¢-96-S71S214d9

swiyiiob |y auljuo aaniedwo)d seq|v 'S

=BRICS

Basic Research in Computer Science

Competitive Online Algorithms

Susanne Albers

BRICS Lecture Series L S-96-2

| SSN 1395-2048 September 1996

Copyright © 1996, BRICS, Department of Computer Science
University of Aarhus. All rightsreserved.

Reproduction of all or part of thiswork
iIspermitted for educational or research use
on condition that this copyright noticeis
included in any copy.

See back inner page for alist of recent publicationsin the BRICS
L ecture Series. Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540

DK - 8000 AarhusC

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/

ftp ftp.brics.dk (cd pub/BRICS)

Competitive Online Algorithms

Susanne Albers

Susanne Albers
Max-Planck-Institut
Saarbrucken
Germany

Preface

I would like to thank BRICS and, in particular, Erik Meineche
Schmidt for giving me the opportunity to teach a mini-course on
competitive online algorithms at Aarhus University, August 27-29,
1996. Lecturing the course was a great pleasure for me. In win-
ter 1995/96, Dany Breslauer first pointed out to me the possibility
to teach a mini-course in Arhus, and I thank him for his encour-
agement. Furthermore, I would like to thank all members of the
Computer Science Department at Aarhus University for their very
kind hospitality throughout my stay.

The mini-course consisted of three lectures. In the first lecture we
gave basic definitions and presented important techniques that are
used in the study on online algorithms. The paging problem was
always the running example to explain and illustrate the material.
We also discussed the k-server problem, which is a very well-studied
generalization of the paging problem.

The second lecture was concerned with self-organizing data struc-
tures, in particular self-organizing linear lists. We presented results
on deterministic and randomized online algorithms. Furthermore,
we showed that linear lists can be used to build very effective data
compression schemes and reported on theoretical as well as experi-
mental results.

In the third lecture we discussed three application areas in which
interesting online problems arise. The areas were (1) distributed
data management, (2) scheduling and load balancing, and (3) robot
navigation and exploration. In each of these fields we gave some
important results.

Contents

Online algorithms and competitive analysis
1.1 Basic definitions L.

1.2 Results on deterministic paging algorithms

Randomization in online algorithms
2.1 General concepts

2.2 Randomized paging algorithms against oblivious ad-
VETSALIES .« .« o v v v v e e e e e e e

Proof techniques
3.1 Potential functions

3.2 Yao’s minimax principle L.

The k-server problem

The list update problem
5.1 Deterministic online algorithms
5.2 Randomized online algorithms

5.3 Average case analyses of list update algorithms

Data compression based on linear lists
6.1 Theoretical results
6.2 Experimental results

6.3 The compression algorithm by Burrows and Wheeler

vil

10
10
12

14

18
19
23
29

31
31
35
36

7 Distributed data management 37

7.1 Formal definition of migration and replication problems 38

7.2 Page migration L. 39
7.3 Page replicationo 41
7.4 Page allocation 44
8 Scheduling and load balancing 45
8.1 Scheduling oo 45
8.2 Load balancing 47
9 Robot navigation and exploration 49

viil

COMPETITIVE ONLINE ALGORITHMS

1 Online algorithms and competitive
analysis

1.1 Basic definitions

Formally, many online problems can be described as follows. An
online algorithm A is presented with a request sequence o = o(1),
0(2),...,0(m). The algorithm A has to serve each request online,
i.e., without knowledge of future requests. More precisely, when
serving request o(t), 1 <t < m, the algorithm does not know any
request o(t') with ¢’ > t. Serving requests incurs cost, and the goal is
to serve the entire request sequence so that the total cost is as small
as possible. This setting can also be regarded as a request-answer
game: An adversary generates requests, and an online algorithm has
to serve them one at a time.

In order to illustrate this formal model, we mention a concrete online
problem.

The paging problem: Consider a two-level memory system that
consists of a small fast memory and a large slow memory. Here, each
request specifies a page in the memory system. A request is served
if the corresponding page is in fast memory. If a requested page is
not in fast memory, a page fault occurs. Then a page must be moved
from fast memory to slow memory so that the requested page can
be loaded into the vacated location. A paging algorithms specifies
which page to evict on a fault. If the algorithm is online, then the
decision which page to evict must be made without knowledge of
any future requests. The cost to be minimized is the total number
of page faults incurred on the request sequence.

Sleator and Tarjan [48] suggested to evaluate the performance on
an online algorithm using competitive analysis. In a competitive
analysis, an online algorithm A is compared to an optimal offline
algorithm. An optimal offline algorithm knows the entire request

1

COMPETITIVE ONLINE ALGORITHMS

sequence in advance and can serve it with minimum cost. Given a
request sequence o, let C'4(c) denote the cost incurred by A and let
Copr(o) denote the cost paid by an optimal offline algorithm OPT.
The algorithm A is called ¢-competitive if there exists a constant a
such that
Calo) <c-Copr(o)+a

for all request sequences o. Here we assume that A is a deterministic
online algorithm. The factor ¢ is also called the competitive ratio of

A.

1.2 Results on deterministic paging algorithms
We list three well-known deterministic online paging algorithms.

e LRU (Least Recently Used): On a fault, evict the page in fast
memory that was requested least recently.

e FIFO (First-In First-Out): Evict the page that has been in

fast memory longest.

e LFU (Least Frequently Used): Evict the page that has been
requested least frequently.

Before analyzing these algorithms, we remark that Belady [12] ex-
hibited an optimal offline algorithm for the paging problem. The
algorithm is called MIN and works as follows.

e MIN: On a fault, evict the page whose next request occurs
furthest in the future.

Belady showed that on any sequence of requests, MIN achieves the
minimum number of page faults.

Throughout these notes, when analyzing paging algorithms, we de-
note by k the number of pages that can simultaneously reside in

2

1. ONLINE ALGORITHMS AND COMPETITIVE ANALYSIS

fast memory. It is not hard to see that the algorithm LFU is not
competitive. Sleator and Tarjan [48] analyzed the algorithms LRU
and FIFO and proved the following theorem.

Theorem 1 The algorithms LRU and FIFO are k-competitive.

Proof: We will show that LRU is k-competitive. The analysis for
FIFO is very similar. Consider an arbitrary request sequence o =
o(1),0(2),...,0(m). We will prove that Crru(c) < k- Copr(o).
Without loss of generality we assume that LRU and OPT initially
start with the same fast memory.

We partition o into phases P(0), P(1), P(2),... such that LRU has
at most k fault on P(0) and exactly k faults on P(z), for every ¢ > 1.
Such a partitioning can be obtained easily. We start at the end of
o and scan the request sequence. Whenever we have seen k faults
made by LRU, we cut off a new phase. In the remainder of this
proof we will show that OPT has at least one page fault during each
phase. This establishes the desired bound.

For phase P(0) there is nothing to show. Since LRU and OPT
start with the same fast memory, OPT has a page fault on the first
request on which LRU has a fault.

Consider an arbitrary phase P(¢),¢ > 1. Let o(¢;) be the first request
in P(2) and let o(¢;,41 — 1) be the last request in P(i¢). Furthermore,
let p be the page that is requested last in P(7 — 1).

Lemma 1 P(7) contains requests to k distinct pages that are dif-
ferent from p.

If the lemma holds, then OPT must have a page fault in P(z). OPT
has page p in its fast memory at the end of P(z — 1) and thus cannot
have all the other k pages request in P(¢) in its fast memory.

It remains to prove the lemma. The lemma clearly holds if the &
requests on which LRU has a fault are to k distinct pages and if

3

COMPETITIVE ONLINE ALGORITHMS

these pages are also different from p. So suppose that LRU faults
twice on a page ¢ in P(z). Assume that LRU has a fault on o(s1) =
g and o(sy) = ¢, with t; < s; < s3 < t;41 — 1. Page ¢ is in
LRU’s fast memory immediately after o(sy) is served and is evicted
at some time ¢t with s; < ¢t < s3. When ¢ is evicted, it is the
least recently requested page in fast memory. Thus the subsequence
o(s1),...,0(t) contains requests to k + 1 distinct pages, at least k
of which must be different from p.

Finally suppose that within P(i), LRU does not fault twice on page
but on one of the faults, page p is request. Let ¢t > ¢; be the first
time when p is evicted. Using the same arguments as above, we
obtain that the subsequence o(t; — 1),0(¢;),...,0(t) must contain
k 4+ 1 distinct pages. O

The next theorem is also due to Sleator and Tarjan [48]. It implies
that LRU and FIFO achieve the best possible competitive ratio.

Theorem 2 Let A be a deterministic online paging algorithm. If A
s c-competitive, then ¢ > k.

Proof: Let S = {pi,p2,....prs1} be aset of k + 1 arbitrary pages.
We assume without loss of generality that A and OPT initially have
Piy- .., pr in their fast memories.

