcs in T2 can be reversed. Denote by w1

i , w
2
i the tail of the

two important arcs of T2 with head in wi and when both are specified w1
iw

2
i is an arc

of T .
Assume first that T2〈W 〉 is a transitive tournament where w1 is the source and

consider w1
1, w

2
1. Then w1

1w
2
1w1 and w1

1t3s1w1 are disjoint paths of length at least
2, and we will find a third (w1

1, w1)-path contradicting the choice of T . Let Z =

T2 − {W,w1
1, w

2
1}. Then Z dominates w1, and we may assume that Z dominates w1

1,
for otherwise we find the third path. But then w1

1 either dominates w2 or w3, and as
w3 dominates a vertex of Z this gives a (w1

1, w1)-path of length 3 or 4 depending on
whether w3 or w2 is an out-neighbour of w1

1. See Figure 10.7a.
Assume now that T2〈W 〉 is a 3-cycle with arcs wiwi+1 (mod 3), let Q = N+(w1) =

{q, w2} and consider T2 − Q with the strong components T2,1, T2,2, . . . T2,r′ for some
r′ ≥ 2. Now T2,r′ = w1 and as T is 2-strong, {w1, q} are the two out-neighbours of
w3 and T2,r′−1 = w3. Finally as |T2| ≥ 6 we see that r′ ≥ 3. Consider the important
arc w1

3w3 with w1
3 ∈ T2 −Q (w3 only has one in-neighbour in Q, so there must be an

important arc). If |N+(w1
3) ∩N−(w3)| ≥ 1 then together with the paths

w1
3w1w2w3,

w1
3t3St1w3

we have Type 1 (w1
3, w3)-paths. Hence w1

3 = T2,r′−2, r′ > 3 and w1
3 dominates w2.

Now
w1
3w2w3

w1
3w1qT2,1

w1
3t3St1w3

are three (w1
3, w3)-paths, contradiction the choice of T . See Figure 10.7b. ♦



10.2 A 2-strong spanning tournament 95

s1

s2

S

t1 t3

T2

w2w1 w3

w2
1 w1

1

Z′

(a) The case where {w1, w2, w3} induces a transitive tournament.

s1

s2

S

t1 t3

T2

q w2

w1w3w1
3

T2,1

(b) The case where {w1, w2, w3} induces a 3-cycle.

Figure 10.7
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Now we consider the last case r = 2. From now on we will use that D is 6-strong.

Case 7. r = 2 and T1 (T2) is a trivial strong component.

Proof of case. First as D is 6-strong, D2 = D − {S, t1} is a 3-strong semicomplete
digraph and by Theorem 9.5 it contains a 2-strong spanning tournament. So let T2 be
such a tournament and similar the previous case we let v1, v2, v3, v4 be the four heads
of the important arcs with tail in t1. Notice, that there are four of these vertices as
D is 6-strong.

We will use the following trivial lemma.

Lemma 10.9. Let D be a 2-strong digraph. Then for any choice of 3 distinct vertices
x1, x2, x3 ∈ V (D) there exist internally disjoint paths P,Q, such that P is an (x1, x2)-
path ((x2, x1)-path) and Q is an (x1, x3)-path ((x3, x1)-path).

Proof. Let P1, P2 be the two disjoint (x1, x2)-paths and Q1, Q2 be the two disjoint
(x1, x3)-paths in D. We may assume that for each i ∈ [2], Qi intersects both P1 and
P2. Assume wlog that x2 /∈ Q1 and let v be the last vertex of Q1 that intersects a
vertex of P1 or P2, say P2. Then P = P1 and Q = P2[x1, v]Q1[vx3] are the two disjoint
paths. ♦

Claim 10. If there exists a j ∈ [2] such that sj dominates three vertices of T2, then
we may reverse any important arc sjx with x ∈ T2.

Proof of Claim 10. Let x1, x2 be two out-neighbours of sj in T2−x. Then by Lemma
10.9 we have disjoint (x1, x)-path P and (x2, x)-path Q in T2. Hence

sjt1x

sjPx

sjQx

are three (sj , x)-paths and by Lemma 10.6 sjx may be reversed. �

Claim 11. vi dominates S for all i ∈ [4].

Proof of Claim 11. Assume by contradiction that shvi is an arc of T for some h ∈ [2]

and i ∈ [3]. If there exist a vertex x ∈ N+(vi) such that xsh is an arc of T , then it is
easy to find Type 1 (t1, vi)-paths. Hence sh dominates X. As n > 7, |X| ≥ 2, and we
see that sh has three out-neighbours in T2. This implies that sh completely dominates
X in D, for otherwise we can use Claim 10 to reverse an arc shx′ for x′ ∈ X, and
after this have Type 1 (t1, vi)-paths. But as D is 6-strong (5 is sufficient here) the
vertices N−(vi) ∪ vi dominates sh in D, and we may assume (using Claim 10 three
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times) that this is also true in T . Then considering the vertex vi′ ∈ X we find Type
1 (t1, vi′)-paths, a contradiction. �

Claim 12. vi completely dominates S in D

Proof of Claim 12. Consider three distinct vertices vi, vj , vz for i, j, z ∈ [4]. We will
show that if vish is an important arc for some h ∈ [2] then we can reverse it giving a
contradiction with the choice of T . Notice that, by Lemma 10.9, T2 contains (vi, vj)-
path P and (vivz)-path Q such that P and Q are disjoint. This gives two (vj , sh)-
paths in T , and we need only find a third path R disjoint from these. If h = 1 then
R = v1s1s2 and if h = 2 then R = vis2t1vq, where vq = {v1, v2, v3, v4}−{vi, vj , vz}. �

Now as D is 6-strong (5 is sufficient), Claim 12 implies that for each i ∈ [4] there
are two important arcs viv1i and viv2i in T2. We will show that for some i ∈ [4] and
j ∈ [2] the arc viv

j
i can be reversed, giving the final contradiction. As viSt1v

j
i is

a (vi, v
j
i )-path disjoint from T2 it is sufficient to find two (vi, v

j
i )-paths inside T2 of

length at least two.
Let W = {v1, v2, v3, v4} and assume we have labelled the vertices of W such that

v1v2v3v4 is a cycle and v1, v2 is the two vertices with one in-neighbour in W . First
if there exist i ∈ [2], j ∈ [2] such that vji /∈ W , then as W contains disjoint (vi, v3)-
and (vi, v4)-paths and v3, v4 dominates all vertices in T2 − W we find two disjoint
(vi, v

j
i )-paths. Hence the two important arcs with tail in v1 ((v2)) belongs to T2〈W 〉.

Similarly for i ∈ [3, 4], if both v1i , v
2
i /∈ W , then using a path in T2〈W 〉 and v1i v2i we

can reverse viv2i . Finally let v23 and v24 be the vertices not inW . If v23 6= v24, then again
it is easy to find two paths. Hence v23 = v24 and is the only important arc in T2 with
tail in W . Now T2− v23 is at least 1-strong and assume that uv1 is an arc of T2. Then

v3v4v
2
3

v3uv1v
2
3

are the two disjoint (v3, v
2
3)-paths in T2.

♦

This completes the proof.

As indicated in the proof above, we obtained a partial result.

Theorem 10.10 (Christiansen). Every 5-strong semicomplete digraph with δ0 ≥ 7

contains a 3-strong spanning tournament.

Proof. This follows by proof of Theorem 10.8 ending after Claim 1. If δ0 ≥ 7, then t1
is adjacent to at least 5 important arc with head in T2.
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10.3 Closing the gap

In the previous two sections we proved that every member of the following three classes
of semicomplete digraphs contains a 3-strong spanning tournament.

• 5-strong semicomplete digraphs with a 3-strong subtournament.

• 5-strong semicomplete digraphs with minimum semi-degree at least 7.

• 6-strong semicomplete digraphs.

These are all improvements of the previous best known result by Guo [24] on 7-strong
semicomplete digraphs. Given the elaborate proof of the last of these, one might
wonder whether the bound on 6-strong is the best we can obtain, or if there might be
a better way to prove this and Conjecture 9.4. In the following we will continue with
the assumption that Conjecture 9.4 is true for k = 3, then in the next Chapter we
will take this into revised considerations. In the proof of Theorem 10.8 we only used
that the semicomplete digraph was 5-strong until the last Case 7, so let us start by
recalling the structure obtained just before Case 7:

• T is a 2-strong spanning tournament of D with the fewest number of separators.

• S is a separator of T such that T − S has exactly two strong components, a
trivial component t1 and a non-trivial T2.

• T2 is a most 2-strong.

• There are at least 8 vertices in T and at least 5 in T2.

• The minimum semi-degree of D is at most 6.

If we consider the proof the Case 7, two key structures are used, both of which are
deduced from the fact that D is 6-strong.

• T2 is a 2-strong tournament.

• There are least 4 important arcs t1vi.

This leads to two obvious problems to consider. First prove that D2 can be ori-
ented as a 2-strong tournament without contradicting the choice of T . Remember
that D − {u1, u2} is 3-strong and has a 2-strong orientation for all u1, u2 ∈ V (D).
If D − {S, t1} is only 2-strong then all three vertices plays a key role in the connec-
tivity of D. How does this effect the arcs incident to {S, t1}? Secondly assume that
T2 is 2-strong, but D is just 5-strong and prove that one of the three important arcs
t1v1, t1v2, t1v3 can be reversed. Using the 2-strong connectivity of T2 and the existence
of important arc, it seems possible to do this by hard work using case analysis. Also
looking at the structure of T at Case 7 it would be interesting to find all the separators
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of T and again remember that for any pair of vertices u1, u2 ∈ V (D), D − {u1, u2} is
3-strong and has a 2-strong orientation.

On a more general note the following might both prove Case 7 and improve some
previous cases by:

1. Consider different sets of important arcs and prove that all vertices in such sets
can be reverses together without contradiction the choice of T .

2. Understanding how the semicomplete digraph D looks like when we assume that
D is minimal with respect to connectivity (both for vertices and arcs).

3. Consider 2-strong tournaments in D − {u1, u2} for some u1, u2 ∈ V (D). Is it
even possible to coexist when we cannot find a 3-strong spanning tournament?
For example, is it possible that D − {s1, s1}, D − {s1, t1} and D − {s2, t1} all
has a 2-strong orientation, but D do not have a 3-strong orientation.

4. Find a 3-strong subtournament in D.

An interesting observation when attempting to prove Case 7 for 5-strong semi-
complete digraphs is that we often ended in a situation where the important arcs
were dense in the set {s1, s2, t1, v1, v2, v3}. Notice that this give a nice understand-
ing on why the extra vertex v4 helped. If there are many 2-cycles in the set W =

{s1, s2, t1, v1, v2, v3, v4} then in many cases Corollary 10.3 implies that the arcs of W
can be reversed such that W forms a 3-regular tournament. Then the theorem fol-
lows by Theorem 10.4, using this 3-regular 3-strong tournament to obtain a 3-strong
spanning tournament.





Chapter 11

Discussion on the k-strong
spanning tournament problem

In the previous chapter we attempted to prove Conjecture 9.4 for k = 3, and three
partial results has been found. The last chapter also ended with a discussion on how
one might prove this conjecture. In this chapter we will continue this discussion by
considering the conjecture for general k. We will describe what issues there are when
increasing the size of k and indicate why (2k + 1)-strong semicomplete digraphs may
be the correct bound.

11.1 Conjecture 9.4 for general k

Going back to the proof of Theorem 10.8 we saw that the main tool to prove the
theorem was Lemma 10.6. Informally this says that if we can find k disjoint paths
between a pair of vertices, then we can safely reverse an arc between the two of them.
If we were to prove Conjecture 9.4 for general k using a similar approach by finding
a k − 1 strong spanning tournament T of ’optimal’ structure, then clearly Lemma
10.6 will also play a key role here. We would expect that (as we did in the proof of
Theorem 10.8) it is easy to deduce that T −S contains few strong components. Notice
however that for larger k, we do not have the same correlation between the size of a
strong component and the existence of an important arc. For example, as a strong
component has size at least 3, we might have an important arc from Ti to Ti+2 even
though Ti+1 is non-trivial. Reducing to an instance with few strong components, we
might be able to prove the problem corresponding to Theorem 10.10.

Problem 11.1 (NEW: Christiansen). Let k be a fixed integer. Does there exist a
function h(k) such that every (2k − 1)-strong semicomplete digraph with δ0 ≥ h(k)
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contains a k-strong spanning tournament?

What is more troublesome is the amount of work that had to be done in the last
two cases of Theorem 10.8. For a general proof this does not seem like a feasible
approach, and we expect that new structural results has to be found. In Section 10.3,
a few suggestions on subproblems were given and some, but not all extends, naturally
to the problem for general k. One that does not extend to general k is 3. Here we
remove two vertices from D, and are left with a semicomplete digraph that can be
oriented to a 2-strong tournament using Theorem 9.5. This is not true for larger k.
Removing (k − 1) vertices form a (2k − 1)-strong semicomplete digraph, leaves a k-
strong semicomplete digraph and not a 2(k − 1) − 1 = (2k − 3)-strong semicomplete
digraph. Hence for k > 3 we can say even less about the structure of the (k−1)-strong
spanning tournament.

These problems might suggest that the bound in Conjecture 9.4 is not correct,
though no counterexamples has (yet) been found. The following conjecture will leave
a small gap between the known best possible.

Conjecture 11.2 (NEW: Christiansen). Every (2k + 1)-semicomplete digraph con-
tains a k-strong spanning tournament.

Notice the well-pleasing fact, that this conjecture do not have the extra ’of 2k+1
vertices’ as Conjecture 9.4 does. Also proving this will improve the known best possible
result by Guo as 2k + 1 ≤ 3k − 2 for all k ≥ 3.

To support Conjecture 11.2 even more, consider the extension of Theorem 10.4;
that a (2k−1)-strong semicomplete digraph containing a k-strong subtournament can
be oriented to a k-strong tournament. We tried to prove this using similar techniques
and had the following two issues:
Problem 1:
Eliminating 2-cycles betweenG, Gin andGout do no longer follow directly as it depends
on the size of G. If we assume that G (or the tournament T ) has size at least 3k − 2,
then such 2-cycles can be eliminated. It might also be possible to solve this ’problem’
by moving a set of vertices with the right connectivity.
Problem 2:
We no longer have the same control on the W -set. In the proof of Theorem 10.4, a
vertex v with out-degree 3 in W would naturally define a subset N+

W (v) where we
delete arcs of 2-cycles. This is not true for larger k. Consider for example k = 4 and
|W | = 7. A vertex with out-degree 4 in W implies that W cannot be oriented to a
3-regular tournament, but its out-neighbourhood is too small to contain a 2-regular
tournament. Increasing the connectivity to 2k + 1 might give sufficient slack in such
sets W in order for us to orient 2-cycles and move vertices to G.
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Conjecture 11.3 (NEW: Christiansen). Let k be a fixed integer and let D be a 2k+1-
strong semicomplete digraph with a k-strong subtournament of D, then D contains a
k-strong spanning tournament.

11.2 Locally semicomplete digraphs containing k-strong
local tournaments

Remember that Bang-Jensen proved the following:

Theorem 9.8 ([5]). Let f(k) be an integer function such that f(1) = 1 and f(k) ≥
f(k−1)+2 for every k ≥ 1. Suppose that every f(k)-strong semicomplete digraph con-
tains a spanning k-strong tournament. Then every f(k)-strong locally semicomplete
digraph contains a k-strong spanning local tournament.

Together with Theorem 10.8 this implies

Theorem 11.4 (NEW: Christiansen). Every 6-strong locally semicomplete digraph
contains a 3-strong spanning local tournament.

It would be interesting to see if the relation between semicomplete digraphs and
locally semicomplete digraphs seen in Theorem 9.8 also extends if we condition on
more than just the strong connectivity of the digraph, i.e if there exist corresponding
results on locally semicomplete digraphs as Theorem 9.5 and Theorem 10.10.

Conjecture 11.5 (NEW: Christiansen). Let D be a 5-strong locally semicomplete
digraph containing a 3-strong local tournament. Then D can be oriented to a 3-strong
local tournament

Conjecture 11.6 (NEW: Christiansen). Let D be a 5-strong locally semicomplete
digraph with minimum semi-degree at least 7. Then D can be oriented to a 3-strong
local tournament.

We could also state the obvious extensions to general k, but unsure whether the
correct bound is 2k − 1 and 2k + 1 for these problems, we leave out the formal
conjectures.

11.3 Concluding remarks

In this part of the dissertation we have considered sufficient conditions for a semicom-
plete digraph to contain a k-strong spanning tournament.
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We could also have asked for a polynomial algorithm to find such (when they
exist). Lichiardopol conjectured that if T is a k-strong tournament, then it contains
a small set inducing the strong connectivity of T .

Conjecture 11.7. [37] For every k ≥ 1 there exists a function f(k) such that every
minimally k-strong tournament has at most f(k) vertices.

Proving this and Conjecture 11.3 will probably lead to a polynomial algorithm
that both decides and finds a k-strong spanning tournament. Indeed consider the case
k = 3. Then the algorithm will do the following: For every set of f(3) vertices, try
if it has a 3-strong orientation (try all possibilities). If one is found, then use the
algorithm of Corollary 10.5 to obtain a 3-strong spanning tournament.

If conjecture 11.7 is not true, then we have to describe an algorithm that finds the
spanning k-strong directly. It is not clear whether we can turn the proof of Theorem
10.8 into an algorithm finding such tournament. The proof starts with a (k−1) strong
spanning tournament and shows that this is not best possible. If we were to use the
approach of this proof, we need a way to find a (k−1)-strong tournament. This might
be done recursively: Start from a 1-strong tournament, and use the algorithm induced
by the proof of Theorem 10.8 to find a 2-strong tournament. Then repeat.
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Future work

This chapter is a brief summery of the problems that this author would consider next,
had time permitted it.

Linkage in digraphs

In Part I we considered the k-linkage problem for fixed k and generalizations of semi-
complete digraphs. As also noted in Chapter 4, using the refined structure described
in Section 1.2.1 one might prove the following conjecture:

Conjecture 4.2 (NEW: Christiansen). For k fixed integer, every 5(k− 1)-strong evil
locally semicomplete digraph is k-linked.

Degree constrained partitions of digraphs

In Part II we considered the problem of partitioning a digraph in (two) parts such
that each partition induced a digraph with certain properties. While the problem
(δ+ ≥ k, δ+ ≥ k)-partition was proved to be NP complete for general digraphs, we
found a polynomial algorithm for semicomplete digraphs and digraphs with bounded
independence number. It is natural to consider round decomposable and locally semi-
complete digraphs next.

Conjecture 8.7 (NEW: Christiansen). The (δ+ ≥ k1, δ
+ ≥ k2)-partition problem is

polynomial on round decomposable digraphs.

Conjecture 8.8 (NEW: Christiansen). Let k1, k2 be fixed integers. There exists a
function g(k1, k2) such that every locally semicomplete digraph D with δ+ ≥ g(k1, k2)

contains a (δ+ ≥ k1, δ+ ≥ k2)-partition.
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Semicomplete digraphs containing k-strong spanning tour-
naments

In Part III we considered the problem of finding the correct bound on the strong
connectivity of a semicomplete digraph such that we were ensured that it contained
a k-strong spanning tournament. The part ended with many related conjectures and
problems, both for semicomplete digraphs and locally semicomplete digraphs. This
author would start by considering the following two conjectures for semicomplete
digraphs:

Conjecture 11.3 (NEW: Christiansen). Let k be a fixed integer and let D be a
2k + 1-strong semicomplete digraph with a k-strong subtournament of D, then D

contains a k-strong spanning tournament.

Conjecture 11.2 (NEW: Christiansen). Every (2k + 1)-semicomplete digraph con-
tains a k-strong spanning tournament.
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Disjoint paths in decomposable digraphs
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Abstract

The k-linkage problem is as follows: given a digraph D = (V,A) and a collection of k terminal
pairs (s1, t1), . . . , (sk, tk) such that all these vertices are distinct; decide whether D has a collec-
tion of vertex disjoint paths P1, P2, . . . , Pk such that Pi is from si to ti for i ∈ [k]. A digraph is
k-linked if it has a k-linkage for every choice of 2k distinct vertices and every choice of k pairs as
above. The k-linkage problem is NP-complete already for k = 2 [11] and there exists no function
f(k) such that every f(k)-strong digraph has a k-linkage for every choice of 2k distinct vertices
of D [17]. Recently Chudnovsky, Scott and Seymour [9] gave a polynomial algorithm for the
k-linkage problem for any fixed k in (a generalization of) semicomplete multipartite digraphs. In
this paper we use their result as well as the classical polynomial algorithm for the case of acyclic
digraphs by Fortune, Hopcroft and Wyllie [11] to develop polynomial algorithms for the k-linkage
problem in locally semicomplete digraphs and several classes of decomposable digraphs, including
quasi-transitive digraphs and directed cographs. We also prove that the necessary condition of
being (2k− 1)-strong is also sufficient for round-decomposable digraphs to be k-linked, obtaining
thus a best possible bound that improves a previous one of (3k−2). Finally we settle a conjecture
from [3] by proving that every 5-strong locally semicomplete digraph is 2-linked. This bound is
also best possible (already for tournaments) [1].

Keywords: disjoint paths, locally semicomplete digraph, quasi-transitive digraph,
k-linkage problem, (round-)decomposable digraphs, polynomial algorithm.

1 Introduction

Let s1, t1, . . . ..., sk, tk be distinct vertices of a (di)graph D. The k-linkage problem is to determine
whether there exists vertex-disjoint (directed) paths P1, . . . , Pk such that Pi is from si to ti for 1 ≤
i ≤ k. Robertson and Seymour [15] showed that the problem is solvable in polynomial time for any
fixed k in the case of undirected graphs. Fortune, Hopcroft and Wyllie [11] showed that if we impose
no restriction on the input, the directed version is NP-complete already for k = 2. This motivates the
study of subclasses of digraphs for which the problem is polynomial-time solvable.

In this paper we use the terminology and notation from [5], all digraphs are finite and without
loops or parallel edges. By a path or a cycle in a digraph we always mean a directed path or cy-
cle. A digraph is semicomplete if for all distinct vertices u, v, at least one of uv, vu is an arc. A
tournament is a semicomplete digraph without 2-cycles (precisely one of the arcs uv, vu is present
for all distinct u, v.). A digraph D is locally semicomplete if for every choice of 3 distinct vertices
x, y, z, the presence of the arcs xz, yz or zx, zy implies that x and y are adjacent (have an arc be-
tween them). This is the same as saying that the subdigraphs D〈N−(z)〉, D〈N+(z)〉 induced by the
in-neighbours respectively, the out-neighbours of every vertex z is a semicomplete digraph. If these
two neighbourhoods are tournaments for every vertex z, then the digraph is a local tournament .
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A digraph is quasi-transitive if the presence of the arcs xy, yz implies that x and z are adjacent.
Finally, a digraph is acyclic if it contains no directed cycle.

Let D1, ..., Dh be a set of h disjoint digraphs. The disjoint union of D1, ..., Dh is the digraph
(
⋃
i V (Di),

⋃
iA(Di)). The series composition of D1, ..., Dh is the disjoint union of these h di-

graphs plus all possible arcs between vertices of different Di. The order composition is the disjoint
union of the digraphs plus all possible arcs from Di to Dj for every 1 ≤ i < j ≤ h.
The class of digraphs recursively defined from the single vertex under the closure of these three oper-
ations is called directed cographs.

The following is a partial list of known results on the k-linkage problem for digraphs:

• The problem is polynomial-time solvable for any fixed k in the class of acyclic digraphs [11].

• The problem is NP-complete already for tournaments when k is not fixed [8].

• The problem is polynomial-time solvable for any fixed k in the class of semicomplete digraphs1[9].

• The problem is polynomial-time solvable for any fixed k in the class of digraphs of bounded
directed tree-width [14].

• Every 5-strong semicomplete digraph is 2-linked and this is best possible even for tournaments
[1].

A digraph on at least p+ 1 vertices is p-strong if it remains strongly connected after deleting any
set of at most p − 1 of its vertices. Thomassen [17] proved that there is no natural number k such
that every k-strong digraph D contains vertex disjoint paths P1, P2 such that Pi is an (si, ti)-path for
i = 1, 2 for every choice of 4 distinct vertices of D. He also proved [16] that for tournaments there
exists a function f(k) such that every f(k)-strong tournament is k-linked. This result was generalized
by the first author to locally semicomplete digraphs and quasi-transitive digraphs in [3].

The purpose of this paper is twofold: Using the algorithms of [9] for semicomplete digraphs and
[11] for acyclic digraphs, as well as a very recent result due to Chudnovsky, Scott and Seymour
[10] we prove that the k-linkage problem is polynomially solvable for any fixed k in the classes of
locally semicomplete digraphs and several classes of decomposable digraphs including quasi-transitive
digraphs and directed cographs. Then in the second half of the paper we concentrate on locally
semicomplete digraphs and prove that every (2k − 1)-strong locally semicomplete digraph which is
also round-decomposable (defined in Section 2.2) is k-linked. This is best possible. Finally we prove
that every 5-strong locally semicomplete digraph is 2-linked. This result is best possible already for
tournaments [1] and settles a conjecture from [3].

2 Further terminology and preliminaries

We use [n] to denote the set of integers {1, 2, . . . , n} and [n]i to denote the set of integers {i, i+1, . . . , n}.
Let D = (V,A) be a digraph. If X ⊆ V then we denote by D〈X〉 the subdigraph of D induced by X.
We also use the notation D − S, where S ⊂ V , for the digraph D〈V − S〉.

If there is an arc from a vertex x to a vertex y in D, then we say that x dominates y. Paths and
cycles in a digraph are always meant to be directed paths and cycles. An (s, t)-path is a path whose
initial (terminal) vertex is s (t), that is, a path from s to t. An (s, t)-path P is minimal if D〈V (P )〉
has no shorter (s, t)-path than P .

If X and Y are disjoint subsets of vertices of D such that there is no arc from Y to X and xy is
an arc for all x ∈ X and y ∈ Y , then we say that X completely dominates Y and denote this by
X⇒Y . We shall use the same notation when X and Y are subdigraphs of D.

For any non-strong digraph D, we can label its strong components D1, D2, . . . , Dp, p ≥ 2, in such
a way that there is no arc from Dj to Di when j > i. We call this an acyclic ordering of the
strong components of D. Such an ordering is not unique in general, but it is so for non-strong locally

1In fact, Chudnovsky et al proved this for a more general class of digraphs, but we only need the result as stated.
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semicomplete digraphs, where we have Di⇒Di+1 for i = 1, 2, . . . , p− 1 (see e.g. [5, Theorem 2.10.6]).
We call D1 the initial and Dp the terminal strong component of D.

If D is strong and S ⊂ V (D) such that D − S is not strong, then S is a separator of D. A
separator S is minimal if no proper subset of S is a separator of D.

Lemma 2.1. Let D = (V,A) be a digraph containing distinct vertices s, t, u, v such that D−{u, v} has
3 internally vertex-disjoint (s, t)-paths P1, P2, P3, each of length at least 3 and such that the predecessor
βi of t on Pi dominates the successor αj of s on Pj for all i, j ∈ [3] and D − {s, t} has a (u, v)-path.
Then D contains a pair of disjoint (s, t)-, (u, v)-paths.

Proof. Let P1, P2, P3 be as in the lemma and let R be a (u, v)-path in D − {s, t}. Let x, y be chosen
on R such that x (y) is the first (last) vertex on R which is also on some Pj when we traverse R
from u towards v. Let a, b ∈ [3] be such that x ∈ V (Pa), y ∈ V (Pb) (possibly a = b). If a = b
and y occurs after (or is equal to) x on Pa, then let Q = R[u, x]Pa[x, y]R[y, v] and otherwise let
Q = R[u, x]Pa[x, βa]αbPb[αb, y]R[y, v]. Then Q is a (u, v)-path which is disjoint from Pc whenever
c 6∈ {a, b}.

Theorem 2.2. [11] For every fixed k, there exists a polynomial algorithm for the k-linkage problem
on acyclic digraphs.

Theorem 2.3. [9] For every fixed k there exists a polynomial algorithm for the k-linkage problem on
semicomplete digraphs.

Theorem 2.4. [10] For every fixed pair of positive integers c, k, there exists a polynomial algorithm for
the k-linkage problem on digraphs whose vertex set is partitionable into c sets inducing semicomplete
digraphs.

2.1 Decomposable digraphs

Let R be a digraph on r vertices v1, . . . , vr and let L1, ..., Lr be a collection of distinct (but possibly
isomorphic) digraphs. Then R[L1, ..., Lr] is the new digraph obtained from R by replacing vi with
Li and adding an arc from every vertex of Li to every vertex of Lj if and only if vivj is an arc of R
(1 ≤ i 6= j ≤ r). Note that if D = R[L1, ..., Lr], then R,L1, ..., Lr are induced subdigraphs of D and
we say that D is decomposable (into R,L1, ..., Lr).

Let Φ be a class of digraphs. We say that a digraph D is totally Φ-decomposable if either
D ∈ Φ or D = Q[M1, ...,Mq], with Q ∈ Φ and Mi totally Φ-decomposable, for i = 1, ..., q. The total
Φ-decomposition of D is inductively defined as the sequence

{
D, if D ∈ Φ

Q,L1, ..., Lq, where Li is the total Φ-decomposition of Mi, otherwise.

The first layer of the total Φ-decomposition of D = Q[M1, ...,Mq], namely Q,M1, ...,Mq is called
the Φ-decomposition of D.

Let Φ1 := { Semicomplete digraphs }⋃{ Acyclic digraphs }. The following theorem describes
the structure of quasi-transitive digraphs and shows that quasi-transitive digraphs are totally Φ1-
decomposable.

Theorem 2.5. [6] Let D be a quasi-transitive digraph.

1. If D is not strong, then there exist a transitive acyclic digraph T on t vertices and strong quasi-
transitive digraphs H1, ...,Ht such that D = T [H1, ...,Ht]

2. If D is strong, then there exist a strong semicomplete digraph S on s vertices and quasi-
transitive digraphs Q1, ..., Qs such that each Qi is either a single vertex or is non-strong and
D = S[Q1, ..., Qs].

Moreover one can find the above decompositions in polynomial time.
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2.2 Structure of locally semicomplete digraphs

In this section we recall a useful structural classification of locally semicomplete digraphs (see Theorem
2.11) which will play an essential role in our proofs. To do so we need a number of definitions.

A digraph D is round if its vertices can be labelled v0, v1, . . . , vn−1 so that for each i ∈ [n],
N+(vi) = {vi+1, . . . , vi+d+(vi)} and N−(vi) = {vi−d−(vi), . . . , vi−1} (subscripts are modulo n). Note
that every round digraph is locally semicomplete.

Theorem 2.6. [2] A local tournament is round if and only if each of N+(v) and N−(v) induces a
transitive tournament for every vertex v ∈ V (D).

It follows from Theorem 2.6 that if a local tournament D is round then there exists a unique (up
to cyclic permutations) labelling of vertices of D which satisfies the properties in the definition. We
refer to this as the round labelling of D.

A locally semicomplete digraphD is round decomposable if there exists a round local tournament
R on r ≥ 2 vertices such that D = R[D1, . . . , Dr], where each Di is a strong semicomplete digraph.
We call R[D1, . . . , Dr] a round decomposition of D.

Theorem 2.7. [12] Let D be a non-strong locally semicomplete digraph and let D1, D2, ..., Dp be
the acyclic order of the strong components of D. Then D can be decomposed into r ≥ 2 disjoint
subdigraphs D′1, D

′
2, ..., D

′
r as follows:

D′1 = Dp, λ1 = p,

λi+1 = min{ j | N+(Dj) ∩ V (D′i) 6= ∅},

and D′i+1 = D〈V (Dλi+1
) ∪ V (Dλi+1+1) ∪ · · · ∪ V (Dλi−1)〉.

The subdigraphs D′1, D
′
2, ..., D

′
r satisfy the properties below:

(a) D′i consists of some strong components that are consecutive in the acyclic ordering of the strong
components of D and is semicomplete for i = 1, 2, ..., r;

(b) D′i+1 dominates the initial component of D′i and there exists no arc from D′i to D′i+1 for i =
1, 2, ..., r − 1;

(c) if r ≥ 3, then there is no arc between D′i and D′j for i, j satisfying |j − i| ≥ 2.

The unique sequence D′1, D
′
2, ..., D

′
r defined in Theorem 2.7 will be referred to as the semicomplete

decomposition of D. For an illustration of this, see Figure 2.18 in [5].
We now turn to the structure of strong locally semicomplete digraphs.

Theorem 2.8. [4] If a locally semicomplete digraph D is round decomposable, then it has a unique
round decomposition D = R[D1, D2, ..., Dr], r = |V (R)|. There exists a polynomial algorithm to decide
if a given locally semicomplete digraph D has a round decomposition and to find such a decomposition
if it exists.

Lemma 2.9. [4] Let S be a minimal separator of the locally semicomplete digraph D. Then either
D〈S〉 is semicomplete, or D〈V − S〉 is semicomplete.

Let us call a separator S of a locally semicomplete digraph D good if S is a minimal separator
and D − S is not semicomplete.

By an evil locally semicomplete digraph we mean a locally semicomplete digraph which is not
semicomplete and not round decomposable. This name illustrates that often this is structurally the
most difficult class of non-semicomplete locally semicomplete digraphs.

Theorem 2.10. [4] Let D be an evil locally semicomplete digraph. Then D is strong and satisfies the
following properties.

(a) There is a good separator S such that the semicomplete decomposition of D−S has exactly three
components D′1, D

′
2, D

′
3 (and D〈S〉 is semicomplete by Lemma 2.9);
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(b) Furthermore, for each such S, there are integers α, β, µ, ν with λ2 ≤ α ≤ β ≤ p − 1 and
p+ 1 ≤ µ ≤ ν ≤ p+ q such that

N−(Dα) ∩ V (Dµ) 6= ∅ and N+(Dα) ∩ V (Dν) 6= ∅,

or N−(Dµ) ∩ V (Dα) 6= ∅ and N+(Dµ) ∩ V (Dβ) 6= ∅,
where D1, D2, ..., Dp and Dp+1, ..., Dp+q are the strong decomposition of D − S and D〈S〉, re-
spectively, and Dλ2

is the initial component of D′2 (See Figure 1).

Dp+1 Dp+q Dλ2

D1

Dp

D′1

S D′2

D′3

Sbot D′2,top D′2,mid D′2,bot

D′3,top D′3,mid D′3,bot

Figure 1: The good separator S and the three components D′1, D
′
2, D

′
3 in the semicomplete decompo-

sition of D − S. The further refinement indicated is explained in Section 6.

We can now state a full classification of locally semicomplete digraphs.

Theorem 2.11. [4] Let D be a locally semicomplete digraph. Then exactly one of the following
possibilities holds. Furthermore, there is a polynomial algorithm which decides which of the properties
hold and gives a certificate for this.

(a) D is round decomposable with a unique round decomposition R[D1, D2, ..., Dr], where R is a
round local tournament on r ≥ 2 vertices and Di is a strong semicomplete digraph for i =
1, 2, ..., r.

(b) D is evil.

(c) D is a semicomplete digraph which is not round decomposable.

The following lemma gives important information about the arcs in an evil locally semicomplete
digraph.

Lemma 2.12. [4] Let D be an evil locally semicomplete digraph and let S be a good separator of
D. Let D1, D2, . . . , Dp, p ≥ 2 be the acyclic ordering of the strong components of D − S and let
Dp+1, . . . , Dp+q, q ≥ 1 be the acyclic ordering of the strong components of D〈S〉. Then the following
holds:

(i) Dp ⇒ S ⇒ D1.

(ii) If sv is an arc from S to D′2 with s ∈ V (Di) and v ∈ V (Dj), then

Di ∪Di+1 ∪ . . . ∪Dp+q ⇒ D1 ∪ . . . ∪Dλ2−1 ⇒ Dλ2
∪ . . . ∪Dj .
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(iii) Dp+q ⇒ D′3 and Df ⇒ Df+1 for f ∈ [p+ q], where p+ q + 1 = 1.

(iv) If there is any arc from Di to Dj with i ∈ [λ2 − 1] and j ∈ [p − 1]λ2 , then Da ⇒ Db for all
a ∈ [λ2 − 1]i and b ∈ [j]λ2 .

(v) If there is any arc from Dk to D` with k ∈ [p + q]p+1 and ` ∈ [λ2 − 1], then Da ⇒ Db for all
a ∈ [p+ q]k and b ∈ [`].