Consider the following request sequence. Each request is made to
the page that is not in A’s fast memory.

Online algorithm A has a page fault on every request. Suppose that
OPT has a fault on some request o(t). When serving o(t), OPT
can evict a page is not requested during the next & — 1 requests
o(t+1),...,0(t+k—1). Thus, on any k consecutive requests, OPT
has at most one fault. a

The competitive ratios shown for deterministic paging algorithms
are not very meaningful from a practical point of view. Note that
the performance ratios of LRU and FIFO become worse as the size of

4

2. RANDOMIZATION IN ONLINE ALGORITHMS

the fast memory increases. However, in practice, these algorithms
perform better the bigger the fast memory is. Furthermore, the
competitive ratios of LRU and FIFO are the same, whereas in prac-
tice LRU performs much better. For these reasons, there has been a
study of competitive paging algorithms with access graphs [23, 36].
In an access graph, each node represents a page in the memory sys-
tem. Whenever a page p is requested, the next request can only be
to a page that is adjacent to p in the access graph. Access graphs
can model more realistic request sequences that exhibit locality of
reference. It was shown [23, 36] that using access graphs, one can
overcome some negative aspects of conventional competitive paging
results.

2 Randomization in online algorithms

2.1 General concepts

The competitive ratio of a randomized online algorithm A is defined
with respect to an adversary. The adversary generates a request
sequence o and it also has to serve . When constructing o, the
adversary always knows the description of A. The crucial question
is: When generating requests, is the adversary allowed to see the
outcome of the random choices made by A on previous requests?

Ben-David et al. [17] introduced three kinds of adversaries.

e Oblivious Adversary: The oblivious adversary has to gen-
erate a complete request sequence in advance, before any re-
quests are served by the online algorithm. The adversary is
charged the cost of the optimum offline algorithm for that se-
quence.

e Adaptive Online Adversary: This adversary may observe
the online algorithm and generate the next request based on

5

COMPETITIVE ONLINE ALGORITHMS

the algorithm’s (randomized) answers to all previous requests.
The adversary must serve each request online, i.e., without
knowing the random choices made by the online algorithm on
the present or any future request.

e Adaptive Offline Adversary: This adversary also gener-
ates a request sequence adaptively. However, it is charged the
optimum offline cost for that sequence.

A randomized online algorithm A is called e¢-competitive against
any oblivious adversary if there is a constant a such for all request
sequences o generated by an oblivious adversary, E[C4(c)] < ¢ -
Copr(o) + a. The expectation is taken over the random choices

made by A.

Given a randomized online algorithm A and an adaptive online
(adaptive offline) adversary ADV, let E[C4] and E[Capy] denote
the expected costs incurred by A and ADV in serving a request
sequence generated by ADV. A randomized online algorithm A is
called c-competitive against any adaptive online (adaptive offline)
adversary if there is a constant a such that for all adaptive online
(adaptive offline) adversaries ADV, E[C4] < ¢- E[Capv]+ a, where

the expectation is taken over the random choices made by A.

Ben-David et al. [17] investigated the relative strength of the adver-
saries with respect to an arbitrary online problem and showed the
following statements.

Theorem 3 If there is a randomized online algorithm that is c-
competitive against any adaptive offline adversary, then there also
exists a c-competitive deterministic online algorithm.

This theorem implies that randomization does not help against the
adaptive offline adversary.

2. RANDOMIZATION IN ONLINE ALGORITHMS

Theorem 4 If A is a c-competitive randomized algorithm against
any adaptive online adversary, and if there is a d-competitive algo-
rithm against any oblivious adversary, then A is (c - d)-competitive
against any adaptive offline adversary.

An immediate consequence of the above two theorems in the follow-
ing corollary.

Corollary 1 If there exists a c-competitive randomized algorithm

2

against any adaptive online adversary, then there is a ¢*-competitive

determainistic algorithm.

2.2 Randomized paging algorithms against
oblivious adversaries

We will prove that, against oblivious adversaries, randomized online
paging algorithms can considerably beat the ratio of k& shown for

deterministic paging. The following algorithm was proposed by Fiat
et al. [27].

Algorithm MARKING: The algorithm processes a request se-
quence in phases. At the beginning of each phase, all pages in the
memory system are unmarked. Whenever a page is requested, it
is marked. On a fault, a page is chosen uniformly at random from
among the unmarked pages in fast memory, and this pages is evicted.
A phase ends when all pages in fast memory are marked and a page
fault occurs. Then, all marks are erased and a new phase is started.

Fiat et al. [27] analyzed the performance of the MARKING algo-

rithm.

Theorem 5 The MARKING algorithm ts 2H}.-competitive against
any oblivious adversary, where Hy, = Y%, 1/i is the k-th Harmonic
number.

COMPETITIVE ONLINE ALGORITHMS

Note that Hj is roughly Ink. Later, in Section 3.2, we will see
that no randomized online paging algorithm against any oblivious
adversary can be better than Hp-competitive. Thus the MARKING
algorithm is optimal, up to a constant factor. More complicated
paging algorithms achieving an optimal competitive ratio of H; were
given in [42, 1].

Proof: Given a request sequence o = o(1),...,0(m), we assume
without of generality that MARKING already has a fault on the
first request o(1).

MARKING divides the request sequence into phases. A phase start-
ing with o(2) ends with o(7), where j, j > 1, is the smallest integer
such that the set

{o(i),o(i+1),....,0(+ 1)}
contains k 4+ 1 distinct pages. Note that at the end of a phase all
pages in fast memory are marked.

Consider an arbitrary phase. Call a page stale if it is unmarked but
was marked in the previous phase. Call a page clean if it is neither
stale nor marked.

Let ¢ be the number of clean pages requested in the phase. We will
show that

1. the amortized number of faults made by OPT during the phase
it at least 2.

2. the expected number of faults made by MARKING is at most
CHk.

These two statements imply the theorem.

We first analyze OPT’s cost. Let Sopr be the set of pages con-
tained in OPT’s fast memory, and let Sy be the set of pages stored
in MARKING’s fast memory. Furthermore, let d; be the value of

8

2. RANDOMIZATION IN ONLINE ALGORITHMS

|Sopr \ Swm| at the beginning of the phase and let dp be the value
of [Sopr \ Su| at the end of the phase. OPT has at least ¢ — dj
faults during the phase because at least ¢ — d; of the ¢ clean pages
are not in OPT’s fast memory. Also, OPT has at least dp faults
during the phase because dp pages requested during the phase are
not in OPT’s fast memory at the end of the phase. We conclude
that OPT incurs at least

dr dp

1 c
max{c —dy,dp} > 2(c—d1+dp)—§ 5 5

faults during the phase. Summing over all phases, the terms d2—1 and
“E telescope, except for the first and last terms. Thus the amortized

number of page faults made by OPT during the phase is at least .

Next we analyze MARKING's expected cost. Serving ¢ requests to
clean pages cost c. There are s = £k — ¢ < k — 1 requests to stale
pages. For ¢ =1,... we compute the expected cost of the i-th
request to a stale page Let ¢(2) be the number of clean pages that
were requested in the phase immediately before the i-th request to a
stale page and let s(¢) denote the number of stale pages that remain
before the i-th request to a stale page.

When MARKING serves the i-th request to a stale page, exactly
s(1) — ¢(2) of the s(2) stale pages are in fast memory, each of them
with equal probability. Thus the expected cost of the request is
M 0+ Q 1< c. - c)

s(17) s(7) s(1) k—i+1
The last equation follows because s(i) = k — (z — 1). The total
expected cost for serving requests to stale pages is

S

3
C
< _
E k—l—l—z E c(Hp —1).

1=2

We conclude that MARKING’s total expected cost in the phase is
bounded by cHj,. a

COMPETITIVE ONLINE ALGORITHMS

3 Proof techniques

3.1 Potential functions

We present an important proof technique that can be used to develop
upper bounds for deterministic and randomized online algorithms.
Consider an online algorithm A. In a competitive analysis we typi-
cally want to show that for all request sequences o = o(1),...,0(m),

CA(O') S C- COPT(O'), (1)

for some constant c. Assume for the moment that we deal with a
deterministic online algorithm. Usually, a bound given in (1) cannot
be established by comparing online and offline cost for each request
separately. For instance, if we consider the paging problem and
concentrate on a single request, it is possible that the online cost is
1 (the online algorithm has a page fault), whereas the optimal offline
cost is 0 (the offline algorithm does not have page fault). Thus, on
a single request, the ratio online cost/offline cost can be infinity.
However, on the entire request sequence o, the bound given in (1)
might hold. This implies that on the average,

Ca(t) < c-Copr(t)

holds for every request o(t), 1 <t < m. Here C4(t) and Copr(t)
denote the actual costs incurred by A and OPT on request o(t).
In a competitive analysis, an averaging of cost among requests can
be done using a potential function. We refer the reader to [50] for
a comprehensive introduction to amortized analyses using potential
functions.