3 Complexity of the k-linkage problem for decomposable di-
graphs

Let D = S[M1, ...,Ms] be a decomposable digraph and let P be a path in D. We say that P is
D-internal if P ⊆ Mi for some i, we say that P is D-external otherwise. When D is clear from
the context we just call the path internal or external .
Similarly we say that a pair (s, t) ∈ V (D)×V (D) is internal if s, t ∈ V (Mi) for some i, and is external
otherwise.

Let Π = {(s1, t1), ..., (sk, tk)} be a set of k pairs of distinct terminals. A Π-linkage is a collection
L of k disjoint paths Pi, i ∈ [k] such that Pi is an (si, ti)-path. If a Π-linkage L exists in the digraph
D we say that L is a linkage for (D,Π)

Lemma 3.1. Let D = S[M1, ...,Ms] be a decomposable digraph and Π a set of pairs of terminals.
Then (D,Π) has a linkage if and only if it has a linkage whose external paths do not use any arc of
D〈Mi〉 for i ∈ [s]

Proof. One implication is obvious. So let us assume that (D,Π) has a linkage and consider a linkage
L that uses the least number of vertices of D.
We claim that the external paths of L have the desired property: if not consider an external path P
such that uv ∈ A(P ) ∩A(D〈Mi〉) for some u, v, i. Since P is external we may assume without loss of
generality that there exists z ∈ V (P )− V (Mi) such that vz ∈ A(P ) and let P ′ be the path obtained
from P by removing the arcs uv, vz and adding the arc uz. Then L′ = L − P + P ′ is a linkage for
(D,Π) with one less vertex than L, a contradiction.

Let D be a digraph with vertex set v1, v2, . . . , vn and let K be another digraph. By blowing up
vi into K in D we mean the operation that substitutes the digraph K for the vertex vi in D, that is,
creates the digraph D′ = D[{v1}, . . . , {vi−1},K, {vi+1}, . . . , {vn}]. We say that a class of digraphs Φ is
closed with respect to blow-up if for any D ∈ Φ, for every integer m and for every v ∈ V (D), there
exists a digraph K on m vertices such that blowing up of v into K results in a digraph which is still in Φ.

Lemma 3.2. If the class Φ is closed with respect to the blowing-up operation, S ∈ Φ and D =
S[M1, ...,Ms], then it is possible to replace the arcs inside the modules Mi with other arcs, so that the
resulting digraph is in Φ.

Proof. Starting from the digraph S = S[v1, ..., vs], it is possible to blow up v1 into a digraph M ′1 of
size |M1| so that S1 := S[M ′1, v2, ..., vs] ∈ Φ. By iteratively repeating the blowing-up operation on
v2, ..., vs one gets a digraph Ss = S[M ′1, ...,M

′
s] ∈ Φ, where M ′i can be obtained from Mi by replacing

some arcs of D〈Mi〉 by other arcs.

We say that a class of digraphs Φ is a linkage ejector if

1. There exists a polynomial algorithm AΦ to find a total Φ-decomposition of every totally Φ-
decomposable digraph.

2. There exists a polynomial algorithm BΦ for solving the k-linkage problem on Φ. The running
time depends (possibly exponentially) on k but the algorithm is polynomial when k is fixed.
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3. The class Φ is closed with respect to blow-up and there exists a polynomial algorithm CΦ
that given a totally Φ-decomposable digraph D = S[M1, ...,Ms], constructs a digraph of Φ by
replacing the arcs inside each of the Mi’s as in Lemma 3.2.

Theorem 3.3. Let Φ be a linkage ejector. For every fixed k, there exists a polynomial algorithm to
solve the k-linkage problem on totally Φ-decomposable digraphs.

Proof. Let D be totally Φ-decomposable and let Π be a set of pairs of terminals. The following
algorithm M decides whether (D,Π) has a linkage.

1. If Π = ∅, then output YES, otherwise

2. Run AΦ to find a Φ-decomposition D = S[M1, ...,Ms]. If this decomposition is trivial, namely
D ∈ Φ, call BΦ to solve the problem.

3. Assume without loss of generality that M1, ...,Ml are the modules containing internal pairs from
Π and let Πe ∪ Πi = Π be the partition of the terminal pairs into external pairs and internal
pairs respectively. For every partition Π1 ∪ Π2 = Πi, look for two vertex disjoint linkages: one
made of external paths linking the pairs in Πe ∪Π1 and one made of internal paths linking the
pairs in Π2. This is done in the following way:

(a) If Πe ∪Π1 = ∅, run recursively M on
(D〈M1〉,Π2 ∩ (V (M1)× V (M1))) , ..., (D〈Ml〉,Π2 ∩ (V (Ml)× V (Ml))), if all of them are
linked output YES

(b) If Πe ∪ Π1 6= ∅, then for every choice of non-negative integers n1, ..., nl ≤ k and for every
choice of (V1, ..., Vl) such that |Vi| = ni and V (Πe ∪ Π1) ∩ V (Mi) ⊆ Vi ⊆ V (Mi)− V (Π2),
do the following:

(i) Let S′ ∈ Φ be the result of running the algorithm CΦ on S[In1 , ..., Inl
,Ml+1, ...,Ms],

where Ir denotes the digraph on r vertices with no arcs.

(ii) Run the algorithm BΦ on (S′,Πe ∪Π1); if this instance is linked, then run recursively
the algorithm M on
(D〈V (M1)− V1〉,Π2 ∩ (V (M1)× V (M1))) , ..., (D〈V (Ml)− Vl〉,Π2 ∩ (V (Ml)× V (Ml))).
If these pairs are all linked output YES.

4. If all the choices of Π1,Π2 have been examined output NO.

We prove by induction on |V (D)|+ k that this algorithm is correct.
If k = 0 the correctness of the algorithm follows trivially, if D ∈ Φ the correctness follows from the
correctness of the algorithm BΦ. Therefore assume that we are in none of these cases.
If the algorithm outputs a YES at Step 3 it means, by induction hypothesis, that it has found linkages
in a number of vertex disjoint subinstances and these linkages form altogether a linkage for (D,Π).
Now assume there exists a linkage for (D,Π) and consider a linkage L minimizing the total number
of vertices. By Lemma 3.1 the external paths do not use any arcs inside the modules M1, ...,Ms.
Moreover by a similar argument as the one in the proof of the above lemma it can be seen that each
path uses at most one non-terminal vertex per module, thus no more than k non-terminal vertices per
module are used by the external paths. It follows that there exists a choice of Π1,Π2 and possibly
V1, ..., Vl such that all the subinstances of Step 3 are linked and thus, by induction hypothesis, the
algorithm outputs YES.

Let T (n, k) be the running time of the main algorithm M on an input digraph of size n with k
pairs of terminals. We show by induction on n + k that the running time is O(nd(k)), for some non
decreasing fixed function d(k).
If n = 1 or k = 0, the algorithm runs in constant time, so suppose this is not the case.
Let a(k) be such that finding a decomposition of D and finding external and internal pairs takes time
O(na(k)). Let b(k) be such that running the algorithm BΦ at Step 2 takes time O(nb(k)). Let c(k) be
such that in time O(nc(k)) is possible to first run the algorithm CΦ and then BΦ, so that finding S′

and then solving the k-linkage on (S′,Πe ∪Π1) during step 3b takes time O(nc(k)).
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The running time Ta of Step 3a is
∑l
i=1 T (ni, ki), where ni = |V (Mi)| < n (the decomposition of D is

not trivial) and ki = |Π2∩(V (Ml)× V (Ml)) | ≤ k and by induction hypothesis Ta ≤
∑l
i=1 n

d(ki)
i which

is O(nd(k)). The running time Tb of Step 3b is at most
(∑k

j=1

(
n
j

))k (∑l
i=1 T (ni, ki) +O(nc(k))

)
.

We define d(k) = k3 + a(k) + c(k), so Tb is O(nk
2

)
(
T (n, k − 1) +O(nc(k))

)
which is O(nd(k)), as

k2 + d(k − 1) ≤ d(k) and k2 + c(k) ≤ d(k), for every k ≥ 1.
Therefore Step 3 takes time 2k · O(nd(k)) which is O(nd(k)) as k is constant. Thus we can conclude
that T (n, k) is O(na(k)) +O(nb(k)) +O(nd(k)), that is, O(nd(k)).

3.1 Quasi-transitive digraphs

Recall that, by Theorem 2.5 quasi-transitive digraphs are totally Φ1-decomposable where Φ1 is the
union of all semicomplete and all acyclic digraphs. Other classes of totally Φ1-decomposable digraphs
are extended semicomplete digraphs and directed cographs (see e.g. [7]). Moreover we have the
following

Lemma 3.4. The class Φ1 is a linkage ejector

Proof. We can get a polynomial algorithm for the total Φ1-decomposition easily from a result in [5,
Section 2.11], where a polynomial algorithm is given for the class of all acyclic and all semicomplete
multipartite digraphs.
A polynomial algorithm to solve the k-linkage problem on semicomplete digraphs is given by Theorem
2.3. A polynomial algorithm to solve the k-linkage problem on acyclic digraphs is given by [11].
To fulfil the last condition note that if in a digraph of Φ1 we blow up a vertex into a transitive
tournament of any size we stay in the class Φ1. Therefore, given a totally Φ1-decomposable digraph
D = S[M1, ...,Ms], the arcs of M1, ...,Ms can be replaced in order to form transitive tournaments so
that the resulting digraph is in Φ1.

We can thus get the following corollary of Theorem 3.3

Theorem 3.5. For every fixed k, there exists a polynomial algorithm to solve the k-linkage problem
on directed cographs, quasi-transitive digraphs and extended semicomplete digraphs.

4 Complexity of the k-linkage problem for locally semicom-
plete digraphs

Define
Φ2 := { Semicomplete digraphs }

⋃
{ Round digraphs }

Round decomposable digraphs are clearly totally Φ2-decomposable.

Theorem 4.1. For every fixed k, there exists a polynomial algorithm to solve the k-linkage problem
on round digraphs.

Proof. Let D be a round digraph with round ordering v1, ..., vn and let Π = {(s1, t1), ..., (sk, tk)} be
a set of pairs of vertices of D for which we seek a Π-linkage. Given j ∈ [n − 1], we say that an arc
vavb ∈ A(D) is over vjvj+1 if vb ∈ {vj+1, vj+2, ..., va−1}. Note that the removal of all the arcs over
vjvj+1 from D leaves an acyclic digraph. We show that if (D,Π) has a Π-linkage, then there exists
a linkage such that each of the paths uses at most one arc over any vjvj+1, namely the linkage that
minimizes the total number of used vertices.
Suppose, by contradiction, that an (si, ti)-path P uses two arcs over vjvj+1 and call them u1w1

and u2w2. Assume without loss of generality that the arc u1w1 precedes u2w2 on the path P .
There are four possibilities for the relative positions of the four vertices in the round ordering:
(u1, u2, w1, w2), (u2, u1, w1, w2), (u1, u2, w2, w1), (u2, u1, w2, w1). In all these cases the path P can
be shortened by using, for instance, the arc u1u2 in the first case and u1w2 in the other cases (such
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arcs exist by the round property). It follows that P uses at most one arc over vjvj+1.
A polynomial algorithm is obtained by selecting a j ∈ [n − 1], then for every choice of an ordered
h-tuple of pairs ((si1 , ti1), ..., (sih , tih)) (with 0 ≤ h ≤ k ) and every choice of arcs u1w1, ..., uhwh over
vjvj+1 we do the following: construct the digraph D′ by deleting all the arcs over vjvj+1 from D
and run the algorithm for k-linkage on acyclic digraphs (from Theorem 2.2) with input D′ and termi-
nals (si1 , u1), (w1, ti1), ..., (sih , uh), (wh, tih) plus the remaining original pairs. If a solution is found,
construct a solution for the original instance by using the selected arcs u1w1, ..., uhwh. If there is no
solution for each of the possible choices, it means there is no linkage using at most k arcs over vjvj+1,
and hence no linkage at all.
The above algorithm results in running a polynomial number of times the polynomial algorithm from
Theorem 2.2 and hence is polynomial.

We are going to use the following result.

Theorem 4.2. [5] There exists a polynomial algorithm for the total Φ2-decomposition of totally Φ2-
decomposable digraphs.

We are now ready to prove the following theorem.

Theorem 4.3. For every fixed k, there exists a polynomial algorithm to solve the k-linkage problem
on round decomposable digraphs.

Proof. Round decomposable digraphs are totally Φ2-decomposable, hence by Theorem 3.3 we only
need to prove that Φ2 is a linkage ejector:
By Theorem 4.2 there exists a polynomial algorithm for the total Φ2-decomposition. By Theorems
2.3 and 4.1 there exists a polynomial algorithm to solve the k-linkage problem on Φ2.
Given D ∈ Φ2 any blow up of a vertex of D into a transitive tournament will result in a digraph
of Φ2 and given a totally Φ2-decomposable digraph D = S[M1, ...,Ms] one gets a digraph of Φ2 by
substituting the internal arcs of the Mi’s with the arcs of a transitive tournament on the same number
of vertices as Mi, therefore also the third condition of a linkage ejector is fulfilled.

Theorem 2.10 implies that if D is an evil locally semicomplete digraph, then D can be covered by
3 disjoint semicomplete subdigraphs of D (e.g. the digraphs D′3, D

′
2, D〈V (S) ∪ V (D′1)〉). In fact two

semicomplete digraphs always suffice [13] but we only need the weaker version below. By Theorem
2.8 it is possible to decide in polynomial time whether a locally semicomplete digraph D is round
decomposable. By running the algorithm from Theorem 4.3 if D is round-decomposable and the
algorithm from Theorem 2.4 if D is not round-decomposable, we get the following theorem.

Theorem 4.4. For every fixed k, there exists a polynomial algorithm to solve the k-linkage problem
on locally semicomplete digraphs.

5 k-linked round decomposable locally semicomplete digraphs

Lemma 5.1. Every digraph D which is decomposable as D = R[M1, ...,Mr], with R round, such that
d+(Mi) ≥ 2k − 1 for i = 1, ..., r is k-linked.

Proof. We use induction on k.
For k = 1, the above condition, together with the round property of R, implies strong connectivity
for D, so there is a path between each pair of vertices.
Assume that the statement is true for k, we prove that every digraph decomposable asD = R[M1, ...,Mr],
with R round such that d+(Mi) ≥ 2k + 1 for i = 1, ..., q is k + 1-linked. Suppose that we want a
linking between s1, ..., sk+1 ∈ V (D) and t1, ..., tk+1 ∈ V (D) respectively. We construct an (s1, t1)-
path P whose removal leaves a digraph D′ = Q[M ′1, ...,M

′
q], with Q round and d+

D′(M
′
i) ≥ 2k − 1 for

i = 1, ..., q. Thus, by the induction hypothesis, D′ is k-linked, so we are done.
The path P starts from s1 ∈Mi and uses an available widest arc: an arc s1v such that
v 6∈ {s2, ..., sk+1, t2, ..., tk+1} and v ∈ Mj , with Mj maximizing the distance from Mi in the round
ordering of R, namely for every l such that Mi < Mj < Ml in the round ordering s1 has no arc to Ml;
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the path P keeps using widest available arcs until a vertex adjacent to t1 is reached, in which case the
path continues to t1. Now for i = 1, ..., r, define M ′i := Mi − V (P ), let r′ be the number of nonempty
sets of the form M ′i , and R′ be the round digraph obtained from R by removing the vertices vi such
that M ′i = ∅. The digraph D′ = R′[M ′1, ...M

′
r′ ] is as desired. Indeed for every i there do not exist

three vertices x, y, z of P inside N+
D (Mi), since, by the fact that x, y, z ∈ N+

D (Mi) and by the round
property of R, one of the vertices dominates the other two or the three vertices belong to the same
module in the decomposition. In both cases one of the arcs of P would not be the widest available or
will not be directed to the target. It follows that for every i, N+

D′(M
′
i) has size at least 2k − 1, so D′

has the desired property.

Corollary 5.2. Let D be a digraph on n ≥ 2k vertices that is not semicomplete and is decomposable
as D = R[M1, ...,Mr], with R round and M1, ...,Mr semicomplete. The digraph D is k-linked if and
only if it is (2k − 1)-strong.

Proof. Suppose that D is (2k−1)-strong. Given that D = R[M1, ...,Mr] is not semicomplete, we have
r ≥ 3 and for every i, D −N+(Mi) is non-empty. It follows that for every i, N+(Mi) is a separator
and hence must be of size at least 2k− 1. Therefore D satisfies the hypothesis of Lemma 5.1 and thus
D is k-linked.
Vice versa a k-linked digraph on n ≥ 2k vertices must necessarily be (2k − 1)-strong, otherwise a set
of size at most 2k − 2 would separate two vertices s, t of the digraph, so if these vertices formed the
first k − 1 pairs and s, t the k-th pair, there is no good linkage.

Corollary 5.2 immediately applies to round decomposable digraphs.

Theorem 5.3. Let D be a round decomposable digraph on n ≥ 2k vertices that is not semicomplete.
The digraph D is k-linked if and only if it is (2k − 1)-strong.

Note that the decomposition of Lemma 5.1, D = R[M1, ...,Mr], need not be a proper decomposition
(that is, R 6= D), indeed even if |Mi| = 1 for every i, the proof holds. Therefore the previous results
hold for round digraphs too.

Theorem 5.4. Let k be an integer. A round digraph on n ≥ 2k vertices is (2k− 1)-strong if and only
if it is k-linked.

6 Every 5-strong locally semicomplete digraph is 2-linked.

We will prove the following theorem.

Theorem 6.1. Let D be a 5-strong locally semicomplete digraph. Then D is 2-linked.

In [1] the first author proved that every 5-strong semicomplete digraph is 2-linked and gave an
example to show that this is best possible even for tournaments. Hence to prove this theorem we need
only prove it for round decomposable locally semicomplete digraphs and for evil locally semicomplete
digraphs. The case of round decomposable locally semicomplete digraphs is covered by Theorem 5.3
so it remains to prove the theorem for locally semicomplete digraphs that are evil.

Throughout this section we assume that D is a 5-strong evil locally semicomplete digraph. We
start by a number of observations on the structure of evil locally semicomplete digraphs. These will
play an important role in our proof of Theorem 6.1. Notice that given a good separator S, Lemma
2.10 implies that the semicomplete decomposition of D − S has three components D′1, D

′
2, D

′
3. We

will introduce a more detailed refinement of D′2, D
′
3, S. In order to simplify notation we will often use

D′i as well as Dj to denote both the corresponding semicomplete digraphs as well as their vertex sets.