Given a request sequence o = o(1),...,0(m) and a potential func-
tion ®, the amortized online cost on request o(t), 1 <t < m, is
defined as C'4(t) + ®(t) — ®(t — 1). Here ®(¢) is the value of the po-
tential function after request o (1), i.e., ®(¢) — ®(t — 1) is the change

10

3. PROOF TECHNIQUES

in potential that occurs during the processing of o(¢). In an amor-
tized analysis using a potential function we usually show that for
any request o(t),

CA(t) + q)(t) — (I)(t — 1) S C- COPT(t)- (2)

If we can prove this inequality for all ¢, then it is easy to see that A
is c-competitive. Summing up (2) for all t = 1,...,m, we obtain

> Ca(t) +@(m) — @(0) <) Copr(t), (3)
t=1 t=1
where ®(0) is the initial potential. Typically a potential function is
chosen such that ® is always non-negative and such that the initial
potential is 0. Using these two properties, we obtain from inequality

(3), as desired, C4(o) < ¢- Copr(o).

The difficult part in a competitive analysis using a potential function
is to construct ® and show inequality (2) for all requests. If A is
a randomized online algorithm, then the expected amortized cost
incurred by A has to be compared to the cost of the respective
adversary, for all requests o(t).

We now apply potential functions to give an alternative proof that
LRU is k-competitive.

As usual let 0 = o(1),...,0(m) be an arbitrary request sequence.
At any time let Sprpy be the set of pages contains in LRU’s fast
memory, and let Spopr be the set of pages contained in OPT’s fast
memory. Set S = Spry \ Sopr. Assign integer weights from the
range [1, k] to the pages in Spry such that, for any two pages p, ¢ €
Stru, w(p) < w(q) iff the last request to p occurred earlier than the

®=> wp).

p€ES

last request to ¢. Let

Consider an arbitrary request o(t) = p and assume without loss of
generality that OPT serves the request first and that LRU serves

11

COMPETITIVE ONLINE ALGORITHMS

second. If OPT does not have a page fault on o(t), then its cost is 0
and the potential does not change. On the other hand, if OPT has
a page fault, then its cost is 1. OPT might evict a page that is in
LRU’s fast memory, in which case the potential increases. However,
the potential can increase by at most k.

Next suppose that LRU does not have fault on o(t). Then its cost
is 0 and the potential cannot change. If LRU has a page fault, its
cost on the request is 1. We show that the potential decreases by
at least 1. Immediately before LRU serves o(t), page p is only in
OPT’s fast memory. By symmetry, there must be a page that is
only in LRU’s fast memory, i.e, the must exit a page ¢ € 5. If ¢ is
evicted by LRU during the operation, then the potential decreases
by w(q) > 1. Otherwise, since p is loaded into fast memory, ¢’s
weight must decrease by 1, and thus the potential must decrease by

1.

In summary we have shown: Every time OPT has a fault, the po-
tential increases by at most k. Every time LRU has a fault, the
potential decreases by at least 1. We conclude that

Crru(t) + ®(t) — B(t — 1) < k- Copr(t)

must hold.

3.2 Yao’s minimax principle

In this section we describe a technique for proving lower bounds
on the competitive ratio that is achieved by randomized online al-
gorithms against oblivious adversaries. The techniques is an ap-
plication of Yao’s minimax theorem [53]. In the context of online
algorithms, Yao’s minimax theorem can be formulated as follows:
Given an online problem, the competitive ratio of the best random-
ized online algorithm against any oblivious adversary is equal to the

12

3. PROOF TECHNIQUES

competitive ratio of the best deterministic online algorithm under a
worst-case input distribution.

More formally, let c¢g denote the smallest competitive ratio that
is achieved by randomized online algorithm R against any oblivi-
ous adversary. Furthermore, let P be a probability distribution for
choosing a request sequence. Given a deterministic online algorithm
A, we denote by cf the smallest competitive ratio of A under P, i.e.,
cll is the infimum of all ¢ such that E[C4] < ¢- E[Copr| + a. Here
E[C4] and E[Copr| denote the expected costs incurred by A and
OPT on request sequences that are generated according to P. As
usual, the constant ¢ may not depend on the request sequence o.
Yao’s minimax principle implies that

. _ . P
1%f CR = sUp 12f Cy- (4)

On the left-hand side of the equation, the infimum is taken over all
randomized online algorithms. On the right-hand side, the supre-
mum is taken over all probability distributions for choosing a request
sequence and the infimum is taken over all deterministic online al-
gorithms.

Using equation (4), we can construct a lower bound on the com-
petitiveness of randomized online algorithms as follows: First we
explicitly construct a probability distribution P. Then we develop
a lower bound on inf4 c¢f for any deterministic online algorithm A.

We can apply this strategy to prove a lower bound for randomized
online paging algorithms.

Theorem 6 If R is a randomized online paging algorithm that is
c-competitive against any oblivious adversary, then ¢ > Hy.

The theorem was first proved by Fiat et al. [27]. Here we give an
alternative proof presented in [43].

13

COMPETITIVE ONLINE ALGORITHMS

Proof: Let S = {pi,...,prs1} be aset of k+1 pages. We construct
a probability distribution for choosing a request sequence. The first
request o(1) is made to a page that is chosen uniformly at random
from S. Every other request o(t), ¢t > 1, it made to a page that is
chosen uniformly at random from S\ {o(¢ — 1)}.

We partition the request sequence into phases. A phase starting
with o(7) ends with o(7), where 7, j > 7, is the smallest integer such
that

{o(@),0(t+1),...,0(+ 1)}
contains k + 1 distinct pages.
OPT incurs one page fault during each phase.

Consider any deterministic online paging algorithm A. What is the
expected cost of A on a phase? The expected cost on each request
is % because at any time exactly one page is not in A’s fast memory.
The probability that the request sequence hits this page is % We
have to determine the expected length of the phase and study a
related problem. Consider a random walk on the complete graph
Kpy1. We start at some vertex of the graph and in each step move to
a neighboring vertex; each neighboring vertex is chosen with equal
probability. Clearly, the expected number steps until all vertices are
visited is equal to the expected length of the phase. A well-known
result in the theory of random walks states that the expected number
of steps to visit all vertices is kHy. a

4 The k-server problem

In the k-server problem we are given a metric space S and k& mobile
servers that reside on points in S. Each request specifies a point
x € S. To serve a request, one of the k server must be moved to the
requested point unless a server is already present. Moving a server
from point x to point y incurs a cost equal to the distance between

14

4., THE k-SERVER PROBLEM

x and y. The goal is to serve a sequence of requests so that the total
distance traveled by all serves is as small as possible.

The k-server problem contains paging as a special case. Consider
a metric space in which the distance between any two points in 1;
each point in the metric space represents a page in the memory
system and the pages covered by servers are those that reside in fast
memory. The k-server problem also models more general caching
problem, where the cost of loading an item into fast memory depends
on the size of the item. Such a situation occurs, for instance, when
font files are loaded into the cache of printers. More generally, the
k-server problem can also be regarded as a vehicle routing problem.

The k-server problem was introduced by Manasse et al. [41] in 1988
who also showed a lower bound for deterministic k-server algorithms.

Theorem 7 Let A be a deterministic online k-server algorithm in
a arbitrary metric space. If A is c-competitive, then ¢ > k.

Proof: We will construct a request sequence o and k algorithms

By,..., B such that
k
CA(O'> = ZCBJ(J)'
71=1

Thus, there must exist a jo such that %CA(O') > Cg,, (o). Let S
be the set of points initially covered by A’s servers plus one other
point. We can assume that A initially covers k distinct points so
that S has cardinality & + 1.

A request sequence o = o(1),...,0(m) is constructed in the follow-
ing way. At any time a request is made to the point not covered by
A’s servers.

Fort=1,...,m,let o(t) = z;. Let 2,41 be the point that is finally
uncovered. Then

Calo) = Zdist(xt+1,:pt) = Z dist(xs, xe41).
t=1 t=1

15

COMPETITIVE ONLINE ALGORITHMS

Let yy,...,yr be the points initially covered by A. Algorithm B;,
1 <3 <k, is defined as follows. Initially, B; covers all points in
S except for y;. Whenever a requested point z; is not covered, B;
moves the server from z;_q to z;.

Let 5;, 1 < 3 < k, be the set of points covered by B;’s servers.
We will show that throughout the execution of o, the sets S; are
pairwise different. This implies that at any step, only one of the
algorithms B; has to move that thus

k m m—1
Z Cp,;(0) = Edist(mt_l,xt) = Z dist(xy, xeqq).
71=1 t=2 t=1

The last sum is equal to A’s cost, except for the last term, which
can be neglected on long request sequences.