Define the following indexes, both of which are well-defined due to Theorem 2.10 (b)):

• µ ∈ [q] is the smallest index such that there is an arc from Dp+µ to D′2

• γ ∈ [p− 1]λ2
is the largest index such that there is an arc from S to Dγ .
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Based on these indices we now define a refinement of the semicomplete decomposition of D − S
which plays an important role in our proof.

The blocks of D′2.

• D′
2,top is the union of the strong components of D′2 that are dominated by all vertices of D′3.

So by Lemma 2.12 (ii) we have that Dλ2
, . . . , Dγ are all in D′2,top.

• D′
2,mid is the (possibly empty) union of those strong components of D′2 − D′2,top that are

dominated by some vertex of D′3. By Lemma 2.12 (iv) we have Dλ2−1 ⇒ D′2,top ∪D′2,mid.

• D′
2,bot is the (possibly empty) union of those strong components of D′2 that have no neighbour

in D′3

The blocks of S. Only one part of S plays a special role, namely Sbot which is the union of the
strong components Dp+µ, . . . , Dp+q. So, by Lemma 2.12 (ii) every vertex of Sbot dominates all of D′3.

The blocks of D′3.

• D′
3,top the set of strong components of D′3 that are dominated by all vertices of S.

• D′
3,bot the set of strong components of D′3 that dominate all vertices of D′2,top ∪D′2,mid. Note

that, by Lemma 2.12 (iv), Dλ2−1 is contained in D′3,bot.

• D′
3,mid the (possibly empty)2 set of strong components of D′3 −D′3,top −D′3,bot.

With these definitions we see from Theorem 2.10 that

There is at least one arc sv from Sbot to D′2,top and at least one arc from D′2,top to Sbot. (1)

Notice that, by Lemma 2.12 and the definition of D′2,bot, there is no arc from D′3 to D′2,bot∪D′1∪S,
so

The set S∗ = D′2,top ∪D′2,mid is also a good separator. (2)

Furthermore, if we reverse all arcs, obtaining the 5-strong evil locally semicomplete digraph
←−
D

and interchange the names of si, ti we get an equivalent instance. We shall use this fact several times.
In particular, whenever convenient, we may consider the semicomplete decomposition of any of the

four choices D − S,D − S∗,←−D − S,←−D − S∗. See Figures 2 and 3. We first describe the structure of
the semicomplete decomposition of the last three digraphs above. Below D1, D2, . . . , Dp, respectively,
Dp+1, . . . , Dp+q always denote the acyclic orderings of the strong components of D − S, respectively
D〈S〉.

The semicomplete decomposition after reorienting all arcs

Clearly S is a minimal separator of D if and only if S is a minimal separator of the digraph
←−
D .

Lemma 6.2. Let the labelling of D be as described in Theorem 2.10, then reorienting the arcs of D

and letting S be the good separator, the following will be the semicomplete decomposition
←−
D − S.

1.
←−
D′1 = D1, that is, the first strong component of D′3,top.

2.
←−
D′2 =

←−
D′2,top ∪

←−
D′3 −

←−
D1.

3.
←−
D′3 = D′2,mid ∪D′2,bot ∪D′1.

2Note that we may have D′3,top ∩D′3,bot 6= ∅ (in which case D′3,mid = ∅) but this has no influence on our proof.
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Dp+1 Dp+q Dλ2

D1

Dp

D′1

S D′2

D′3

Sbot D′2,top D′2,mid D′2,bot

D′3,top D′3,mid D′3,bot

(a) D with the blocks marked and the pair of evil arcs showed as dotted arcs.

←−
D′3

←−
D′2

←−
D′1 = D1

←−
S

Dp+1 Dp+q Dλ2

D1

Dp

D′1

(b) The semicomplete decomposition of
←−
D with respect to the separator

←−
S .The sets indicate the four

parts.

Figure 2

Proof. By the definition of the semicomplete decomposition,
←−
D′1 must be a strong component of

←−
D−S

and this dominates S in
←−
D , so

←−
D′1 = D1. For 2. notice first that, by the definition of the semicomplete

decomposition,
←−
D′2 is formed by those strong components of

←−
D that dominate

←−
D′1. Thus, as the first

component of D′3 dominates all other vertices of D′3 in D, clearly when reorienting the arcs, all other

vertices of D′3 dominate
←−
D′1. Secondly, by Lemma 2.12 (ii) D′2,top is dominated by all vertices of D′3

implying that
←−
D′2,top dominates

←−
D′1 in

←−
D . By the definition of D′2,mid and Lemma 2.12 (iv), no vertex

in D′2,mid is dominated by a vertex in D1 in D. 3. follows from Theorem 2.10 since the semicomplete
decomposition of an evil locally semicomplete digraph has exactly three components.
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Decomposition based on the minimal separator S∗ = D′2,top ∪D′2,mid in D

←−−
D′∗3

D′∗2 D′∗1

S∗

Dp+1 Dp+q Dλ2

D1

Dp

D′1

(a) The semicomplete decomposition of D with respect to S∗. The sets indicate the four parts.

←−−
D′∗3

←−−
D′∗2

←−−
D′∗1

←−
S ∗

Dp+1 Dp+q Dλ2 Dr

D1

Dp

D′1

(b) The semicomplete decomposition of
←−
D with respect to the separator

←−
S∗. The sets indicate the four

parts. The dotted arcs are in D and indicate the arcs with head y respectively y′, where y,y′ are as
defined before Lemma 6.4

Figure 3

Lemma 6.3. Let the labelling of D be as described above. With S∗ as the good separator the semi-
complete decomposition of D − S∗ is given by

1. D′∗1 = Dλ2−1 is the last strong component of D′3,bot.

13
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2. D′∗2 = S̃ ∪D′3 −D′∗1 .

3. D′∗3 = D′2,bot ∪D′1 ∪ S − S̃.

where S̃ ⊆ S is the set of vertices of S that dominate all vertices of D′3,bot. Notice that, by Lemma

2.12 and the definition of Sbot we have Sbot ⊆ S̃. See Figure 3.

Proof. The proof of this lemma is again based on the structural information from Lemma 2.12 and
very similar to the proof above.

Decomposition based on the minimal separator S∗ in
←−
D

If D′2,bot 6= ∅, then let r ∈ [p − 1]λ2
be the smallest index such that Dr ⊆ D′2,bot and let X =

Dr+1 ∪ . . . ∪ Dp−1. Now, since every vertex of D′2,top dominates every vertex of Dr we get that
Dr ⇒ Dy for every y ∈ [p + q]p+1 such that there is an arc from D′2,top to Dy and there is at least
one such y by (1). Let y′ ∈ [p + q]p+1 be the largest index such that there is an arc from Dr to Dy′

and let Y = Dp+1 ∪ . . . ∪Dy′ . If r is not defined above, then let X = ∅ (note that X is also empty if
r = p− 1) and Y = ∅.

Now it is easy to see that the following holds.

Lemma 6.4. The semicomplete decomposition
←−
D∗1,
←−
D∗2,
←−
D∗3 of

←−
D − S∗ has the following form. If

D′2,bot = ∅ (S∗ = D′2) then we have
←−
D∗1 = Dp,

←−
D∗2 = S and

←−
D∗3 = D′3. Otherwise, r is defined and we

have

1.
←−
D∗1 = Dr.

2.
←−
D∗2 = X ∪Dp ∪ Y .

3.
←−
D∗3 = D′3 ∪ S − Y .

See Figure 3.

6.1 Proof of Theorem 6.1

Proof. Suppose for a contradiction that D is a 5-strong evil locally semicomplete digraph which is not
2-linked and let s1, s2, t1, t2 be distinct vertices such that D has no pair of disjoint (s1, t1)-,(s2, t2)-
paths. We will prove a series of claims that eventually lead to a contradiction. We denote by
Di = D〈V − {s3−i, t3−i}〉 for i ∈ [2].

Claim 1. Di has no (si, ti)-path of length less than 4.

Proof of claim. If there exists an (si, ti)-path P in Di of length at most 3 for i ∈ [2], then D − V (P )
is strong and hence contains an (s3−i, t3−i)-path, a contradiction. ♦

Claim 2. Di is an evil locally semicomplete digraph for i ∈ [2]

Proof of claim. Suppose first that Di is semicomplete for i = 1 or i = 2. As D is 5-strong each Di

is 3-strong and hence contains 3 internally disjoint (si, ti)-paths for i = 1, 2. By Claim 1 these paths
all have length at least 3. Then Lemma 2.1 and Claim 1 implies that D has the desired paths, a
contradiction. Hence, by Theorem 2.11, we may assume w.l.o.g. that D1 is round decomposable and
not semicomplete. Let s′2(t′2) be an out-neighbour of s2 (an in-neighbour of t2) in V −{s1, t1}. As D1

is 3-strong it follows from Theorem 5.3 that D1 has disjoint paths P,Q such that P is an (s1, t1)-path
and Q is an (s′2, t

′
2)-path. But now P and s2Qt2 are the desired paths, a contradiction. ♦

Claim 3. tisi ∈ A(D) for i ∈ [2]
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Proof of claim. By Claim 1 D contains none of the arcs s1t1, s2t2. Assume there is no arc between
si and ti and consider the shortest (si, ti)-path P in Di. We know by Claim 1 that this path has
length at least 4, so let siv2v3v4 be the beginning of this path. As the independence number of Di is
2 (Every evil locally semicomplete digraph has independence number 2, see Corollary 3.14 in [2]) and
siti /∈ A, v3 either dominates si or is dominated by ti. Assume v3 dominates si (the proof is similar
in the other case). Since P is shortest possible, there is no arc vjvr where r > j + 1 and now we
get, using that D is locally semicomplete, that v4si, v5si, ... are all arcs, implying that tisi is an arc,
a contradiction. ♦

Claim 4. Di contains an (si, ti)-path P of length 4 such that D〈V (P )〉 is not semicomplete for i ∈ [2].

Proof of claim. By Claim 2, Di is an evil locally semicomplete digraph. Let S̃ be a good separator
of Di and let D̃′1, D̃

′
2, D̃

′
3 be the semicomplete decomposition of Di − S̃. First observe that Claim 1

and Lemma 2.12 imply that si, ti both belong to the same subset among S̃, D̃′1, D̃
′
2, D̃

′
3. Using Claim

1 this is easy to see for S̃, D̃′2, D̃
′
3 so we give the argument only when si ∈ D̃′1. If ti 6∈ D̃′1, then, by

Claim 3, ti ∈ D̃′2. If ti ∈ D̃′2,top ∪ D̃′2,mid, then sisdti is a path violating Claim 1, where s ∈ S̃bot and

d ∈ D̃′3,bot. Finally, if ti ∈ D′2,bot then sisvti, where sv is an arc from Sbot to D′2,top, violates Claim 1.
We now describe how to find the desired path P of length 4 such that D〈V (P )〉 is not semicomplete

in each of the 4 cases

• If si, ti ∈ S̃, then P = siabcti where a ∈ D̃′3,top, b ∈ D̃′2,top, c ∈ D̃′1 and a, c are not adjacent.

• If si, ti ∈ D̃′3, then P = siabcti where a ∈ D̃′2,top, b ∈ D̃′1, c ∈ S̃bot and si, b are not adjacent.

• If si, ti ∈ D̃′1, then P = siabcti where a ∈ S, b ∈ D̃′3,top, c ∈ D̃′2,top and si, b are not adjacent.

• If si, ti ∈ D̃′2 and ti is dominated by some vertex c of D̃′3, then P = siabcti where a ∈ D̃′1, b ∈ S̃bot,
c is any in-neighbour of ti in D̃′3 and a, c are not adjacent. So we may assume that ti is not
adjacent to any vertex of D̃′3 and hence ti ∈ D̃′2,bot. Let uv be an arc from D̃′2,top to S̃bot (this
exists by Theorem 2.10). Now we have that uv, uti are arcs so Claim 1 (or Lemma 2.12 and
the definition of the blocks of D̃′2) implies that ti dominates v. Thus, by Claim 3, si and v are
adjacent and since ti 6∈ D̃′2,top, implying that si 6∈ D̃′2,top, we have that si dominates v. Thus

P = sivauti where a ∈ D̃′3,top and a and ti are not adjacent.

♦

Claim 5. For each i = 1, 2 and for every (si, ti)-path P of length 4 such that D〈(V (P )〉 is not
semicomplete, the digraph D − V (P ) is semicomplete. In particular, si, ti are adjacent to all but at
most 3 vertices in Di for i = 1, 2.

Proof of claim. The first part of the claim follows from Lemma 2.9 and the second part follows from
Claim 4: consider an (si, ti)-path P in Di such that D〈V (P )〉 is not semicomplete. This means that
s3−i, t3−i are adjacent to all vertices of V − V (P ). ♦

Claim 6. (a) V (D) − {s1, s2, t1, t2} does not contain two vertices u, v such that s1u, s1v, s2u, s2v
are all arcs or ut1, ut2, vt1, vt2 are all arcs.

(b) V (D)− {s1, s2, t1, t2} does not contain three vertices u, v, w such that siu, siw,wv, s3−iu, s3−iv
are all arcs or uw,wti, vti, ut3−i, vt3−i are all arcs.

Proof of claim. This follows easily from Menger’s theorem since D is 5-strong. For example, if
siu, siw,wv, s3−iu, s3−iv are all arcs, then any pair of two disjoint paths joining {u, v} to {t1, t2} in
D − {s1, s2, w} can be extended to the desired paths. ♦

Now we are ready for the core of the proof. We first show a number of results on the distribution
of the terminals with respect to any good separator. These observations then allow us to prove that
we may select a good separator S so that D′1 has no terminals and then use this to obtain further
structure, eventually leading to the desired contradiction.
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Claim 7. For every good separator S we have |V (D′3) ∩ {s1, s2}| ≤ 1 and |V (D′3) ∩ {t1, t2}| ≤ 1.

Proof of claim. Suppose we have s1, s2 ∈ D′3. Then Claim 6 implies that |D′2,top| = 1 and that at
least one of s1, s2, w.l.o.g. s1 is not in D′3,bot (recall that D′3,bot ⇒ S∗). Furthermore, s1, s2 have no
common out-neighbour in D′3 so s2 must be in D′3,bot. Thus s1 dominates s2 and every out-neighbour
of s1 in D′2 is also an out-neighbour of s2. Claim 6 and Lemma 2.12 (iv) now implies that s1 has
an out-neighbour w in D′3 − {s2, t2} which dominates a vertex in D′2,mid but then (b) in Claim 6 is

violated. This proves the first part of the claim and the second part follows by considering
←−
D and the

good minimal separator S∗ = D′2,top ∪D′2,mid (See Figure 3). ♦

Claim 8. For every good separator S we have |V (D′1) ∩ {s1, s2}| ≤ 1 and |V (D′1) ∩ {t1, t2}| ≤ 1.

Proof of claim. This follows from Claim 7 by considering the separator S∗ in D. ♦

Claim 9. For every good separator S we have |V (D′3) ∩ {si, ti}| ≤ 1 for i ∈ [2].

Proof of claim. Suppose w.l.o.g that s1, t1 ∈ D′3 and let P be a minimal (s2, t2)-path of length 4 such
that D〈V (P )〉 is not semicomplete and hence D − V (P ) is semicomplete (Claims 4 and 5). This
implies that V (D′1) ⊆ V (P ). Note that P is not contained in D′1 as this is a semicomplete digraph.
We start by showing that D−V (P ) contains an arc from D′2−V (P ) to S−V (P ). Assume this is not
the case. As D − V (P ) is semicomplete and D′3 − V (P ) 6= ∅ we can conclude (by minimality of P )
that |D′1| = 1 and P uses this vertex of D′1. Hence, as D is 5-strong, there are 4 disjoint arcs from D′2
to S. By our assumption, all 4 arcs are incident to V (P ), implying that the remaining four vertices
of P are in D′2 ∪ S. We will denote the two vertices of P − ({s2, t2} ∪D′1) by x1, x2 and denote the
two arcs (among the 4 disjoint arcs) adjacent to these a1, a2, respectively.

Observe that if xi ∈ D′2,top for i = 1 or i = 2, then we conclude by Claim 1 that t1 /∈ D′3,top, as
otherwise we have the path s1ait1.

We have |V (P ) ∩ S| ≤ 3 as otherwise D′1 = {s2} as s2 is the only vertex of P without an in-
neighbour, but this contradicts that t2 dominates s2. Similarly |V (P ) ∩D′2| ≤ 3. Now P will use at
least one arc uv from Sbot to D′2,top: if P does not use the arc we either find that P is not using D′1
(contradicting that D − V (P ) is semicomplete) or P is not minimal (by the easy observation that no
minimal path can use both an arc from D′2 to S and a vertex in D′1).

If t2 = v, then s2 ∈ Sbot as otherwise one of the paths s2ut2, s2dut2, where D′1 = {d}, violates
Claim 1. As P uses the vertex of D′1 and has length 4 it will use another arc s2x1 from Sbot to
D′2,top implying, by the remark above, that t1 /∈ D′3,top. But then we have the (s2, t2)-path s2qt2
with q ∈ D′3,top a contradiction. If s2 = u then we conclude similarly that t2 ∈ D′2,top and obtain a
contradiction.

Hence we have (possibly after relabelling x1, x2) that x1 = u, x2 = v and x1x2 ∈ A(P ). As
D − V (P ) is semicomplete the tail t(a1) of a1 is adjacent to the head h(a2) of a2 and as we have
assumed that D − V (P ) does not contain an arc from D′2 to S we have the arc h(a2)t(a1). But this
implies that t(a1) ∈ D′2,top contradicting Claim 1 as s1a1t1 is a short path in D1.