Consider two indices 7, with 1 < 5,1 < k. We show by induction on
the number of requests processed so far that S; # S;. The statement
is true initially. Consider request x; = o(t). If z; is in both sets,
then the sets do not change. If z; is not present in one of the sets,
say B;, then a server is moved from z,_; to x;. Since z;_; is still
covered by Bj, the statement holds after the request. O

Manasse et al. also conjectured that there exists a deterministic
k-competitive online k-server algorithm. Only very recently, Kout-
soupias and Papadimitriou [37] showed that there is a (2k — 1)-
competitive algorithm. Before, k-competitive algorithms were
known for special metric spaces and special values of k. It is worth-
while to note that the greedy algorithm, which always moves the
closest server to the requested point, is not competitive.

Koutsoupias and Papadimitriou analyzed the WORK FUNCTION
algorithm. Let X be a configuration of the servers. Given a request
sequence o = o(1),...,0(t), the work function w(X) is the minimal
cost to serve ¢ and end in configuration X.

Algorithm WORK FUNCTION: Suppose that the algorithm
has served o = o(1),...,0(t — 1) and that a new request r = o(t)

16

4., THE k-SERVER PROBLEM

arrives. Let X be the current configuration of the servers and let
x; be the point where server s;, 1 <@ < k, is located. Serve the
request by moving the server s; that minimizes

w(X;) + dist(x;,r),

where X; = X — {x;} + {r}.

As mentioned above, the algorithm achieves the following perfor-
mance [37].

Theorem 8 The WORK FUNCTION algorithm is (2k—1)-compe-

titive in an arbitrary metric space.

A very elegant randomized rule for moving servers was proposed by

Raghavan and Snir [45].

Algorithm HARMONIC: Suppose that there is a new request at
point r and that server s;, 1 <1 < k, is currently at point x;. Move
server s; with probability

L/dist(z;,r)
Ele 1/dist(x;,r)

pi =

to the request.

Intuitively, the closer a server is to the request, the higher the proba-
bility that it will be moved. Grove [32] proved that the HARMONIC
algorithm has a competitive ratio of ¢ < %k .28 —2k. The competi-
tiveness of HARMONIC is not better than k(k + 1)/2, see [43].

The main open problem in the area of the k-server problem is to
develop randomized online algorithms that have a competitive ratio
of ¢ < k in an arbitrary metric space.

17

COMPETITIVE ONLINE ALGORITHMS

5 The list update problem

The list update problem is to maintain a dictionary as an unsorted
linear list. Consider a set of items that is represented as a linear
linked list. We receive a request sequence o, where each request is
one of the following operations. (1) It can be an access to an item
in the list, (2) it can be an insertion of a new item into the list, or
(3) it can be a deletion of an item.

To access an item, a list update algorithm starts at the front of the
list and searches linearly through the items until the desired item is
found. To insert a new item, the algorithm first scans the entire list
to verify that the item is not already present and then inserts the
item at the end of the list. To delete an item, the algorithm scans
the list to search for the item and then deletes it.

In serving requests a list update algorithm incurs cost. If a request
is an access or a delete operation, then the incurred cost is 7, where
2 1s the position of the requested item in the list. If the request is an
insertion, then the cost is n + 1, where n is the number of items in
the list before the insertion. While processing a request sequence, a
list update algorithm may rearrange the list. Immediately after an
access or insertion, the requested item may be moved at no extra
cost to any position closer to the front of the list. These exchanges
are called free exchanges. Using free exchanges, the algorithm can
lower the cost on subsequent requests. At any time two adjacent
items in the list may be exchanged at a cost of 1. These exchanges
are called paid exchanges.

With respect to the list update problem, we require that a c-compe-
titive online algorithm has a performance ratio of ¢ for all size lists.
More precisely, a deterministic online algorithm for list update is
called c-competitive if there is a constant a such that for all size
lists and all request sequences o,

CA(O') § C- OOPT(U) + a.
18

5. THE LIST UPDATE PROBLEM

The competitive ratios of randomized online algorithms are defined
similarly.

Linear lists are one possibility to represent a dictionary. Certainly,
there are other data structures such as balanced search trees or hash
tables that, depending on the given application, can maintain a dic-
tionary in a more efficient way. In general, linear lists are useful
when the dictionary is small and consists of only a few dozen items
[19]. Furthermore, list update algorithms have been used as subrou-
tines in algorithms for computing point maxima and convex hulls
[18, 30]. Recently, list update techniques have been very successfully
applied in the development of data compression algorithms [24]. We
discuss this application in detail in Section 6.

5.1 Deterministic online algorithms

There are three well-known deterministic online algorithms for the
list update problem.

e Move-To-Front: Move the requested item to the front of the
list.

e Transpose: Exchange the requested item with the immedi-
ately preceding item in the list.

e Frequency-Count: Maintain a frequency count for each item
in the list. Whenever an item is requested, increase its count
by 1. Maintain the list so that the items always occur in
nonincreasing order of frequency count.

The formulations of list update algorithms generally assume that
a request sequence consists of accesses only. It is obvious how to
extend the algorithms so that they can also handle insertions and
deletions. On an insertion, the algorithm first appends the new item

19

COMPETITIVE ONLINE ALGORITHMS

at the end of the list and then executes the same steps as if the item
was requested for the first time. On a deletion, the algorithm first
searches for the item and then just removes it.

In the following, we discuss the algorithms Move-To-Front, Trans-
pose and Frequency-Count. We note that Move-To-Front and Trans-
pose are memoryless strategies, i.e., they do not need any extra
memory to decide where a requested item should be moved. Thus,
from a practical point of view, they are more attractive than Fre-
quency-Count. Sleator and Tarjan [48] analyzed the competitive
ratios of the three algorithms.

Theorem 9 The Move-To-Front algorithm is 2-competitive.

Proof: Consider a request sequence o = o(1),0(2),...,0(m) of
length m. First suppose that o consists of accesses only. We will
compare simultaneous runs of Move-To-Front and OPT on ¢ and
evaluate online and offline cost using a potential function ®.

The potential function we use is the number of inversions in Move-
To-Front’s list with respect to OPT’s list. An inversion is a pair
x,y of items such that x occurs before y Move-To-Front’s list and
after y in OPT’s list. We assume without loss of generality that
Move-To-Front and OPT start with the same list so that the initial
potential is 0.

For any t, 1 <t < m, let Cyrrp(t) and Copr(t) denote the actual
cost incurred by Move-To-Front and OPT in serving o(t¢). Fur-
thermore, let ®(¢) denote the potential after o(t) is served. The
amortized cost incurred by Move-To-Front on o(t) is defined as

Cyurr(t) + ®(t) — ®(t — 1). We will show that for any ¢,
Cyrr(t) + ®(t) — ®(t — 1) < 2Copr(t) — 1. (5)

Summing this expression for all ¢t we obtain >.7*; Cyrp(t) + ®(m) —
(I)(()) S Z;il QCOPT(t> —m, i.e., CMTF(U> § QCOPT(O'> - m+ (I)(()) -
20

5. THE LIST UPDATE PROBLEM

®(m). Since the initial potential is 0 and the final potential is non-
negative, the theorem follows.

In the following we will show inequality (5) for an arbitrary t. Let
z be the item requested by o(t). Let k denote the number of items
that precede x in Move-To-Front’s and OPT’s list. Furthermore,
let [denote the number of items that precede x in Move-To-Front’s
list but follow = in OPT’s list. We have Cyrp(t) = k+ 1+ 1 and
COPT(t) >k+1.

When Move-To-Front serves o(t) and moves x to the front of the list,
[inversions are destroyed and at most k& new inversions are created.

Thus

Crurr(t) + () — 0t — 1) < Cyrp(t)+k—1 = 2k +1

<
< QCOPT(t) — 1.

Any paid exchange made by OPT when serving o(t) can increase the
potential by 1, but OPT also pays 1. We conclude that inequality
(5) holds.

The above arguments can be extended easily to analyze an insertion
or deletion. On an insertion, Cpyrr(t) = Copr(t) = n + 1, where n
is the number of items in the list before the insertion, and at most n
new inversions are created. On a deletion, [inversions are removed
and no new inversion is created. a

Sleator and Tarjan [48] showed that, in terms of competitiveness,
Move-To-Front is superior to Transpose and Frequency-Count.

Proposition 1 The algorithms Transpose and Frequency-Count are
not c-competitive for any constant c.

Recently, Albers [2] presented another deterministic online algo-
rithm for the list update problem. The algorithm belongs to the
Timestamp(p) family of algorithms that were introduced in the con-
text of randomized online algorithms and that are defined for any

21

COMPETITIVE ONLINE ALGORITHMS

real number p € [0,1]. For p = 0, the algorithm is deterministic and
can be formulated as follows.

Algorithm Timestamp(0): Insert the requested item, say z, in
front of the first item in the list that precedes # and that has been
requested at most once since the last request to x. If there is no such
item or if & has not been requested so far, then leave the position of
x unchanged.

Theorem 10 The Timestamp(0) algorithm is 2-competitive.

Note that Timestamp(0) is not memoryless. We need information on
past requests in order to determine where a requested item should be
moved. In fact, in the most straightforward implementation of the
algorithm we need a second pass through the list to find the position
where the accessed item must be inserted. Timestamp(0) is interest-
ing because it has a better overall performance than Move-To-Front.
The algorithm achieves a competitive ratio of 2, as does Move-To-
Front. However, as we shall see in Section 5.3, Timestamp(0) is
considerably better than Move-To-Front on request sequences that
are generated by probability distributions.

Karp and Raghavan [39] developed a lower bound on the compet-
itiveness that can be achieved by deterministic online algorithms.
This lower bound implies that Move-To-Front and Timestamp(0)
have an optimal competitive ratio.

Theorem 11 Let A be a deterministic online algorithm for the list
update algorithm. If A is c-competitive, then ¢ > 2.

Proof: Consider a list of n items. We construct a request sequence
that consist of accesses only. Each request is made to the item that
is stored at the last position in A’s list. On a request sequence o
of length m generated in this way, A incurs a cost of C4(c0) = mn.
Let OPT’ be the optimum static offline algorithm. OPT’ first sorts

22

5. THE LIST UPDATE PROBLEM

the items in the list in order of nonincreasing request frequencies
and then serves ¢ without making any further exchanges. When
rearranging the list, OPT’ incurs a cost of at most n(n — 1)/2. Then
the requests in o can be served at a cost of at most m(n + 1)/2. Thus
Copr(o) < m(n+1)/2 + n(n — 1)/2. For long request sequences,
the additive term of n(n — 1)/2 can be neglected and we obtain

CA(O') Z nzﬁ . COPT(O').

The theorem follows because the competitive ratio must hold for all
list lengths. a

5.2 Randomized online algorithms

We analyze randomized online algorithms for the list update prob-
lem against oblivious adversaries. It was shown by Reingold et al.
[46] that against adaptive online adversaries, no randomized online
algorithm for list update can be better than 2-competitive. Recall
that, by Theorem 3, a lower bound of 2 also holds against adaptive
offline adversaries.

Many randomized online algorithms for list update have been pro-
posed in the literature [34, 35, 46, 2, 5]. We present the two most

important algorithms. Reingold et al. [46] gave a very simple algo-
rithm, called BIT.

Algorithm Bit: Each item in the list maintains a bit that is com-
plemented whenever the item is accessed. If an access causes a bit
to change to 1, then the requested item is moved to the front of the
list. Otherwise the list remains unchanged. The bits of the items
are initialized independently and uniformly at random.

Theorem 12 The Bit algorithm is 1.75-competitive against any
oblivious adversary.

23

COMPETITIVE ONLINE ALGORITHMS

Reingold et al. analyzed Bit using an elegant modification of the
potential function given in the proof of Theorem 9. Again, an inver-
sion is a pair of items z,y such that x occurs before y in Bit’s list
and after y in OPT’s list. An inversion has type 1 if y’s bit is 0 and
type 2if y’s bit is 1. Now, the potential is defined as the number of
type 1 inversions plus twice the number of type 2 inversions.

Interestingly, it is possible to combine the algorithms Bit and Times-
tamp(0), see Albers et al. [5]. This combined algorithm achieves the
best competitive ratio that is currently known for the list update
problem.

Algorithm Combination: With probability 4/5 the algorithm
serves a request sequence using Bit, and with probability 1/5 it
serves a request sequence using Timestamp(0).

Theorem 13 The algorithm Combination is 1.6-competitive against
any oblivious adversary.

Proof: The analysis consists of two parts. In the first part we show
that given any request sequence o, the cost incurred by Combina-
tion and OPT can be divided into costs that are caused by each
unordered pair {z,y} of items z and y. Then, in the second part,
we compare online and offline cost for each pair {z,y}. This method
of analyzing cost by considering pairs of items was first introduced
by Bentley and McGeoch [19] and later used in [2, 34]. In the fol-
lowing we always assume that serving a request to the :-th item in
the list incurs a cost of ¢ — 1 rather than :. Clearly, if Combination
is 1.6-competitive in this : — 1 cost model, it is also 1.6-competitive
in the i-cost model.

Let 0 = o(1),0(2),...,0(m) be an arbitrary request sequence of
length m. For the reduction to pairs we need some notation. Let S
be the set of items in the list. Consider any list update algorithm A
that processes o. For any ¢ € [1,m] and any item = € S, let C4(t, x)

24

5. THE LIST UPDATE PROBLEM

be the cost incurred by item when A serves o(t). More precisely,
Ca(t,z) = 1if item x precedes the item requested by o(t) in A’s list
at time t; otherwise Cy(t,2) = 0. If A does not use paid exchanges,
then the total cost C'4(c) incurred by A on o can be written as

OA(O'> = Z ZOA(t,.CE):Z Z CA(t,$>

te[l,m]z€S €S te[l,m]

= ZZ Z CA(tax)

€S yeS te[l,m]

o(t)=y
= Y. (X Caltby)+ > Ca(t,2)).
{=z.,y} t€ll,m] t€[1,m]
z#y o(t)=z a(t)=y

For any unordered pair {z,y} of items = # y, let 0., be the request
sequence that is obtained from o if we delete all requests that are
neither to « nor to y. Let Cgrr(osy) and Crs(o,y) denote the costs
that Bit and Timestamp(0) incur in serving o, on a two item list
that consist of only x and y. Obviously, if Bit serves o on the long
list, then the relative position of x and y changes in the same way
as if Bit serves o, on the two item list. The same property holds
for Timestamp(0). This follows from Lemma 2, which can easily be
shown by induction on the number of requests processed so far.

Lemma 2 At any time during the processing of o, x precedes y in
Timestamp(0)’s list if and only if one of the following statements
holds: (a) the last requests made to x and y are of the form zx, xyx
or zxy; (b) x preceded y initially and y was requested at most once
so far.

Thus, for algorithm A € {Bit, Timestamp(0)} we have

CA(O'xy)Z Z CA(t,y)-I- Z CA(t,:Z?)

te[1,m] te[1,m]
o(t)=z o(t)=y

Calo) = {Z} Ca(0zy)- (6)

25

COMPETITIVE ONLINE ALGORITHMS

Note that Bit and Timestamp(0) do not incur paid exchanges. For
the optimal offline cost we have

Copr(ozy) < > Copr(t,y)+ > Copr(t,z) + p(a,y)

t€[1,m] te[1,m]
o(t)=z o(t)=y
Copr(o) > > Copr(osy), (7)
{z,y}
TFY

where p(z,y) denotes the number of paid exchanges incurred by
OPT in moving z in front of y or y in front of z. Here, only inequality
signs hold because if OPT serves o,, on the two item list, then it
can always arrange = and y optimally in the list, which might not be
possible if OPT serves o on the entire list. Note that the expected
cost E[Ccp(0sy)] incurred by Combination on o, is

BlCon(om)] = £ BCh(ou)] + £F(Crs(o)l. (8)

In the following we will show that for any pair {z,y} of items
E[Cep(0sy)] < 1.6Copr(0sy). Summing this inequality for all pairs
{z,y}, we obtain, by equations (6),(7) and (8), that Combination is
1.6-competitive.

Consider a fixed pair {z,y} with # y. We partition the request
sequence o, into phase. The first phase starts with the first request
in 0, and ends when, for the first time, there are two requests to
the same item and the next request is different. The second phase
starts with that next request and ends in the same way as the first
phase. The third and all remaining phases are constructed in the
same way as the second phase. The phases we obtain are of the
following types: z* for some k > 2; (zy)Fz' for some k > 1,1 > 2;
(zy)*y' for some k > 1, { > 1. Symmetrically, we have y*, (yz)*y’

and (yz)*z!.

Since a phase ends with (at least) two requests to the same item,
the item requested last in the phase precedes the other item in the

26

5. THE LIST UPDATE PROBLEM

two item list maintained by Bit and Timestamp(0). Thus the item
requested first in a phase is always second in the list. Without loss
of generality we can assume the same holds for OPT, because when
OPT serves two consecutive requests to the same item, it cannot cost
more to move that item to the front of the two item list after the first
request. The expected cost incurred by Bit, Timestamp(0) (denoted
by TS(0)) and OPT are given in the table below. The symmetric
phases with = and y interchanged are omitted. We assume without
generality that at the beginning of o,,, y precedes z in the list.