Thus there exists an arc u3v3 from D′2 − V (P ) to S − V (P ). As D − V (P ) is semicomplete there
also exists an arc u1v1 from the terminal strong component of S − V (P ) to the initial component of
D′3 − V (P ) and an arc u2v2 from the terminal component of D′3 − V (P ) to the initial component of
D′2 − V (P ). Let Q be a (v3, u1)-path in S − V (P ) and let R be a (v2, u3)-path in D′2 − V (P ). Then
D〈(V (D′3)− V (P )) ∪ V (Q) ∪ V (R)〉 is strong and contains s1, t1, contradicting that D−V (P ) has no
(s1, t1)-path. ♦

Claim 10. For every good separator S we have |V (D′3) ∩ {s1, s2, t1, t2}| ≤ 1

Proof of claim. Assume this is not the case, then by Claim 9 and Claim 7 we may assume w.l.o.g. that
D′3 ∩ {s1, s2, t1, t2} = {s2, t1}. This implies that s1 ∈ D′2 and t2 ∈ S. By Claim 1 we have Sbot = {t2}
and D′2,top = {s1} (otherwise we would have an (si, ti)-path of length 3 in Di for i = 1, respectively

i = 2). But now
←−
D and S∗ contradict Claim 9. ♦

Claim 11. For every good separator S we have |V (D′1) ∩ {s1, s2, t1, t2}| ≤ 1

Proof of claim. This follows from Claim 10 applied to
←−
D and S. ♦
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Claim 12. For every good minimal separator S we have |V (S)∩{s1, s2}| ≤ 1 and |V (S)∩{t1, t2}| ≤ 1.

Proof of claim. Suppose we have s1, s2 ∈ S. As in the proof of Claim 7 we may assume that Sbot =
{s2}, D′3,top = {a} for some a ∈ V and a is the only out-neighbour of s1 in D′3. If D′3 6= {a} we
consider a path Q from s1 to D′3 − {a} in D − {s2, t2, a, t1}. By Lemma 2.12, Q will start with an
arc s1w inside S and then an arc from w to D′3 but then (b) in Claim 6 is violated for s1, s2. Hence
D′3 = {a} and now Claim 1 implies that t1, t2 6∈ D′1∪D′2 (if ti ∈ D′1∪ (D′2−D′2,top) then we get a path
siavti where v ∈ D′2,top). Hence we have t1, t2 ∈ S. Now consider a path s2abct2 where b ∈ D′2,top
and c ∈ D′1. In D − {s2, t2, a} there are two internally disjoint (s1, t1)-paths R1, R2 and they both
contain an arc ujvj with uj ∈ S, vj ∈ D′2,top and uj , vj ∈ V (Rj), j ∈ [2]. Without loss of generality c
is not in R1 so R1 is disjoint from s2av2ct2, a contradiction. The second part of the claim follows by

considering
←−
D and S. ♦

Claim 13. For every good separator S we have |V (D′2,mid ∪D′2,bot) ∩ {s1, s2, t1, t2}| ≤ 1

Proof of claim. This follows from Claim 10 by considering
←−
D and S. ♦

Claim 14. For every good separator S we have |V (D′2) ∩ {s1, s2}| ≤ 1

Proof of claim. Suppose s1, s2 ∈ D′2. Then Claim 6 implies that D′1 = {p} for some p ∈ V . By Claim
12 applied to S∗ in D we have w.l.o.g that s2 ∈ D′2,bot and then Claim 3 implies that t2 ∈ D′2. Claim
7 applied to D and S∗ implies that s1 ∈ D′2,top ∪ D′2,mid. Now Lemma 2.12 and Claims 1, 3 imply
that t1 ∈ D′2,top ∪D′2,mid holds. Then t2 ∈ D′2,bot or we contradict Claim 12 with S∗. However this
contradicts Claim 13. ♦

Claim 15. For every good separator S we have |V (D′2) ∩ {t1, t2}| ≤ 1

Proof of claim. Suppose t1, t2 ∈ D′2. Claim 3 implies that V (D′3) ∩ {s1, s2} = ∅ and Claims 12, 13
applied to D,S∗ implies that precisely one of t1, t2 is in S∗. W.l.o.g. t2 ∈ S∗ and t1 ∈ D′2,bot. Now
Claim 10 (applied to D,S∗) and Claim 12 imply that |S ∩ {s1, s2}| = 1. Then Claim 1 implies that
we have S ∩ {s1, s2} = {s1} and D′2,top ⊆ {s2, t2}. Thus we have 3-internally disjoint (s1, t1)-paths in
D − {s2, t2} each of which use a vertex in D′3 so |D′3| ≥ 3. By Claim 4 there exists an (s2, t2)-path
P of length 4 in D2 which does not induce a semicomplete digraph and hence, by Lemma 2.9, t1 is
adjacent to all vertices of V − V (P ). However, this is impossible since P cannot use all vertices of
D′3. ♦

Claim 16. There exists a good separator such that, possibly after reversing all arcs and renaming the
terminals, we have |V (D′1) ∩ {s1, s2, t1, t2}| = 0.

Proof of claim. Assume this is not the case. Then considering the separators S, S∗ in both D and
←−
D

(four possibilities) we get that there are terminals in D1 and in Dλ2−1 and if S∗ 6= D′2 then there is
also a terminal in D′2,bot. Now it follows from the fact that ti dominates si that we may choose a

good separator and one of D,
←−
D such that si is the only terminal in D′1. W.l.o.g. s2 ∈ D′1 and then

t2 ∈ D′2. By Claim 10 we have D′3 = D1 and exactly one of s1, t1 is in D1.
Consider first the case where s1 ∈ D1 then t1 ∈ S (Claim 3) and D′1 = {s2} (by Claim 1 and

the fact that D1⇒S∗). By Claim 10 applied to
←−
D and S∗ t1 /∈ Sbot as otherwise

←−
D∗3 contains two

terminals. This and Claim 1 implies that t2 ∈ D′2,top and D1 = {s1}. Hence by the choice of S,
D′2,bot = ∅. Let P1, P2, P3 be internally disjoint minimal (s1, t1)-paths in D1 and let H1, H2, H3 be

internally disjoint minimal (s2, t2)-paths in D2. Then each Pi has the form Pi = s1uiQi[vi, t1], where
ui ∈ D′2,vi ∈ S and Qi is a path in S and each Hi has the form Hi = s2piRi[qi, t2], where pi ∈ Sbot,
qi ∈ D′2 and Ri is a path in D′2. Since t1 6∈ Sbot the path Qi avoids all of {p1, p2, p3} and hence Pi
will be disjoint from two of the paths Hj , j ∈ [3], a contradiction.

Thus we may assume that t1 ∈ D1 and thus, by Claim 3, s1 ∈ S∗. Suppose first that S∗ 6= D′2.
Then, by the choice we made for S in the beginning of the proof of the claim, we have t2 ∈ D′2,bot.
Now we obtain a contradiction to Claim 10 applied to D and S∗.

Consider the remaining case S∗ = D′2. We must have D1 = {t1} as otherwise s2spt2 with s ∈
Sbot, p ∈ D1 − {t1} violates Claim 1. Consider 3 internally disjoint minimal (s2, t2)-paths Z1, Z2, Z3
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in D2. They have the form Zi = s2αiFi[βi, t2], where αi ∈ S and Fi is a path in D′2. By Claim 1,
each Zi has length at least 4. Consider an (s1, t1)-path R in D1 and let x be the first vertex of R
which is also on some Zi. W.l.o.g. x ∈ Z1. If Z1 has length at least 5 then the predecessor ε1 of t2
on F1 dominates β1 (as F1 is a minimal (β1, t2)-path in the semicomplete digraph D′2). But then the
minimality of Z1 implies that ε1α1 is an arc and now the path R[s1, x]F1[x, ε1]α1t1 intersects none
of Z2, Z3, a contradiction. Hence Z1 has length precisely 4 and there is no arc between ε1 and α1.
Since D has no pair of disjoint (s1, t1)-,(s2, t2)-paths, R must also intersect Z2 and Z3 and w.l.o.g. it
intersects Z2 before Z3. Using the same argument as above, we conclude that Z2 has length 4 and
there is no arc between α2 and ε2, the predecessor of t2 on F2. Now Claim 4 applied to Z2 implies
that there is an arc between α1 and ε1, contradicting what we just concluded above. This completes
the proof of Claim 16. ♦

Now choose S and either D or
←−
D (and call the result D) so that D′1 has no terminal and D′3 has

the minimum number of terminals. We will show in the next claim that this number will be zero.

Claim 17. With the choice of separator above we have |V (D′1) ∩ {s1, s2, t1, t2}| = 0 and |V (D′3) ∩
{s1, s2, t1, t2}| = 0

Proof of claim. Suppose |V (D′3) ∩ {s1, s2, t1, t2}| = 1. Then w.l.o.g. precisely one of s1, t1 is in D′3.
Consider first the case where s1 ∈ D′3 and then t1 ∈ S, as t1 dominates s1. Claim 9 implies that
t1 6∈ Sbot. Claim 12 then implies that t2 ∈ D′2 and by Claim 1 we have D′2,top ⊆ {s2, t2} and s1 has no
(out-)neighbour in D′2 − {s2, t2}. Then |D′3| ≥ 4 as D is 5-strong and now s2 ∈ D′2 by Claim 1. Now
Q = s2abct2 with a ∈ D′1, b ∈ Sbot and c ∈ D′3 − s1 is a path of length 4 such that D〈V (Q〉 is not
semicomplete. Hence D − V (Q) is semicomplete. This implies that s1 dominates all of D′2 − {s2, t2},
contradicting our conclusion above. Hence we have V (D′3)∩{s1, s2, t1, t2} = {t1}. The claims already
established now imply that s1 ∈ D′2 and s2 ∈ S. Claim 1 implies that Sbot ⊆ {s2, t2} but then we

have at least two terminals in
←−
D∗3 contradicting Claim 10.

♦

Now we are ready for the conclusion of the proof. So far we have established that we may choose
a good minimal separator S and a possible reorientation of D so that with respect to this S (and
orientation) we have (possibly after exchanging the indices) that t1, s1 ∈ D′2 and t2, s2 ∈ S. Then
Claim 1 implies that there is no arc from s1 to S−{s2, t2} and no arc from s2 to D′2−{s1, t1}. As D is
5-strong, each of the digraphs Di, i ∈ [2] are 3-strong and hence have 3 internally disjoint (u, v)-paths
for every choice of distinct vertices u, v.

Case 1. D1⇒D′2
Pick w ∈ D′2−{s1, t1}, s ∈ S−{s2, t2}, q ∈ D′1 and p ∈ D′3,top. Then P = s2pwqt2 and Q = s1qspt1

are both paths that induce non-semicomplete digraphs. Let P1, P2, P3 be internally disjoint minimal
(s1, t1)-paths in D1 and Q1, Q2, Q3 be internally disjoint minimal (s2, t2)-paths in D2. Then each Pi
intersects P and each Qj intersects Q. Consider first P1, P2, P3 and let αi, βi denote, respectively,
the successor of s1 and the predecessor of t1 on Pi. W.l.o.g. we have q ∈ P1, p ∈ P2. Then, by
the minimality of P1, P2, α1 = q, β2 = p and α2 ∈ D′1 since otherwise we would have α2 ∈ D′2 and
then α2q and pα2 would be arcs and the path s2pα2qt2 would be disjoint from P3. This shows that
|D′1| ≥ 2. Next consider the paths Q1, Q2, Q3 and let εi, γi denote, respectively, the successor of s2

and the predecessor of t2 on Qi. W.l.o.g we have p ∈ Q1, q ∈ Q2. As above we see that p = ε1, q = γ2

and ε2 ∈ D′3 since otherwise the path s1qε2pt1 is disjoint from Q3. This implies that |D′3| ≥ 2. Now
we see that D − P is not semicomplete, contradicting Claim 5.

Case 2. There exists p ∈ D1, x ∈ D′2 so that p and x are not adjacent.

Suppose first that t1 ∈ D′2,top. Then, as above, considering the paths Q = s1qspt1 and Q1, Q2, Q3,
we conclude that |D′3| > 1 and since D〈V (Q)〉 is not semicomplete we have, by Lemma 2.9 that
D′3 − {p} dominates D′2 − {s1, t1} and s2 dominates D′3 − {p}. Then considering P ′ = s2p

′wqt2 we
reach the same contradiction as above (by showing that we also have |D′1| ≥ 2). Hence none of t1, s1

are in D′2,top. As we could choose the vertex w to be in D′2,top, we see that here is no (s1, t1)-path in
D′2. Suppose first that there is an arc uv from Sbot to D′2,top such that u 6= t2 (we cannot have u = s2

18

127



since there are no arcs from s2 to D′2 − {s1, t1} as we argued above). Now W = s1quvt1 is a path
and there is no arc between u and t1 as such an arc would be t1u, implying that us1 is an arc, but
then s1 ∈ D′2,top would hold. So D〈W 〉 is not semicomplete. Now considering the path Z = s2pvqt2
and three internally disjoint minimal (s1, t1)-paths in D1 we conclude as above that |D′1| ≥ 2. But
then D −W is not semicomplete as p is non-adjacent to all vertices of D′1, a contradiction. The only
remaining possibility is that every arc from S to D′2 starts in t2 and hence we also have s2 ∈ Sbot.
This contradicts Claim 9 applied to

←−
D and S∗.

The last contradiction completes the proof of the theorem.
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Abstract

A 2-partition of a digraph D is a partition (V1, V2) of V (D) into two disjoint non-empty sets
V1 and V2 such that V1 ∪ V2 = V (D). A semicomplete digraph is a digraph with no pair of non-
adjacent vertices. We consider the complexity of deciding whether a given semicomplete digraph
has a 2-partition such that each part of the partition induces a (semicomplete) digraph with some
specified property. In [4] and [5] Bang-Jensen, Cohen and Havet determined the complexity of
120 such 2-partition problems for general digraphs. Several of these problems are NP-complete for
general digraphs and thus it is natural to ask whether this is still the case for well-structured classes
of digraphs, such as semicomplete digraphs. This is the main topic of the paper. More specifically,
we consider 2-partition problems where the set of properties are minimum out-, minimum in- or
minimum semi-degree. Among other results we prove the following:

• For all integers k1, k2 ≥ 1 and k1 + k2 ≥ 3 it is NP-complete to decide whether a given
digraph D has a 2-partition (V1, V2) such that D〈Vi〉 has out-degree at least ki for i = 1, 2.

• For every fixed choice of integers α, k1, k2 ≥ 1 there exists a polynomial algorithm for deciding
whether a given digraph of independence number at most α has a 2-partition (V1, V2) such
that D〈Vi〉 has out-degree at least ki for i = 1, 2.

• For every fixed integer k ≥ 1 there exists a polynomial algorithm for deciding whether a
given semicomplete digraph has a 2-partition (V1, V2) such that D〈V1〉 has out-degree at
least one and D〈V2〉 has in-degree at least k.

• It is NP-complete to decide whether a given semicomplete digraph D has a 2-partition
(V1, V2) such that D〈Vi〉 is a strong tournament.

Keywords: Semicomplete digraph, Tournament, 2-partition, minimum semi-degree, minimum out-
degree, minimum in-degree, NP-complete, digraphs of bounded independence number.

1 Introduction

A 2-partition of a (di)graph G is a partition (V1, V2) of V (G) into two disjoint non-empty sets. Let
P1,P2 be two graph properties, then a (P1,P2)-partition is a 2-partition (V1, V2) where V1 induces a
graph with property P1 and V2 a graph with property P2. For example a (δ+ ≥ k, δ+ ≥ k)-partition
is a 2-partition of a digraph where each partition induces a subdigraph with minimum out-degree at
least k. It is natural to ask when properties such as high (edge)-connectivity or minimum degree can
be maintained by both parts of some 2-partition of a (di)graph G. As an example of this, Alon [1]
and independently Stiebitz [14] posed the following problem.

Problem 1.1. [1, 14] Does there exist a function h(k1, k2) such that every digraph D = (V,A) with
minimum out-degree h(k1, k2) has a (δ+ ≥ k1, δ+ ≥ k2)-partition?

It is easy to see that the answer to Problem 1.1 is yes if and only if there exists a function
h′(k1, k2) ≥ k1 + k2 + 1 such that every digraph with minimum out-degree h′(k1, k2) contains disjoint
induced subdigraphs D1, D2 such that D1 has minimum out-degree at least k1 and D2 has minimum

∗Department of Mathematics and Computer Science, University of Southern Denmark, Odense DK-5230, Denmark.
Research supported by the Danish research council under grant number DFF-1323-00178. (email: jbj@imada.sdu.dk).
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Research supported by the Danish research council under grant number DFF-1323-00178. (email: tilla@imada.sdu.dk).
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out-degree at least k2. The lower bound comes from the complete digraph on k1 + k2 + 1 vertices in
which every vertex has out-degree k1 + k2. Clearly this does not have the desired 2-partition since
there will be too few vertices in one of the sets of any 2-partition.

It is known that high minimum out-degree guarantees many disjoint cycles in a digraph [1, 15], in
particular minimum out-degree 3 is enough to guarantee two disjoint cycles. Using this, one can easily
show that h(1, 1) = 3 (see the beginning of Section 3). Already the existence of h(1, 2) is open and we
will show in Theorem 3.1 that it is NP-complete to decide if a digraph has a (δ+ ≥ 1, δ+ ≥ 2)-partition.

The following two problems are natural variations of Problem 1.1. For definitions of semi-degree
etc, see the next section.

Problem 1.2. Do there exist functions w1(k1, k2), w2(k1, k2) such that every digraph D = (V,A)
with minimum out-degree δ+(D) ≥ w1(k1, k2) and minimum in-degree δ−(D) ≥ w2(k1, k2) has a
(δ+ ≥ k1, δ− ≥ k2)-partition.

Problem 1.3. Does there exist a function z(k1, k2) such that every digraph D = (V,A) with minimum
semi-degree δ0(D) ≥ z(k1, k2) has a (δ0 ≥ k1, δ0 ≥ k2)-partition.

In [10] Lichiardopol answered Problems 1.1 to 1.3 in the affirmative for tournaments. It can easily
be seen that his proofs can be generalized to semicomplete digraphs.

Theorem 1.4. [10] Let T be a tournament (semicomplete digraph) with minimum out-degree at least
k2
1+3k1+2

2 + k2, then T has a (δ+ ≥ k1, δ+ ≥ k2)-partition.

Theorem 1.5. [10] Let T be a tournament (semicomplete digraph) with minimum semi-degree at
least k21 + 3k1 + 2 + k2, then T has a (δ0 ≥ k1, δ0 ≥ k2)-partition.

In [5] Bang-Jensen, Havet and Cohen determined the complexity of 120 partition problems for
general digraphs. Among these are the following.