Phase Bit T5(0) OPT
zk % 2 1
(:cy)k;vl %k +1 2k k41
(zy)*y! 2+ 1 2k — 1 k

The entries for OPT are obvious. When Timestamp(0) serves a
phase (zy)*z!, then the first two request zy incur a cost of 1 and 0,
respectively, because x is left behind y on the first request to z. On
all subsequent requests in the phase, the requested item is always
moved to the front of the list. Therefore, the total cost on the phase
is 14+0+2(k—1)+1 = 2k. Similarly, Timestamp(0) serves (zy)*y'
with cost 2k — 1.

For the analysis of Bit’s cost we need two lemmata.

Lemma 3 For any item x and any t € [1,m], after the t-th request
in o, the value of x’s bit is equally likely to be 0 or 1, and the value
s independent of the bits of the other items.

Lemma 4 Suppose that Bit has served three consecutive requests
YTy in o4y, or two consecutive requests xy where initially y pre-
ceded x. Then y is in front of x with probability %. The analogous
statement holds when the roles of x and y are interchanged.

27

COMPETITIVE ONLINE ALGORITHMS

Clearly, the expected cost spent by Bit on a phase z* is 1 + % +

0(k —2) = 2. Consider a phasel(;vy)kxl. The first two requests zy
2
remaining request in the string (zy)* and the first request in 2! have
!

incur a expected cost of 1 and =, respectively. By Lemma 4, each
an expected cost of %. Also by Lemma 4, the second request in x
costs 1 — % = i. All other requests in z' are free. Therefore, Bit
pays an expected cost of 1 + % + %(k - 1)+ % + i = %k + 1 on the

phase. Similarly, we can evaluate a phase (zy)*y'.

The Combination algorithm serves a request sequence with proba-
bility 2 using Bit and with probability + using Timestamp(0). Thus,
by the above table, Combination has an expected cost of 1.6 on a
phase z*, a cost of 1.6k + 0.8 on a phase (zy)*z', and a cost 1.6k on

a phase (zy)*y'. In each case this is at most 1.6 times the cost of

OPT.

In the above proof we assume that a request sequence consist of
accesses only. However, the analysis is easily extended to the case
that insertions and deletions occur, too. For any item x, consider
the time intervals during which z is contained in the list. For each
of these intervals, we analyze the cost caused by any pair {z,y},
where y is an item that is (temporarily) present during the interval.
O O

Teia [49] presented a lower bound for randomized list update algo-
rithms.

Theorem 14 Let A be a randomized online algorithm for the list
update problem. If A is c-competitive against any oblivious adver-
sary, then ¢ > 1.5.

An interesting open problem is to give tight bounds on the com-
petitive ratio that can be achieved by randomized online algorithms
against oblivious adversaries.

28

5. THE LIST UPDATE PROBLEM

5.3 Average case analyses of list update
algorithms

In this section we study a restricted class of request sequences: re-
quest sequences that are generated by a probability distribution.
Consider a list of n items 1, xs,...,2,, and let § = (p1,p2,---,Pn)
be a vector of positive probabilities p; with >, p; = 1. We study
request sequences that consist of accesses only, where each request
it made to item x; with probability p;, 1 < < n. It is convenient
to assume that py > py > -+ > p,.

There are many results known on the performance of list update
algorithms when a request sequence is generated by a probability
distribution, i.e. by a discrete memoryless source. In fact, the al-
gorithms Move-To-Front, Transpose and Frequency-Count given in
Section 5.1 as well as their variants were proposed as heuristics for
these particular request sequences.

We are now interested in the asymptotic expected cost incurred by
a list update algorithm. For any algorithm A, let E4(p) denote the
asymptotic expected cost incurred by A in serving a single request in
a request sequence generated by the distribution p'= (py,...,ps). In
this situation, the performance of an online algorithm has generally
been compared to that of the optimal static ordering, which we
call STAT. The optimal static ordering first arranges the items z;
in nonincreasing order by probabilities and then serves a request
sequence without changing the relative position of items. Clearly,
Esrar(p) = X%, ip; for any distribution p'= (p1,...,pn).

We first study the algorithms Move-To-Front(MTF), Transpose(T)
and Frequency-Count(FC). By the strong law of large numbers we
have Erc(p) = Esrar(p) for any probability distribution p’ [47].
However, as mentioned in Section 5.1, Frequency-Count may need
a large amount of extra memory to serve a request sequence.

Chung et al. [25] gave an upper bound of Move-To-Front’s perfor-
29

COMPETITIVE ONLINE ALGORITHMS

mance.

Theorem 15 For any probability distribution p,
s
Eurr(p) < §ESTAT(]7)-

This bound is tight as was shown by Gonnet et al. [28].

Theorem 16 For any ¢ > 0, there exists a probability distribution

pe with
T

Ervrr(pe) > (5

—¢)Esrar(pe).

Rivest [47] proved that Transpose performs better than Move-To-
Front on distributions.

Theorem 17 For any distribution p = (p1,...,pn),

Er(p) < Eymrr(p).

The inequality is strict unless n =2 or p; = 1/n fori=1,...,n.

Finally, we consider the Timestamp(0) algorithm that was also pre-
sented in Section 5.1. It was shown in [4] that Timestamp(0) has
a better performance then Move-To-Front if request sequences are
generated by probability distributions. Let Epg(p) denote the
asymptotic expected cost incurred by Timestamp(0).

Theorem 18 For any probability distribution p,
Ers(p) < 1.34Esrar(P).

Theorem 19 For any probability distribution p,

Ers(p) < 1.5Eopr(p).
30

6. DATA COMPRESSION BASED ON LINEAR LISTS

Note that Eopr(p) is the asymptotic expected cost incurred by the
optimal offline algorithm OPT, which may dynamically rearrange
the list while serving a request sequence. Thus, this algorithm is
much stronger than STAT. The algorithm Timestamp(0) is the only
algorithm whose asymptotic expected cost has been compared to

Eopr(p).

The bound given in Theorem 19 holds with high probability. More
precisely, for every distribution g = (p1,...,p,), and € > 0, there
exist constants ¢;, c; and mg dependent on p,n and ¢ such that for
any request sequence o of length m > mg generated by p,

Prob{Crs(c) > (1.5 4+ ¢)Copr(o)} < cre™=™.

6 Data compression based on linear
lists

Linear lists can be used to build locally adaptive data compression
schemes. This application of linear lists recently became of consid-
erable importance, due to a paper by Burrows and Wheeler. In [24],
Burrows and Wheeler developed a data compression scheme using
unsorted lists that achieves a better compression than Ziv-Lempel
based algorithms. Before describing their algorithm, we first present
a data compression scheme given by Bentley et al. [20] and discuss
theoretical as well as experimental results.

6.1 Theoretical results

In data compression we are given a string S that shall be compressed,
i.e., that shall be represented using fewer bits. The string S consists
of symbols, where each symbol is an element of the alphabet ¥ =
{z1,...,2,}. The idea of data compression schemes using linear

31

COMPETITIVE ONLINE ALGORITHMS

lists it to convert the string S of symbols into a string I of integers.
An encoder maintains a linear list of symbols contained in ¥ and
reads the symbols in the string S. Whenever the symbol z; has to
be compressed, the encoder looks up the current position of z; in
the linear list, outputs this position and updates the list using a list
update rule. If symbols to be compressed are moved closer to the
front of the list, then frequently occurring symbols can be encoded
with small integers.

A decoder that receives I and has to recover the original string S
also maintains a linear list of symbols. For each integer j it reads
from I, it looks up the symbol that is currently stored at position
j. Then the decoder updates the list using the same list update
rule as the encoder. Clearly, when the string [is actually stored or
transmitted, each integer in the string should be coded again using
a variable length prefix code.

In order to analyze the above data compression scheme one has to
specify how an integer j in [shall be encoded. Elias [26] presented
several coding schemes that encode an integer j with essentially
log 7 bits. The simplest version of his schemes encodes j with 1 4
2|log 7] bits. The code for j consists of a prefix of |log j| 0’s followed
by the binary representation of j, which requires 1 + [logj| bits.
A second encoding scheme is obtained if the prefix of [logj| 0’s
followed by the first 1 in the binary representation of j is coded
again using this simple scheme. Thus, the second code uses 1 +

llog 7] + 2|log(1 + log j)] bits to encode j.

Bentley et al. [20] analyzed the above data compression algorithm
if encoder and decoder use Move-To-Front as list update rule. They
assume that an integer j is encoded with f(7) = 1 + [logyj| +
2[log(1 +logj)| bits. For a string S, let Aprr(S) denote the aver-
age number of bits needed by the compression algorithm to encode
one symbolin S. Let m denote the length of S and let m;, 1 < < n,
denote the number of occurrences of the symbol z; in 5.

32

6. DATA COMPRESSION BASED ON LINEAR LISTS

Theorem 20 For any input sequence S,
where H(S) = 37 7+ log(7%).