Theorem 1.6. [5] The following 3 decision problems are NP-complete for general digraphs:

• deciding whether D has a (δ+ ≥ 1, δ− ≥ 1)-partition,

• deciding whether D has a (δ0 ≥ 1, δ− ≥ 1)-partition and

• deciding whether D has a (δ0 ≥ 1, δ0 ≥ 1)-partition.

We show in the beginning of Section 3 that the (δ+ ≥ 1, δ+ ≥ 1)-partition problem is polynomially
solvable for general digraphs. From these results two natural questions emerge. What is the complexity
of the (δ+ ≥ k1, δ

+ ≥ k2)-partition problem when k1 + k2 ≥ 3 and what is the complexity of the
three problems in Theorem 1.6 if we restrict the input to a well-structured class of digraphs such as
semicomplete digraphs? This paper will answer these questions as well as several related ones. In
Section 3 we prove that as soon as k1 + k2 ≥ 3 the (δ+ ≥ k1, δ

+ ≥ k2)-partition problem becomes
NP-complete for general digraphs. Then we prove that for all fixed pairs of integers k1, k2 ≥ 1
there exists a polynomial algorithm for the (δ+ ≥ k1, δ

+ ≥ k2)-partition problem for semicomplete
digraphs. In Section 4 we prove that all three problems from Theorem 1.6 are polynomially solvable
for semicomplete digraphs and in Section 5 we prove that for every fixed integer k ≥ 1 the (δ+ ≥
1, δ− ≥ k)-problem is polynomially solvable for semicomplete digraphs. In Section 6 we prove that,
even for semicomplete digraphs, if we require several properties for each part of a 2-partition, we may
obtain problems that are NP-complete, by showing that it is NP-complete to decide whether a given
semicomplete digraph D has a 2-partition (V1, V2) so that D〈Vi〉 is a stong tournament for i = 1, 2.
Finally in Section 7 we conclude with some remarks and open problems. In particular we outline why
one of our proofs generalizes to digraphs of bounded independence number.

2 Notation, Definitions and Preliminary results

Notation follows [3] all digraphs considered have neither loops nor parallel arcs. We use the shorthand
notation [k] for the set {1, 2, . . . , k} and [i, k] for the set {i, i+ 1, . . . , k}. Let D = (V,A) be a digraph
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with vertex set V and arc set A and let v ∈ V . If xy ∈ A is an arc, then we say that x dominates
y. The in-degree of v, denoted by d−D(v), is the number of arcs from V − v to v. Similarly the
out-degree , denoted by d+D(v), is the number of arcs from v to V − v. Furthermore N+(v) is the
out-neighbours of v, for a set X ⊆ V , N+[X] is the union of the the set X and all out-neighbours of
the vertices of X and N+(X) = N+[X]−X denotes the set of out-neighbours of X that do not belong
to X. Definitions for the in-neighbours of vertices and sets are similar. Finally the minimum out-
degree , respectively minimum in-degree of a digraph D is denoted by δ+(D), respectively δ−(D)
and the minimum semi-degree of D, denoted by δ0(D) is defined as δ0(D) = min{δ+(D), δ−(D)}.

The subdigraph induced by a set of vertices X in a digraph D, denoted D〈X〉, is the digraph
with vertex set X and which contains those arcs from D that have both end-vertices in X.

A path of a digraph is a sequence of distinct vertices x1, x2, . . . , xl such that xixi+1 is an arc for
every i ∈ [l− 1]. A cycle is defined as a path except that x1 = xl. If C is a cycle of k vertices we say
that C is a k-cycle . A digraph D is acyclic if it does not contain any cycles and a feedback vertex
set of D is a set Z ⊂ V such that D − Z is acyclic.

A strong component of a digraph D = (V,A) is a maximal induced subdigraph D〈X〉 with the
property that there exists a path from u to v for every ordered pair of vertices u, v ∈ X. A digraph
D = (V,A) is strongly connected or just strong if it has exactly one strong component. If D is
not strongly connected, then we can order its strong components D1, . . . , Dk, k ≥ 2 such that there
is no arc in D which goes from a vertex in Dj to a vertex in Di where i < j. A strong component is
trivial if it consists on just one vertex. A digraph on at least k+ 1 vertices is k-strong if the digraph
D −X, obtained by deleting all vertices of X and their incident arcs, remains strongly connected for
every subset X ⊆ V with |X| ≤ k− 1. Furthermore if Y ⊂ V such that D〈V − Y 〉 is not strong, then
Y is called a separator of D and it is a minimal separator if D − Y ′ is strong for every proper
subset Y ′ of Y .

A complete digraph is a digraph in which every pair of distinct vertices induce a directed 2-cycle.
A semicomplete digraph is a digraph where there is an arc between every pair of vertices and a
tournament is a semicomplete digraph without 2-cycles. A transitive tournament or acyclic
tournament , is a tournament without any cycles. For such tournaments there exists an unique
ordering of the vertices v1, . . . , vn such that vivj is an arc if and only if i < j. We call the vertex
v1 (vn) the source (sink) of T . It is easy to see that for non-strong semicomplete digraphs there
exists a unique ordering of its strong components D1, . . . , Dr such that each vertex of Di dominates
all vertices of Dj if and only if i < j. Strong semicomplete digraphs have many cycles as indicated by
the following classical result of Moon1.

Theorem 2.1. [12] Every vertex of a strong semicomplete digraph on n vertices is contained in a
k-cycle for every k ∈ [3, n]

Below we let D = (V,A) be a given digraph and let k be a fixed integer. D is said to be out-critical
(with respect to k) if δ+(D) = k and no subset of its vertices can be removed without decreasing the
minimum out-degree of the resulting digraph. Let D be a digraph with minimum out-degree at least k
and let X be a subset of its vertices. A set X ′ ⊆ V is called X-out-critical if X ⊆ X ′, δ+(D〈X ′〉) ≥ k
and δ+(D〈X ′ − Z〉) < k for every ∅ 6= Z ⊆ X ′ −X. Note that if δ+(D〈X〉) ≥ k, then X is the only
X-out-critical set in D. By definition, a digraph of minimum out-degree at least k contains at least
one X-out-critical set for every subset X of vertices (including the empty set).

3 The complexity of the (δ+ ≥ k1, δ
+ ≥ k2)-partition problem

As mentioned in the introduction, the (δ+ ≥ 1, δ+ ≥ 1)-partition problem is polynomial for general
digraphs. In fact, such a partition exists if and only if D has two vertex disjoint cycles. One direction
is clear and if we have a pair of disjoint cycles C1, C2 in D, then put all vertices with a directed path
to V (C1) in D〈V − V (C2)〉 together with V (C1) and the rest together with V (C2). By a result of
McCuaig [11] one can test the existence of two vertex disjoint cycles, and find such a pair if they exist,

1As every strong semicomplete digraph contains a spanning strong tournament, Moon’s original theorem also holds
for semicomplete digraphs

3
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in a given digraph in polynomial time, implying that (δ+ ≥ 1, δ+ ≥ 1)-partition is polynomial for D.

However already for k1 + k2 ≥ 3 the problem becomes NP-complete.

Theorem 3.1. Let k1, k2 be positive integers such that k1 + k2 ≥ 3. It is NP-complete to decide
whether a given input digraph D = (V,A) has a (δ+ ≥ k1, δ+ ≥ k2)-partition.

Proof. Without loss of generality we have k1 ≤ k2. Let F = C1 ∧ C2 ∧ · · · ∧ Cm be an instance of
monotone 1-IN-3-SAT with boolean variables x1, x2, . . . , xn (monotone means that no clauses contain
negated variables). That is, we seek a truth assignment t : {x1, . . . , xn} → {T, F}n such that each
clause Ci will have exactly one variable true (T ). This problem is NP-complete [16]. It is easy to see
that given an instance F of monotone 1-IN-3-SAT we can extend it by adding clauses to an equivalent
instance F ′ in which each variable occurs in at least k2 clauses. So below we assume that already F has
this property. We construct the digraph D = D(F) from F as follows: First we take m disjoint copies

H
(1)
1 , . . . ,H

(1)
m of the complete digraph on k1 vertices and m copies H

(2)
1 , . . . ,H

(2)
m of the complete

digraph on k2 vertices all disjoint and disjoint from the first complete digraphs. Then we add the

following new vertices {c(1)i |i ∈ [m]} ∪ {c(2)i |i ∈ [m]} ∪ {wi|i ∈ [m]} ∪ {zi|i ∈ [m]} ∪ {vj |j ∈ [n]}. The

vertices c
(1)
i , c

(2)
i , wi, zi as well as the two complete digraphs H

(1)
i , H

(2)
i are associated with the clause

Ci for each i ∈ [m] and the vertex vj is associated with the variable xj for each j ∈ [n]. Now we add
the following arcs:

• {wic
(1)
i |i ∈ [m]} ∪ {c(2)i zi|i ∈ [m]}.

• max{k1 − 2, 0} non-parallel arcs from wi to V (H
(1)
i ) and an arc from each vertex of V (H

(1)
i ) to

wi.

• k1 − 1 non-parallel arcs from c
(1)
i to V (H

(1)
i ).

• k2 − 2 non-parallel arcs from zi to V (H
(2)
i ).

• k2 − 2 non-parallel arcs from c
(2)
i to V (H

(2)
i ) and an arc from each vertex of V (H

(2)
i ) to c

(2)
i .

• The arcs of the cycle c
(2)
1 c

(2)
2 . . . c

(2)
m c

(2)
1

• If k1 > 1 then add the arcs of the cycle w1w2 . . . wmw1.

• for each i ∈ [m], if Ci is given by Ci = (xi1 ∨ xi2 ∨ xi3), then we add the 12 arcs

c
(1)
i vi1 , c

(1)
i vi2 , c

(1)
i vi3 , vi1c

(1)
i , vi2c

(1)
i , vi3c

(1)
i , vi1c

(2)
i , vi2c

(2)
i , vi3c

(2)
i , zivi1 , zivi2 , zivi3 .

Clearly D can be constructed in polynomial time, given F . We claim that there exists a truth
assignment to x1, . . . , xn such that each clause Ci contains exactly one true literal if and only if D
has a (δ+ ≥ k1, δ+ ≥ k2)-partition.

We first note some properties of any (δ+ ≥ k1, δ+ ≥ k2)-partition (V1, V2) of D. As all the vertices

wi, i ∈ [m] have out-degree exactly k1 in D, they, the vertices c
(1)
i , i ∈ [m] and all the vertices of

H
(1)
1 , . . . ,H

(1)
m must all belong to the same set Vq and if k1 < k2 this must be V1. Similarly, since each

vertex c
(2)
i has out-degree exactly k2 in D, all the vertices c

(2)
i , i ∈ [m], all the vertices zi, i ∈ [m] and

all vertices of the digraphs H
(2)
1 , . . . ,H

(2)
m must belong to the same set Vp. It is easy to see that we

must have p 6= q as otherwise only the variable vertices vj can be in the set V3−q but there are no arcs

between the variable vertices. Now the fact that the vertices zi, c
(1)
i belong to the different sets of the

partition and the fact that zi has exactly k2 + 1 out-neighbours in D implies that exactly two of the
vertices vi1 , vi2 , vi3 must belong to Vp to give zi out-degree k2 in D〈Vp〉 and the last will belong to Vq

to give c
(1)
i out-degree k1 in D〈Vq〉.

Now we can finish the proof easily. Suppose first that D has a (δ+ ≥ k1, δ
+ ≥ k2)-partition

(V1, V2). If k1 < k2 we have all c
(1)
i ’s in V1. If k1 = k2 then by renaming if necessary, we again have

that V1 contains all c
(1)
i ’s and in both cases each such vertex has exactly one of its neighbours among
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the variable vertices in V1. Thus if we assign the value true to xr, r ∈ [n] if the vertex vr is in V1, then
we obtain a truth assignment that sets exactly one literal true for each clause. Conversely, given a
truth assignment φ that sets exactly one literal true for each clause, we obtain the desired partition by

letting V1 consist of all vertices of H
(1)
1 , . . . ,H

(1)
m , all vertices c

(1)
i , i ∈ [m], all vertices wi, i ∈ [m] and

all those variable vertices vr for which the corresponding variable xr is set true by φ. It follows from
the observations above and the fact that each variable vertex vh, h ∈ [n] has at least k2 out-neighbours

in each of the sets {c(1)1 , . . . , c
(1)
m }, {c(2)1 , . . . , c

(2)
m } that (V1, V − V1) is a (δ+ ≥ k1, δ

+ ≥ k2)-partition
of V .

As mentioned earlier in Theorem 1.4, Lichiardopol proved in [10] that δ+(T ) ≥ k2
1+3k1+2

2 + k2 is
sufficient to guarantee a (δ+ ≥ k1, δ+ ≥ k2)-partition for tournaments. This is also true for semicom-
plete digraphs. We now describe a polynomial algorithm to find such a partition if one exists. We
need a few lemmas. For fixed integers k1, k2 a vertex v of a semicomplete digraph D is said to be
out-dangerous (with respect to k1 and k2) if d+(v) < (k1 + k2)− 1.

Lemma 3.2. Let k1, k2 be fixed integers and let S be a semicomplete digraph. Then the number of
out-dangerous vertices of S is at most 2(k1 + k2)− 3.

Proof. Let X be the set of out-dangerous vertices of S. Then the number of arcs in the semicomplete

digraph S〈X〉 is at most |X|(k1 + k2 − 2) and at least |X|(|X|−1)2 implying that |X| ≤ 2(k1 + k2)− 3.

In [10] it was shown that for every fixed k any out-critical set is of bounded size. With a small
modification of this proof we can bound the size of X-out-critical sets for any fixed set X.

Lemma 3.3. Let S be a semicomplete digraph with minimum out-degree at least k and let X ⊆ V (S).

Then every X-out-critical set X ′ of S will have size at most k2+3k+2
2 + |X|.

Proof. Suppose that for some set X ⊂ V there is an X-out-critical set X ′ of size at least k2+3k+2
2 +

|X| + 1. Consider the semicomplete digraph S′ = S〈X ′〉. Let M be the set of vertices that have
out-degree exactly k in S′ and let m = |M |.

As each v ∈M has out-degree k in the semicomplete digraph S′〈M〉 we have

|N+
S′ [M ]| ≤ m+mk − m(m− 1)

2
= −m

2

2
+

(
3

2
+ k

)
m =: P (m).

Now P (m) has global maximum at (3/2 + k) and maximum for m integer at k + 1 and k + 2

with P (k + 1) = P (k + 2) = k2+3k+2
2 . Hence as |X ′| > k2+3k+2

2 + |X| there exists a vertex u ∈
X ′ − (N+

S′ [M ] ∪X) such that δ+(S′〈X ′ − u〉) ≥ k. But then the set Z = {u} is contained in X ′ −X
and δ+(S〈X ′ − Z〉) ≥ k, contradicting the fact that X ′ is an X-out-critical set in S.

We are now ready to prove the existence of a polynomial algorithm for deciding whether a given
semicomplete digraph has a (δ+ ≥ k1, δ+ ≥ k2)-partition.

Theorem 3.4. For every fixed pair of integers k1, k2 there exists a polynomial algorithm that either
constructs a (δ+ ≥ k1, δ+ ≥ k2)-partition of a given semicomplete digraph S or correctly outputs that
none exist.

Proof. Let (O1, O2) be a given partition of the out-dangerous vertices of S. Let X ⊆ V − O2 be

a set containing O1 such that |X| ≤ k2
1+3k1+2

2 + |O1| and δ+(S〈X〉) ≥ k1 (if no such set exists,
we stop considering the pair (O1, O2)). The following subalgorithm B will decide whether there
exists a (δ+ ≥ k1, δ

+ ≥ k2)-partition (V1, V2) with X ⊆ V1, O2 ⊆ V2: Starting from the partition
(V1, V2) = (X,V −X), and moving one vertex at a time, the algorithm will move vertices of V2 −O2

which have d+
S〈V2〉(v) < k2 to V1. If, at any time, this results in a vertex v ∈ O2 having d+

S〈V2〉(v) < k2,

or V2 = ∅, then there is no (δ+ ≥ k1, δ
+ ≥ k2)-partition with X ⊆ V1 and O2 ⊆ V2 and the

5
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algorithm B terminates. Otherwise B will terminate with O2 ⊆ V2 6= ∅ and hence it has found an
(δ+ ≥ k1, δ+ ≥ k2)-partition (V1, V2) with Oi ⊆ Vi, i = 1, 2.

The correctness of B follows from the fact that we only move vertices that are not dangerous and
each such vertex has at least k1 + k2− 1 out-neighbours in S. Hence, as the vertex that we move does
not have k2 out-neighbours in V2, it must have at least k1 out-neighbours in V1, so δ+(S〈V1〉) ≥ k1
will hold throughout the execution of B.

By Lemma 3.2, the number of out-dangerous vertices is at most 2(k1 + k2) − 3 and hence the
number of (O1, O2)-partitions of the set of out-dangerous vertices is at most 22(k1+k2)−3 which is a
constant because k1, k2 are fixed. Furthermore, by Lemma 3.3, the size of every O1-critical set is
also bounded by a function of k1 and hence for each (O1, O2)-partition there is only a polynomial
number of O1-critical sets that are disjoint from O2. Thus we obtain the desired polynomial time
algorithm by running the subalgorithm B for all possible partitions (O1, O2) of the out-dangerous

vertices and all possible choices of sets X with O1 ⊆ X and |X| ≤ k2
1+3k1+2

2 + |O1|. Note that we do
not need to check whether X is O1-out-critical, we just check all possible supersets of O1 of size at

most
k2
1+3k1+2

2 + |O1|.

As k1, k2 are fixed, the running time of the algorithm above is O(ng(k1,k2)) for some (quadratic)
polynomial g. We made no attempt to improve the running time above and it is natural to ask whether
there exists an FPT algorithm for the problem.

Problem 3.5. Does there exist a function f(k1, k2) and a constant c such that one can decide, for a
given semicomplete digraph S and pair of integers k1, k2 whether S has a (δ+ ≥ k1, δ+ ≥ k2)-partition
in time O(f(k1, k2)nc)?

We saw above that we could solve the (δ+ ≥ k1, δ
+ ≥ k2)-partition problem in polynomial time

using the fact that the number of out-dangerous vertices are bounded for semicomplete digraphs. It is
natural to ask whether a similar approach can be used for the (δ+ ≥ k1, δ− ≥ k2)-, (δ0 ≥ k1, δ− ≥ k2)-
and (δ0 ≥ k1, δ

0 ≥ k2)-partition problem. This however is not the case. There is no natural way to
define dangerous vertices in these cases, as it depends on whether we consider a vertex with respect
to the first property or with respect to the second property. Given a partition (V1, V2) of a digraph D
where δ+(D〈V1〉) ≥ k1 and δ−(D〈V2〉) < k2, a vertex with in-degree less that k2 in V2 might not have
k1 out-neighbours in V1 and hence cannot be moved directly to V1 without decreasing the minimum
out-degree of V1.

4 2-partitions where both constants are one

In this section we will consider the three problems from Theorem 1.6 and prove that there is a
polynomial algorithm for each of these when the input is a semicomplete digraph. It is clear that for
all three problems the existence of a pair of disjoint cycles is a necessary condition. It is easy to check
whether a semicomplete digraph has a pair of disjoint cycles: D has such cycles if and only if it has
disjoint cycles C1, C2 where |V (Ci)| ≤ 3 for i ∈ [2] (every cycle of length 4 or more in a semicomplete
digraph induces a semicomplete digraph with a shorter cycle).

Lemma 4.1. A semicomplete digraph S with δ−(S) ≥ 1 has a (δ0 ≥ 1, δ− ≥ 1)-partition if and only
if it has a pair of disjoint cycles. Furthermore, such a partition can be found in polynomial time when
it exists.

Proof. Let S be a semicomplete digraph with δ−(S) ≥ 1 and disjoint cycles C1 and C2. If S1 =
S〈V − V (C1)〉 has minimum in-degree at least 1 then (V (C1), V − V (C1)) is a (δ0 ≥ 1, δ− ≥ 1)-
partition so let x1 be a vertex in V −C1 with in-degree 0 in S1. Similarly either (V (C2), V − V (C2))
is a (δ0 ≥ 1, δ− ≥ 1)-partition or there is a vertex x2 in S2 = S〈V − C2〉 with in-degree 0. As
δ−(S) ≥ 1 the vertex xi must have an in-neighbour on Ci for i = 1, 2, implying that x1 6= x2. It
follows from the choice of x1, x2 above that x1, x2 /∈ V (C1) ∪ V (C2) and hence both have in-degree 0
in the semicomplete digraph S〈V − V (C1)− V (C2)〉, contradiction. It follows from the proof that it
will always be the case that (V (Ci), V −V (Ci)) is a (δ0 ≥ 1, δ− ≥ 1)-partition for i = 1 or 2, implying
that we can find the desired partition in polynomial time.
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Theorem 4.2. A semicomplete digraph S has a (δ+ ≥ 1, δ− ≥ 1)-partition if and only if it has a pair
of disjoint cycles. Furthermore, such a partition can be found in polynomial time when it exists.

Proof. We prove by induction on the number of vertices that the presence of two disjoint cycles
guarantee the existence of the desired partition. In the base case S consists of two disjoint induced
cycles so they each have length at most 3 and they themselves form the desired partition. Hence
we proceed to the induction step and assume that S is a semicomplete digraph with disjoint cycles
C1 and C2. By Lemma 4.1, it suffices to consider the case when S contains a vertex x of in-degree
0. Clearly S − x also has two disjoint cycles (as x is not on any cycle) so by induction it has a
(δ+ ≥ 1, δ− ≥ 1)-partition (V ′1 , V

′
2) and now (V ′1 + x, V2) is the desired partition of S. From the

argument above it is easy to obtain a polynomial algorithm to find the desired partition: continue to
remove vertices of in-degree 0 until the remaining semicomplete digraph S′ has δ−(S′) ≥ 1. Then find
a (δ0 ≥ 1, δ− ≥ 1)-partition (V ′1 , V

′
2) of S′ using the algorithm from Lemma 4.1 and finally return the

(δ+ ≥ 1, δ− ≥ 1)-partition (V − V ′2 , V ′2).

Theorem 4.3. There exists a polynomial algorithm that either finds a (δ0 ≥ 1, δ− ≥ 1)-partition of
a semicomplete digraph or correctly outputs that none exist.

Proof. If D has a vertex of in-degree 0, then it has no (δ0 ≥ 1, δ− ≥ 1)-partition and otherwise it
follows from Lemma 4.1 that the partition exists and can be found in polynomial time.

For the (δ0 ≥ 1, δ0 ≥ 1)-partition problem the existence of disjoint cycles is not sufficient in
general, but the existence of a pair of complementary cycles is. Two cycles C1, C2 of a digraph D are
complementary if they are disjoint and cover all vertices of D. Reid [13] proved that every 2-strong
tournament on at least 8 vertices has a pair of complementary cycles. In [7] Guo and Volkmann
proved that every 2-strong semicomplete digraph of at least 8 vertices has a pair of complementary
cycles. Bang-Jensen and Nielsen [6] proved that checking the existence of complementary cycles of
semicomplete digraphs and finding such a pair if they exist can be done in polynomial time. Notice
that if C1, C2 is a pair of complementary cycles of a semicomplete digraph, then C1 (or C2) is allowed
to be a 2-cycle. Now we are ready to prove the following.

Theorem 4.4. There exists a polynomial algorithm that either finds a (δ0 ≥ 1, δ0 ≥ 1)-partition of a
semicomplete digraph or correctly outputs that none exists.

Proof. Suppose first that S is not strong and let D1, . . . , Dr, r ≥ 2, be the strong components. If D1

or Dr is a trivial component, then clearly there is no (δ0 ≥ 1, δ0 ≥ 1)-partition, so we may assume
that min{|D1|, |Dr|} ≥ 2 and that r ≥ 3 or we are done. If |Di| ≥ 2 for some i ∈ [2, r − 1], then
(V (Di), V − V (Di)) is a (δ0 ≥ 1, δ0 ≥ 1)-partition. Hence we may assume that there are distinct
vertices d2, . . . , dr−1 such that Di = {di} for i ∈ [2, r − 1]. Now it is easy to see that there is a
(δ0 ≥ 1, δ0 ≥ 1)-partition if and only if at least one of the following holds:

• D1 has a (δ− ≥ 1, δ− ≥ 1)-partition and Dr has a (δ+ ≥ 1, δ+ ≥ 1)-partition.

• D1 has a (δ0 ≥ 1, δ− ≥ 1)-partition

• Dr has a (δ+ ≥ 1, δ0 ≥ 1)-partition.

For each of these problems we already established polynomial algorithms so from now on we may
assume that S is strong. If n < 8 we just check all possible partitions, so assume n ≥ 8. First
check whether S has a pair of complementary cycles, using the algorithm of [6] and output the 2-
partition induced by these if they exist. Hence we may now assume that S does not contain a pair
of complementary cycles and that it is not 2-strong by the aforementioned results of [7, 13]. Note
that, because every strong semicomplete digraph is hamiltonian (by Theorem 2.1), the fact that S
has no pair of complementary cycles implies that S must have at least 3 disjoint cycles if it has a
(δ0 ≥ 1, δ0 ≥ 1)-partition.

Let x be a separating vertex of S and let D1, . . . , Dr, r ≥ 2 be the strong components of S−x. As
S is strong the vertex x dominates at least one vertex in D1 and is dominated by at least one vertex
in Dr. Now it is easy to either find a (δ0 ≥ 1, δ0 ≥ 1)-partition or deduce the following (in each case,
if the claim does not hold, then a (δ0 ≥ 1, δ0 ≥ 1)-partition can be constructed easily):
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(i) If r ≥ 3 then there are distinct vertices d2, . . . , dr−1 such that Di = {di} for all i ∈ [2, r − 1].

(ii) If D1 is non-trivial, then x only dominates vertices y of D1 that are separators of D1 and only
the initial strong component of D1 − y (denoted D11) can be non-trivial. Furthermore, either
r = 2 or xd2 6∈ A, implying that d2x ∈ A.

(iii) Similarly, if Dr is non-trivial, then x is only dominated by vertices z of Dr that are separators
of Dr and only the terminal strong component of Dr − z (denoted Drs) can be non-trivial.
Furthermore, either r = 2 or dr−1x 6∈ A, implying that xdr−1 ∈ A.

Case 1) r = 2 and |D1|, |D2| ≥ 2.
If x has arcs to and from Di for i = 1 or i = 2 then (V (Di) ∪ {x}, V (D3−i)) is a (δ0 ≥ 1, δ0 ≥ 1)-
partition so we can assume that x dominates all vertices of D1 and is dominated by all vertices of
D2. As n ≥ 8 we have max{|D1|, |Dr|} ≥ 4, so, by Theorem 2.1, for some i ∈ [2] there exists a vertex
v ∈ Di such that Di − v is strong. Now we see that (V1, V2) is a (δ0 ≥ 1, δ0 ≥ 1)-partition if we let
V1 = V (Di)− v and V2 = V − V1.

Case 2a) r ≥ 2 and |D1| = |Dr| = 1. In this case the vertex x is on all cycles of S so it is a
’no’-instance.

Case 2b) r ≥ 2, min{|D1|, |D2|} = 1 and max{|D1|, |Dr|} ≥ 2.
By reversing all arcs if necessary, we may assume D1 = {d1} and |Dr| ≥ 2. Assume that (V1, V2)
is a (δ0 ≥ 1, δ0 ≥ 1)-partition of S with x ∈ V1. Then as x is the only in-neighbour of d1, d1
also belongs to V1. Continuing this way we see that {x, d1, . . . , dr−1} ⊆ V1. As xdr−1 ∈ A any
(δ0 ≥ 1, δ0 ≥ 1)-partition (V1, V2) will have vertices of Dr in both V1 and V2, and V2 ⊂ Dr. Suppose
first that x has no in-neighbour among {d1, d2, . . . , dr−1}. Then it is easy to see that the semicomplete
digraph S′ obtained by deleting d1, . . . , dr−1 and adding an arc from x to each vertex of Dr will have a
(δ0 ≥ 1, δ0 ≥ 1)-partition if and only if S does. Thus we can solve the problem by calling the algorithm
recursively on S′. Hence we may assume that x has at least one in-neighbour among {d1, d2, . . . , dr−1}.
Note that if Dr does not have two disjoint cycles, then D has no set of 3-disjoint cycles and hence
is a no-instance as we already know it has no pair of complementary cycles. Thus we may assume
that Dr has a pair of disjoint cycles and now it follows from Theorem 4.3 (applied to Dr with all arcs
reversed) that, in polynomial time we can find a (δ+ ≥ 1, δ0 ≥ 1)-partition (V ′1 , V

′
2) of Dr. Now it is

easy to check that (V − V ′2 , V ′2) is a (δ0 ≥ 1, δ0 ≥ 1)-partition of S.
Case 3) r > 2 and |D1|, |Dr| ≥ 2.

If there are indices 1 < i < j < r so that xdi, djx ∈ A, then ({x, di, di+1, . . . , dj}, V−{x, di, di+1, . . . , dj})
is a (δ0 ≥ 1, δ0 ≥ 1)-partition. Hence, by (ii) and (iii) we may assume that there is an index
2 ≤ f < r − 1 such that x has no arc to {d2, . . . , df} and {df+1, . . . , dr−1} has no arc to x. Fix a
vertex y ∈ V (D1) such that xy ∈ A and a vertex z ∈ V (Dr) such that zx ∈ A. By (ii) and (iii) S
contains the 3-cycles C3 = {x, y, d2} and C ′3 = {x, dr−1, z}. If the initial component D11 of D1 − y
satisfies |D11| ≥ 2, then we have the (δ0 ≥ 1, δ0 ≥ 1)-partition (V (C3), V − V (C3)). Similarly if the
terminal component Drs of Dr − z satisfies |Drs| ≥ 2, then we have a (δ0 ≥ 1, δ0 ≥ 1)-partition
(V (C ′3), V − V (C ′3)). So assume |D11| = |Drs| = 1 and hence by (ii) and (iii) that the strong com-
ponents of D1 − y, respectively Dr − z all have size one. Denote the vertices of these by d11, . . . , d1p
and dr1, . . . , drs, respectively. Since D1 − d1j is strong when j 6∈ {1, p}, it follows from (ii) that the
only possible out-neighbours of x in V (D1)− y are d11 and d1p. Similarly, (iii) implies that the only
possible in-neighbours of x in V (Dr)−z are dr1 and drs. If xd1p ∈ A and d1jy ∈ A for some 1 ≤ j < p,
then ({x, d1p, d2}, V − {x, d1p, d2}) is a (δ0 ≥ 1, δ0 ≥ 1)-partition. If xd11 ∈ A and yd1i ∈ A for some
1 < i ≤ p, then again we easily get a (δ0 ≥ 1, δ0 ≥ 1)-partition. So either we find the desired partition
or conclude that that following holds: if xd1p ∈ A then d1p is the only in-neighbour of y in D1 and if
xd11 ∈ A, then d11 is the only out-neighbour of y in D1. By similar observations we either find the
desired partition or conclude that if dr1x ∈ A, then dr1 is the only out-neighbour of z in Dr and if
drsx ∈ A, then drs is the only in-neighbour of z in Dr. This implies that S does not have 3 disjoint
cycles, because D − {x, y, z} is acyclic and none of D − D1, D − Dr have two disjoint cycles. But
then it cannot have a (δ0 ≥ 1, δ0 ≥ 1)-partition, since we have already assumed that S has no pair of
complementary cycles.
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This completes the description of the algorithm. For Case 2b, notice that each of the recursive
calls (if any) will be on semicomplete digraphs which have at least 2 vertices less than the current
one. Hence in at most O(n) calls the algorithm we will terminate and thus the algorithm runs in
polynomial time.

5 2-partitions when one constant is 1 and the other at least 2

When one of the two sides of the partition must have in-degree or out-degree at least k for some k ≥ 2,
we need more work to establish a polynomial algorithm. We begin with a Lemma which could be of
independent interest. Below we use the shorthand notation d+X(v) (d−X(v)) for d+

D〈X〉(v) (d−
D〈X〉(v)),

where X is a subset of the vertices of D and v ∈ X.

Lemma 5.1. Let k ≥ 1 be a fixed integer. Then there exists a polynomial algorithm for the following
problem: let S = (V,A) be a semicomplete digraph and X1, X2 disjoint subsets of V such that

(a) V −X1 −X2 induces a transitive tournament.

(b) If there is a vertex v of X1 such that d+X1
(v) = 0 then v is dominated by at most k − 1 vertices

of V −X1 −X2.

decide whether S has a (δ+ ≥ 1, δ− ≥ k)-partition (V1, V2) with Xi ⊂ Vi for i ∈ [2] and find such a
partition when it exists.

Proof. We start by setting V ′1 = X1 and V ′2 = X2. Throughout this proof we let Z = V − V ′1 − V ′2
and say that a (δ+ ≥ 1, δ− ≥ k)-partition (V1, V2) is good if V ′i ⊂ Vi where V ′1 , V

′
2 are the current sets

obtained by the algorithm. The algorithm will move vertices of Z to V ′1 and V ′2 until we either find
such a good partition or we can conclude that none exists.

Assume first that there is a vertex u ∈ V ′1 ∪Z (u ∈ V ′2 ∪Z) such that d+V ′1∪Z
(u) = 0 (d−V ′2∪Z

(u) < k).

If u ∈ V ′i then clearly there is no good (δ+ ≥ 1, δ− ≥ k)-partition and we can stop. If u ∈ Z then there
can only exist a good (δ+ ≥ 1, δ− ≥ k)-partition if u ∈ V ′3−i and we may move u to V ′3−i. Continue
moving vertices from the current Z which are forced into one of the sides of any good partition (as
above) until we either have Z = ∅, in which case we just check whether (V ′1 , V

′
2) is a (δ+ ≥ 1, δ− ≥ k)-

partition, or we have Z 6= ∅, V ′1 ∪ Z induces a semicomplete digraph with δ+ ≥ 1 and V ′2 ∪ Z induces
a semicomplete digraph with δ− ≥ k. If (V ′1 , V

′
2 ∪ Z) is a (δ+ ≥ 1, δ− ≥ k)-partition we are done so

let v be the unique vertex of out-degree zero in S〈V ′1〉.
So far we have only moved a vertex to V ′i − Xi if it was forced to belong to that set in any

good partition. Assume now that there exists a good (δ+ ≥ 1, δ− ≥ k)-partition (V1, V2) and
let W = Z ∩ V1. Furthermore let w1, . . . , wm be the unique acyclic ordering of the vertices of
W . Then wm must dominate at least one vertex of V ′1 and the vertex v of V ′1 must dominate a
vertex of W . Let wj be the vertex of W with the highest index such that v dominates wj . If
j > 1 then (V1\{w1, . . . , wj−1}, V2 ∪ {w1, . . . , wj−1}) is also a good (δ+ ≥ 1, δ− ≥ k)-partition since
δ−(S〈V ′2 ∪ (Z −W )〉) ≥ k and w1, . . . , wj−1 have no in-neighbours among wj . . . , wm. Hence we can
restrict the search for a good (δ+ ≥ 1, δ− ≥ k)-partition (V1, V2) to one where v only dominates the
source of the transitive tournament V1 ∩ Z. Furthermore v is either the (original) sink of X1 or a
vertex added to V ′1 because it had less that k in-neighbours in V ′2 ∪Z. In any case, by (b), the vertex
v is dominated by at most k − 1 vertices of Z and hence for any subset of Z of size at least k + 1, v
will dominate at least two vertices. This implies that if there is any good partition (V1, V2) then there
is one where |V1| ≤ |V ′1 |+ k. We can check for such a partition by looking at all possible subsets W of
Z of size at most k with the further condition that v only dominates the unique vertex of in-degree 0
in S〈W 〉. There are O(nk+1) such subsets, implying that our algorithm is polynomial.

Theorem 5.2. There exists a polynomial algorithm that either finds a (δ+ ≥ 1, δ− ≥ 2)-partition of
a semicomplete digraph S or correctly outputs that none exist.
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Proof. Below we make no attempt to optimize the running time. There are O(n3) cycles of length at
most 3 in S. Let h denote the number of such cycles and order them as C1, . . . , Ch. For each i ∈ [h]
or until we find a solution we proceed as follows. Start by letting V1 = V (Ci), where Ci is the next
cycle to consider, and let V2 = V − V1. Now move vertices of in-degree at most one in D〈V2〉 to V1
until either V2 = ∅ in which case there is no (δ+ ≥ 1, δ− ≥ 2)-partition (V1, V2) with Ci ⊆ V1 (and
we go to the next cycle Ci+1) or V2 induces a semicomplete digraph with minimum in-degree at least
2. If δ+(S〈V1〉) ≥ 1 then we have found a (δ+ ≥ 1, δ− ≥ 2)-partition (V1, V2), so assume that v has
out-degree zero in S〈V1〉.