The expression H(S) = Y1y ™ log(2-) is the “empirical entropy”

=1 m

of S. The empirical entropy is mterestmg because it corresponds to
the average number of bits per symbol used by the optimal static
Huffman encoding for a sequence. Thus, Theorem 20 implies that
Move-To-Front based encoding is almost as good as static Huffman
encoding.

Proof of Theorem 20: We assume without loss of generality
that the encoder starts with an empty linear list and inserts new
symbols as they occur in the string S. Let f(j) = 1 + [logj]| +
2[log(1l +1logj)|. Consider a fixed symbol z;, 1 < i < n, and let
41,92, - - -, ¢m, be the positions at which the symbol z; occurs in the
string 5. The first occurrence of x; in S can the encoded with f(¢1)
bits and the k-th occurrence of ; can be encoded with f(gr — qr—1)
bits. The m; occurrences of z; can be encoded with a total of

my

Fla) + > flak — qr-1)

k=1
bits. Note that f is a concave function. We now apply Jensen’s
inequality, which states that for any concave function f and any
set {w1,...,w,} of positive reals whose sum is 1, D7 wif(yi) <
FOOor, wey;) [33]. Thus, the m; occurrences of x; can be encoded
with at most

zf(QI+Z (gr — qr- 1))—mf(qmz) mif(—)

k=2 e

bits. Summing the last expression for all symbols z; and dividing
by m, we obtain

Amrr(S Z i fl— m

=1 m Z

33

COMPETITIVE ONLINE ALGORITHMS

The definition of f gives

Aprr(S) < Ty m el D m log() i1 leog(l -|—log())
<Zz 1m E Tnllog()‘l‘ZlOg(1= 1m+zz 1m10g())
=1+ H(S)+ 2log(1 +H(S))

The second inequality follows again from Jensen’s inequality. O

Bentley et al. [20] also considered strings that are generated by
probability distributions, i.e., by discrete memoryless sources p =
(p1y-..,pn). The p;’s are positive probabilities that sum to 1. In a
string S generated by p'= (p1,...,pn), each symbol is equal to z;
with probability p;, 1 < ¢ < n. Let Byrp(p) denote the expected
number of bits needed by Move-To-Front to encode one symbol in
a string generated by p'= (p1....,pn).

Theorem 21 For any = (p1,...,pn),

where H(p) = 3.7 pilog(1/p;) is the entropy of the source.

Shannon’s source coding theorem (see e.g. Gallager [32]) implies that
the number Byrp(p) of bits needed by Move-To-Front encoding is
optimal, up to a constant factor.

Albers and Mitzenmacher [4] analyzed the data compression algo-
rithm if encoder and decoder use Timestamp(0) as list update al-
gorithm. They showed that a statement analogous to Theorem 20
holds. More precisely, for any string S, let Aprpp(S) denote the av-
erage number of bits needed by Timestamp(0) to encode one symbol
in S. Then, Aps(S) <1+ H(S) + 2log(1 + H(S)), where H(S) is
the empirical entropy of S. For strings generated by discrete mem-
oryless sources, Timestamp(0) achieves a better compression than
Move-To-Front.

34

6. DATA COMPRESSION BASED ON LINEAR LISTS

Theorem 22 For any p = (p1,p2,---,Pn),
Brs(p) < 1+ H(p) + 2log(1 + H(p)),
where H(p) = Y7y pilog(1/pi)+Hog(1=ic; pipi(pi — pi)?/(pi + p;)?)-

Note that 0 < 3.c; pip;(pi — i)/ (pi + p;)* < 1.

6.2 Experimental results

The above data compression algorithm, based on Move-To-Front or
Timestamp(0), was analyzed experimentally [4, 20]. In general, the
algorithm can be implemented in two ways. In a byte-level scheme,
each ASCII character in the input string is regarded as a symbol
that is encoded individually. In contrast, in a word-level scheme each
word, i.e. each longest sequence of alphanumeric and nonalphanu-
meric characters, represents a symbol. Albers and Mitzenmacher [4]
compared Move-To-Front and Timestamp(0) based encoding on the
Calgary Compression Corpus [52], which consists of files commonly
used to evaluate data compression algorithms. In the byte-level im-
plementations, Timestamp(0) achieves a better compression than
Move-To-Front. The improvement is typically 6-8%. However, the
byte-level schemes perform far worse than standard UNIX utilities
such as pack or compress. In the word-level implementations, the
compression achieved by Move-To-Front and Timestamp(0) is com-
parable to that of the UNIX utilities. However, in this situation,
the improvement achieved by Timestamp(0) over Move-To-Front is
only about 1%.

Bentley et al. [20] implemented a word-level scheme based on Move-
To-Front that uses a linear list of limited size. Whenever the encoder
reads a word from the input string that is not contained in the list,
the word is written in non-coded form onto the output string. The
word is inserted as new item at the front of the list and, if the

35

COMPETITIVE ONLINE ALGORITHMS

current list length exceeds the allowed length, the last item of the
list is deleted. Such a list acts like a cache. Bentley et al. tested
the compression scheme with various list lengths on several text and
Pascal files. If the list may contain up to 256 items, the compression
achieved is comparable to that of word-based Huffman encoding and
sometimes better.

6.3 The compression algorithm by Burrows and
Wheeler

As mentioned in the beginning of this section, Burrows and Wheeler
[24] developed a very effective data compression algorithm using
self-organizing lists that achieves a better compression than Ziv-
Lempel based schemes. The algorithm by Burrows and Wheeler first
applies a reversible transformation to the string S. The purpose of
this transformation is to group together instances of a symbol x;
occurring in S. The resulting string S’ is then encoded using the
Move-To-Front algorithm.

More precisely, the transformed string S’ is computed as follows.
Let m be the length of S. The algorithm first computes the m
rotations (cyclic shifts) of S and sorts them lexicographically. Then
it extracts the last character of these rotations. The k-th symbol
of 5" is the last symbol of the k-th sorted rotation. The algorithm
also computes the index J of the original string S in the sorted list
of rotations. Burrows and Wheeler gave an efficient algorithm to
compute the original string S given only 5" and .J.

In the sorting step, rotations that start with the same symbol are
grouped together. Note that in each rotation, the initial symbol is
adjacent to the final symbol in the original string S. If in the string
S, a symbol z; is very often followed by x;, then the occurrences of
x; are grouped together in S’. For this reason, S’ generally has a
very high locality of reference and can be encoded very effectively

36

7. DISTRIBUTED DATA MANAGEMENT

with Move-To-Front. The paper by Burrows and Wheeler gives a
very detailed description of the algorithm and reports of experi-
mental results. On the Calgary Compression Corpus, the algorithm
outperforms the UNIX utilities compress and gzip and the improve-
ment is 13% and 6%, respectively.

7 Distributed data management

Consider a network of processors, each of which has its local memory.
A global shared memory is modeled by distributing the physical
pages among the local memories. Accesses to the global memory are
accomplished by accessing the local memories. Suppose a processor
p wants to read a memory address from page B. If B is stored in
p’s local memory, then this read operation can be executed locally.
Otherwise, p determines a processor ¢ holding the page and sends a
request to ¢. The desired information is then transmitted from ¢ to
p, and the communication cost incurred thereby is proportional to
the distance from ¢ to p. If p has to access page B frequently, it may
be worthwhile to move or copy B from ¢ to p because subsequent
accesses will become cheaper. However, transmitting an entire page
incurs a high communication cost proportional to the page size times
the distance from ¢ to p.

If a page is writable, it is reasonable to store only one copy of the
page in the entire system. This avoids the problem of keeping multi-
ple copies of the page consistent. The migration problem is to decide
in which local memory the single copy of the writable page should
be stored so that a sequence of memory accesses can be processed
at low cost. On the other hand, if a page is read-only, it is possible
to keep several copies of the page in the system, i.e., a page may be
copied from one local memory to another. In the replication problem
we have to determine which local memories should contain copies
of the read-only page. Finding efficient migration and replication

37

COMPETITIVE ONLINE ALGORITHMS

strategies is an important problem that has been studied from a
practical and theoretical point of view. In this section we study
on-line algorithms for page migration and replication.

7.1 Formal definition of migration and replica-
tion problems

Formally, the page migration and replication problems can be de-
scribed as follows. We are given an undirected graph G. Each node
in (G corresponds to a processor and the edges represent the inter-
connection network. Associated with each edge is a length that is
equal to the distance between the connected processors. We assume
that the edge lengths satisty the triangle inequality.

In page migration and replication we generally concentrate on one
particular page. We say that a node v has the page it the page is
contained in v’s local memory. A request at a node v occurs if v
wants to read or write an address from the page. The request can
be satisfied at zero cost if v has the page. Otherwise the request is
served by accessing a node w holding the page and the incurred cost
equals the distance from v to w. After the request is satisfied, the
page may be migrated or replicated from node w to any other node
v' that does not hold the page (node v’ may coincide with node
v). The cost incurred by this migration or replication is d times
the distance from w to v'. Here d denotes the page size factor. In
practical applications, d is a large value, usually several hundred or
thousand. (The page may only be migrated or replicated after a
request because it is impossible to delay the service of the memory
access while the entire page is transmitted.)