Let B be the set of vertices in V2 that have in-degree at most 4 in S〈V2〉. If there exists a cycle C ′

of length at most 3 in S〈V2〉 such that V2 − C ′ still induces a semicomplete digraph with minimum
in-degree 2, then (V1 ∪ C ′, V2 − C ′) is a (δ+ ≥ 1, δ− ≥ 2)-partition, because v has at most one in-
neighbour on C ′ (as it was moved at some point) so it will dominate at least one vertex on C ′. Hence
we may assume that for each 3-cycle C ′ of S〈V2〉 there is a vertex of B that has an in-neighbour in
C ′. But then it follows from Theorem 2.1 that every cycle of S〈V2〉 contains an in-neighbour of B.
This implies that F = N−[B] is a feedback vertex set of S〈V2〉, that is, S〈V2〉 − F is a transitive
tournament.

If T has any (δ+ ≥ 1, δ− ≥ 2)-partition (V̂1, V̂2) with V1 ⊂ V̂1, then Fi = V̂i ∩ F , i = 1, 2, induces
a partition of the vertices of F . Hence to find a (δ+ ≥ 1, δ− ≥ 2)-partition we need only check if S

has a partition (V̂1, V̂2) where V1 ∪F1 ⊂ V̂1 and F2 ⊂ V̂2 for every partition F1, F2 of F (possibly with
Fi = ∅ for i = 1 or i = 2).

To realize that this can be done in polynomial time, notice that there are at most 9 vertices in B
and since each of these has in-degree at most 4 in V2 the size of F is at most2 45. Hence there are
at most 245 partitions of F to check. For each partition (F1, F2) of F we can use the algorithm of
Lemma 5.1 with X1 = F1 ∪ V1 and X2 = F2 ∪ V2. If none of these partitions of F result is a solution,
we move to the next cycle Ci+1.

With a bit more effort we can extend the theorem to any fixed lower bound on the in-degree in
S〈V2〉.

Theorem 5.3. For every fixed integer k ≥ 1 there exists a polynomial algorithm that either constructs
a (δ+ ≥ 1, δ− ≥ k)-partition of a semicomplete digraph S or correctly outputs that none exist.

Proof. Again we order the set of cycles of length at most 3 as C1, . . . , Ch, where h ∈ O(n3) and
consider these one by one until we either find a solution or there are no more cycles to try. When
considering Ci we start by letting V1 = Ci and V2 = V − V1. Then we move vertices of in-degree
less than k in D〈V2〉 to V1 until either V2 = ∅, in which case there is no partition with Ci ⊆ V1,
or the process stops when V2 induces a semicomplete digraph with minimum in-degree at least k.
Now if V1 induces a semicomplete digraph with minimum out-degree at least 1, we have found a
(δ+ ≥ 1, δ− ≥ k)-partition (V1, V2), so assume that v has out-degree zero in S〈V1〉.

Let p = dk2 e and let B be the set of vertices of V2 that have in-degree at most k+ 3p− 1. If S〈V2〉
has a collection of p disjoint cycles C ′1, . . . , C

′
p, each of length at most 3, such that S〈V2 − ∪pi=1V (C ′i)〉

has minimum in-degree at least k, then we obtain a (δ+ ≥ 1, δ− ≥ k)-partition by adding the vertices
of C ′1, . . . , C

′
p to V1 and removing them from V2 (as in the previous proof the vertex v will have at

least one out-neighbour among the newly added vertices). The existence of such a collection of cycles
can be determined by trying all subsets of V2 on at most 3p vertices. Hence we may assume below
that Y = N−[B] intersects all sets of p disjoint cycles in V2. Now there are at most p − 1 disjoint
cycles of length at most 3 in V2 − Y and hence removing some subset Y ′ of at most 3(p − 1) extra
vertices of V2 − Y we obtain a transitive tournament. Thus F = Y ∪ Y ′ is a feedback vertex set of
S〈V2〉.

The rest of the proof is similar to that of Theorem 5.2. The only difference is that instead of
moving one cycle of length at most 3 we move sets of at most p disjoint cycles, each of which have
length at most 3. If no good set of p cycles was found, then we found a small feedback vertex set
F and we try each partition of the feedback vertex set F . To finish the proof we only need to argue
that the size of F is bounded by a function in k. This follows from the following crude estimate

2This estimate is not precise. In fact |F | ≤ 30, but the crude estimate suffices for our argument.
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which suffices for our needs: the in-degree of the vertices in B is at most 5k
2 + 2 so there are at most

5k + 5 vertices in B and hence |Y | ≤ (5k + 5) + (5k + 5)( 5k
2 + 2) ≤ 25k2+55k+30

2 . We also have that

|Y ′| ≤ 3(p− 1) ≤ 3k
2 so |F | ≤ 25k2+58k+30

2 .

We cannot directly use the same approach if we want a (δ0 ≥ 1, δ− ≥ k)-partition. This is because,
after moving vertices that are forced to be in V1 the semicomplete digraph S〈V1〉 may have both a
vertex v with out-degree 0 and another vertex v′ with in-degree 0. For v we still know that it has at
most k−1 in-neighbours in V2, but for v′ we have no control of its number of out-neighbours in V2, so
we cannot guarantee that we will add an in-neighbour of v′ when we add any set of p cycles of length
at most 3.

Consider the case where we want a (δ+ ≥ k1, δ− ≥ k2)-partition when both k1 and k2 are at least
2. The following would be natural generalization of the proof technique used above: first construct
the (polynomial) list of all k1-out-critical subgraphs X1, X2, . . . , Xq. Then starting from V1 = Xi and
V2 = V −Xi first move all vertices with in-degree less than k2 in S〈V2〉 to V1 and then try to move a
small (as a function of k1) subset of V2 to V1 so that we obtain a solution. Unfortunately this approach
does not work as, already for k1 = k2 = 2, there exist infinitely many tournaments with minimum
in-degree 2 that contain no subtournament of minimum out-degree 2.

Despite the seeming need for new proof techniques, based on the evidence from the results of this
paper, we believe that the following holds.

Conjecture 5.4. For every pair of fixed integers k1, k2 ≥ 2 there exist polynomial algorithms for
deciding the following for a given semicomplete digraph S:

• whether S has a (δ+ ≥ k1, δ− ≥ k2)-partition,

• whether S has a (δ+ ≥ k1, δ0 ≥ k2)-partition,

• whether S has a (δ0 ≥ k1, δ0 ≥ k2)-partition

In the proof of Lemma 5.1 we used the fact that k is fixed to obtain a polynomial algorithm A. If
k is part of the input the running time of A will no longer be polynomial in the size of the input.

Problem 5.5. What is the complexity of the (δ+ ≥ 1, δ− ≥ k)-partition problem when the input is a
semicomplete digraph and a positive integer k?

6 2-partitions of semicomplete digraphs into tournaments

We now show that even for semicomplete digraphs we may obtain very difficult 2-partition problems
if we pose the extra condition that each part of the 2-partition must induce a tournament. It follows
from the polynomial algorithm from [6] for finding complementary cycles in semicomplete digraphs
that without the requirement that each Vi induces a tournament, the problem below is polynomially
solvable.

Theorem 6.1. It is NP-complete to decide whether a given semicomplete digraph D has a 2-partition
(V1, V2) such that D〈Vi〉 is a strong tournament.

Proof. 3

Let F = C1 ∧ C2 ∧ . . . ∧ Cm be an instance of not-all-equal 3-SAT (NAE-3-SAT) over the set of
n boolean variables x1, . . . , xn. That is, we seek a truth assignment t : {x1, x2, . . . , xn} → {T, F}n so
that each clause has at least one true literal and at least on false literal. This problem is NP-complete
[16].

We construct a semicomplete digraph D = D(F) which has a 2-partition (V1, V2) such that D〈Vi〉
is a strong tournament if and only if F is a ’Yes’-instance of NAE-3-SAT.

3We would like to thank Anders Yeo for his help in correcting our first incomplete proof of Theorem 6.1
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c0

c′0

c1

c′1
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c′2
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c′3
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c′4

v1,1

v̄1,1

v1,2

v̄1,2

v1,3

v̄1,3

v2,1

v̄2,1

v3,1

v̄3,1

Figure 1: An example of the digraph D = D(F) where F = (x1∨x̄2∨x3)∧(x̄1∨x2∨x3)∧(x1∨x2∨x3).
For clarity only the most important arcs are shown. The big arrow indicates that, except for the 2-
cycles between clause vertices and between vertices corresponding to literals over the same variable,
all arcs not shown go from left to right.

The vertex set of D is given by

V (D) = {c0, c1, . . . , cm+1} ∪ {c′0, c′1, . . . , c′m+1} ∪
m⋃

j=1

{vj,1, v̄j,1, vj,2, v̄j,2, . . . , vj,n, v̄j,n}

Here the vertices cj , c
′
j correspond to the clause Cj for j ∈ [m] and the vertices {v1,i, . . . , vm,i},

respectively {v̄1,i, . . . , v̄m,i} correspond to the literal xi, respectively the literal x̄i.

We first define the arc set A′ of a semicomplete digraph D′ on the same vertex set as D and then
describe how to obtain the arc set A of D by reversing certain arcs that will correspond closely to the
clauses of F .

The arc set A′ = A(D′) is defined as follows:

• For all 0 ≤ j < j′ ≤ m+ 1, A′ contains the arcs cjcj′ , c
′
jc
′
j′ , except when j = m (and j′ = m+ 1)

where we have cm+1cm, c
′
m+1c

′
m ∈ A′.

• There is a 2-cycle between ci and c′j for all 0 ≤ i, j ≤ m+ 1.

• For every i ∈ [n] the vertices {v1,i, . . . , vm,i}∪{v̄1,i, . . . , v̄m,i} induce a complete bipartite digraph
with bipartition {v1,i, . . . , vm,i}, {v̄1,i, . . . , v̄m,i}, that is, there is a 2-cycle between vj,i and v̄j′,i
for all j, j′ ∈ [m], i ∈ [n].

• For all j, j′ ∈ [m] and all i, i′ ∈ [n] such that j < j′ and i 6= i′ or j = j′ and i < i′ A′ contains
the arcs vj,ivj′,i′ , vj,iv̄j′,i′ , v̄j,ivj′,i′ , v̄j,iv̄j′,i′ .

• For all 0 ≤ j < j′ ≤ m and every i ∈ [n] A′ contains the arcs cjvj′,i, cj v̄j′,i, c
′
jvj′,i, c

′
j v̄j′,i.

• For all 1 ≤ j ≤ j′ ≤ m+ 1 and all i ∈ [n], A′ contains the arcs vj,icj′ , vj,ic
′
j′ , v̄j,icj′ , v̄j,ic

′
j′

Now we describe how to obtain D from D′ = (V,A′) by performing 12m arc-reversals. For
each j ∈ [m]: let `i1 , `i2 , `i3 be the literals of Cj and let uj,1, uj,2, uj,3 be those three vertices of
{vj,1, v̄j,1, vj,2, v̄j,2, . . . , vj,n, v̄j,n} which correspond to these literals (e.g. if Cj = (x1 ∨ x̄5 ∨ x8) then
uj,1 = vj,1, uj,2 = v̄j,5, uj,3 = vj,8). Now we reverse the 12 arcs between {cj−1, c′j−1, cj , c′j} and
{uj,1, uj,2, uj,3}. This concludes the construction of D.

It is easy to check that D is a semicomplete digraph. We first make some observations about
2-partitions (V1, V2) of V (D) such that D〈Vi〉 is a tournament for i ∈ [2].
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(a) The vertices {c0, c1, . . . , cm, cm+1} ∪ {c′0, c′1, . . . , c′m, c′m+1} induce a complete bipartite digraph
which implies that we have {c0, c1, . . . , cm, cm+1} ⊂ Vi and we have {c′0, c′1, . . . , c′m, c′m+1} ⊂ V3−i
for i = 1 or i = 2.

(b) for each i ∈ [n], the vertices {v1,i, . . . , vm,i}∪{v̄1,i, . . . , v̄m,i} induce a complete bipartite digraph
which implies that we have {v1,i, . . . , vm,i} ⊂ Vp and {v̄1,i, . . . , v̄m,i} ⊂ V3−p for p = 1 or p = 2.

(c) If we delete any vertex cj (c′j), j ∈ [m] from the set Vi which contains cj (c′j), then the resulting
semicomplete digraph D〈Vi − cj〉 (D〈Vi − c′j〉) has no (cp, cq)-path when m+1 ≥ p > j > q ≥ 0.

Suppose that φ : {x1, . . . , xn} → {T, F}n is a truth assignment such that each clause Cj , j ∈ [m]
has at least one true literal and at least one false literal. Define the 2-partition (V1, V2) so that V1
consists of precisely the vertices {c0, c1, . . . , cm, cm+1} and all those literal vertices which correspond to
true literals. Because of the arcs we reversed when going from D′ to D we have that D〈V1〉 contains a
cycle H = cm+1cmum,jmcm−1um−1,jm−1 . . . c1u1,j1c0cm+1, where ujq is one of the vertices correspond-
ing to a true literal of Cj , j ∈ [m]. If C1 contains two true literals, then let ui,j′1 be the other and add
the path c1u1,j′1c0 to H. Because c0 dominates all vertices of V1 − V (H) and cm+1 is dominated by
all of these, we see that D〈V1〉 is strong. A similar argument shows that D〈V2〉 is strong (because at
least one literal of each clause is false under φ).

Suppose now that (V1, V2) is a 2-partition of V (D) such that D〈Vi〉 is a strong tournament for
i ∈ [2]. By (a) we can assume w.l.o.g. that {c0, c1, . . . , cm, cm+1} ⊂ V1 and {c′0, c′1, . . . , c′m, c′m+1} ⊂ V2.
Now (c) implies that for each j ∈ [m] V1 must contain at least one and at most two of the vertices
corresponding to the literals of Cj . Thus if we construct a truth assignment where variable xi is true
if and only if all the vertices (by (b)) {v1,i, . . . , vm,i} are in V1, then we obtain a truth assignment
which satisfies at least one literal per clause and also has at least one false literal per clause. Thus F
is a ’Yes’-instance of NAE-3-SAT.

7 Remarks and open problems

In this paper we have considered 2-partition problems on semicomplete digraphs. These are also the
digraphs of independence number4 α = 1. It is well-known and easy to show that for digraphs with
bounded independence number α ≤ r we also have that the number of vertices of in-, out- or semi-
degree at most k is bounded by a function g(k, r). In particular, it follows from Turan’s theorem that
in a digraph with independence number at most α there are at most α(2k + 1) vertices of out-degree
at most k. Furthermore, it is easy to check that if a digraph D with independence number at most
r has a cycle C, then D〈V (C)〉 contains a cycle of length at most 2r + 1. Using these observations
it is not hard to see that we can extend Theorem 3.4 to the following. We leave the details to the
interested reader.

Theorem 7.1. For every choice of positive integers r, k1, k2 there exists a polynomial algorithm that
either constructs a (δ+ ≥ k1, δ+ ≥ k2)-partition of a given digraph with independence number at most
r or correctly outputs that none exist.

We cannot directly extend our proof of Theorem 5.3 to digraphs of bounded independence number:
in the proof of Lemma 5.1 we use the fact that if we take any set of k+ 1 vertices from Z, the vertex
v will dominate at least two of these. The corresponding property does not necessarily hold even if
we take a set of some f(k) vertices from Z when we have independence number at most α.

Conjecture 7.2. For every choice of positive integers r, k there exists a polynomial algorithm that
either constructs a (δ+ ≥ 1, δ− ≥ k)-partition of a given digraph with independence number at most r
or correctly outputs that none exist.

Problem 7.3. Determine the complexity every pair of fixed integers r, k1, k2 ≥ 1 of deciding the
following for a given digraph D with independence number r:

4The independence number α denotes the maximum cardinality of set of vertices such that there are no arcs between
vertices in the set
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• whether D has a (δ+ ≥ k1, δ− ≥ k2)-partition,

• whether D has a (δ+ ≥ k1, δ0 ≥ k2)-partition,

• whether D has a (δ0 ≥ k1, δ0 ≥ k2)-partition

Kühn et al. proved the following result about 2-partitions and tournaments into highly connected
tournaments. We formulate it for semicomplete digraphs, since every 3r − 2 strong semicomplete
digraph contains an r-strong spanning tournament, see e.g. [3, Theorem 11.10.4].

Theorem 7.4. [8] There exists a constant c such that every ck7-strong semicomplete digraph S has
a 2-partition (V1, V2) such that S〈Vi〉 is k-strong for i = 1, 2.

Instead of demanding high strong connectivity inside each set of the partition (V1, V2) we may also
ask for a partition of a semicomplete digraph S into strongly connected semicomplete digraphs S1, S2,
each of which have out-degree at least a specified number ki, i = 1, 2. Note that, since every strong
semicomplete digraph is hamiltonian, when k1 = k2 = 1 we just ask for a pair of complementary
cycles.

Problem 7.5. Does there exist a function g(k1, k2) such that every strong semicomplete digraph S
with δ+(S) ≥ g(k1, k2) has a 2-partition (V1, V2) such that S〈Vi〉 is strong and δ+(S〈Vi〉) ≥ ki for
i = 1, 2?

It was shown in [9] that every tournament with minimum out-degree at least 3 has a 2-partition
into two strong tournaments. As every mixed graph has an orientation whose out-degree at every
vertex is at least half of the original out-degree, this implies that g(1, 1) exists (it is at most 6). The
problem is open for all values k1, k2 ≥ 1 with k1 + k2 ≥ 3.

The following related result of [2] shows that the bounds in Theorems 1.4 and 1.5 are far from
being best possible when k becomes large.

Theorem 7.6. There exists an absolute constant c1 so that every semicomplete digraph S with min-
imum out-degree at least 2k + c1

√
k has a 2-partition (V1, V2) so that δ+(S〈Vi〉) ≥ k for i = 1, 2.

Theorem 7.7. There exists an absolute constant c2 so that every semicomplete digraph S with min-
imum semi-degree at least 2k + c2

√
k has a 2-partition (V1, V2) so that δ0(S〈Vi〉) ≥ k for i = 1, 2.
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