A page migration or replication algorithm is usually presented with
an entire sequence of requests that must be served with low to-
tal cost. An algorithm is on-line if it serves every request without
knowledge of any future requests.

38

7. DISTRIBUTED DATA MANAGEMENT

In these notes we only consider centralized migration and replication
algorithms, i.e., each node always knows where the closest node
holding the page is located in the network.

7.2 Page migration

Recall that in the migration problem we have to decide where the
single copy of a page should reside in the network over time. There
are deterministic online migration algorithms that achieve compet-
itive ratios of 7 and 4.1, respectively, see [10, 14]. We describe an
elegant randomized algorithm due to Westbrook [51].

Algorithm COUNTER: The algorithm maintains a global counter
C that takes integer values in [0, k], for some positive integer k to
be specified later. Counter ' is initialized uniformly at random to
an integer in [1,k]. On each request, C is decremented by 1. If
C' = 0 after the service of the request, then the page is moved to
the requesting node and C' is reset to k.

Theorem 23 The COUNTER algorithm is c-competitive, where ¢ =
max{?—}—i—d,l%—%)

Westbrook showed that the best value for k is d+3(v/20d? — 4d + 1—
1). As d increases, the best competitive ratio decreases and tends

to 1 + &, where ¢ = 1+2_\/g ~ 1.62 is the Golden Ratio.

Proof: Let o0 = o(1),...,0(m) be an arbitrary request sequence.
We analyze the COUNTER algorithm using a potential function ®
and show that

E[Cor(t) + ®(t) = ®(t = 1)] < ¢~ Copr(1),

where ¢ is the value specified above. Here Cop(t) denotes the actual
cost incurred by the COUNTER algorithm on request o(t).

39

COMPETITIVE ONLINE ALGORITHMS

We classify the actions that can occur during the processing of o(t)
into two types of events.

I. COUNTER and OPT serve the request. This event may in-
volve COUNTER moving the page.

IT: OPT moves the page.

Let uc be the node where COUNTER has the page and let uppr
be the node where OPT has the page. Let

® = (d+ C)dist(uc, uopr),

where (' is the value of the global counter maintained by the online
algorithm.

We first analyze event I. Let v be the node that issues the request.
OPT incurs a cost of Iy = dist(v,uppr). Let i = dist(uc,vopr)
and Iy = dist(v,uc). The actual cost incurred by COUNTER is /5.
Since the global counter decreases by 1, the potential decreases by
[, and the amortized cost incurred by COUNTER is [, — [;. By the
triangle inequality, Iy — [} < lg.

With probability %, C' =1 before the request and thus C' = 0 after
the request. The cost of moving the page is d - 5. The potential
before the move is d-1; and after the move (d+ k)ly since the global
counter is reset to k. Thus the amortized cost of moving the page is

d-ly+(d+k)lo—d- 1 <d-lo+ (d+ k)lo < (2d + k)lo.

In total, the expected amortized cost of the request is

1 2d
lo + %(Qd + k)l < (? + 2)l,.
Next we analyze event 1I. Suppose that OPT moves the page from
node uppr to node uppp. Let lo = dist(uopr, uppr), h = dist(uc, uopr)

40

7. DISTRIBUTED DATA MANAGEMENT

and Iy = dist(uc,uppyp). OPT incurs a cost of d - l. The change in
potential is

(d+C)(ly — 1) < (d+ C)lo.

The inequality follows again from the triangle inequality. The ex-
pected value of the global counter is k%l Thus, the expected change

in potential is
k+ 1)[
2

This is (1 + kz’"—dl) times the cost incurred by OPT. O

(d+

7.3 Page replication

It turns out that in terms of competitiveness, page replication is
more complex than page migration. Online replication algorithms
achieving a constant competitive ratio are only known for specific
network topologies, such as trees, uniform networks and rings. A
uniform network is a complete graph in which all edges have length
1. It was shown by Bartal et al. [16] that on general graphs, no de-
terministic or randomized online replication algorithm can a achieve
a competitive ratio smaller than Q(log n), where n is the number of
nodes in the network.

On trees and uniform networks, the best deterministic online replica-
tion algorithm is 2-competitive, see Black and Sleator [21]. The best
randomized algorithm achieves a competitive ratio of = =~ 1.58
against any oblivious adversary, see Albers and Koga [3]. Both up-
per bounds are tight. For rings, the best online replication algorithm
currently known is 4-competitive [3].

In the following we concentrate on trees. The general online repli-
cation strategy given below was used in [21, 3]. We assume that
initially only the root of the tree has a copy of the page.

Algorithm COUNTER (for trees): The algorithm first chooses

an integer C from the range [1,d]. We will specify the exact value

41

COMPETITIVE ONLINE ALGORITHMS

of C' later. While processing the request sequence, the algorithm
maintains a counter for each node of the tree. Initially, all counters
are set to 0. If there is a request at a node v that does not have the
page, then all counters along the path from v to the closest node
with the page are incremented by 1. When a counter reaches the
value C, the page is replicated to the corresponding node.

In the above algorithm we can assume without loss of generality
that whenever the page is replicated from node u to node v, then
the page is also replicated to all other nodes on the path from u to
v. This does not incur a higher cost.

Theorem 24 [fC = d, then for any tree, the COUNTER algorithm

15 2-competitive.

Theorem 25 Suppose that C is chosen randomly, where C' = 1,
1 < < d, with probability p; = o - 6*~'. Here § = (d + 1)/d and
a=(§—1)/(6*=1). Then, for any tree, the COUNTER algorithm

s (65—_1)-c0mpetitive against any oblivious adversary.

Note that =& goes to = ~ 1.58 as d tends to infinity. We will

§4—1 e—1
only give a proof of Theorem 24.

Proof of Theorem 24: Let r denote the root of the tree. We start
with some observations regarding the COUNTER algorithm.

e At any time, the counters of the nodes on a path from r to
any other node in the tree are non-increasing.

o After each request, the nodes with the page are exactly those
whose counters are (at least) C.

o If a node v has the page, then all nodes on the path from v
to the root also have the page. Thus, the nodes with the page
always form a connected component of the tree.

42

7. DISTRIBUTED DATA MANAGEMENT

The above observations allow us to analyze the COUNTER algo-
rithm as follows. We partition cost into parts corresponding to the
edges of the tree. An edge e incurs a cost (equal to the length of
e) for a request if the path from the requested node to the closest
node with the page passes through e. Otherwise the cost is 0. An
edge also incurs the cost of a replication across it.

Consider an arbitrary edge e and let [(e) be the length of e. After e
has incurred d times a cost of [(e), a replication occurs across e in

the COUNTER algorithm.

Suppose that there are indeed d requests on which e incurs a cost.

Then the total cost incurred by e in the COUNTER algorithm is
2-d-l(e).

There are at least d requests at nodes below e in the tree. Thus,
with respect to OPT’s cost, e incurs a cost of d-[(e), and we obtain
a cost ratio of 2.

Suppose that there are only k, k < d, requests on which e incurs a
cost in the COUNTER algorithm. The the total cost incurred by e
is

k-l(e).

In OPT’s cost, e causes a cost of at least k-[(e) because there are at
least k requests at nodes below e. In this case we have a cost ratio
of 1. a

Bartal et al. [16] and Awerbuch et al. [10] developed determinis-
tic and randomized online algorithms for page replication on gen-
eral graphs. The algorithms have an optimal competitive ratio of
O(log n), where n is the number of nodes in the graph. We describe
the randomized algorithm [16].

Algorithm COINFLIP: If a requesting node v does not have the
page, then with probability 1/d the page is replicated to v from the
closest node with the page.

43

COMPETITIVE ONLINE ALGORITHMS

Theorem 26 The COINFLIP algorithm is O(log n)-competitive on
an arbitrary graph.

7.4 Page allocation

In the last two sections we studied page migration and replication
problems separately. It is also possible to investigate a combined
version of migration and replication. Here we are allowed to main-
tain several copies of a page, even in the presence of write requests.
However, if there is a write request, then all page replicas have to
be updated at a cost. More precisely, the cost model is as follows.
Consider an arbitrary graph.

e As usual, migrating or replicating a page from node u to node
v incurs a cost of dist(u,v).

e A page replica may be erased at 0 cost.

o If there is a read request at v and v does not have the page,
then the incurred cost is dist(u,v), where u is the closest node
with the page.

e The cost of a write request at node v is equal to the cost of
communicating from v to all other nodes with a page replica.

This model was introduced and studied by Bartal et al. [16] and
Awerbuch et al. [10] who presented deterministic and randomized
online algorithms achieving an optimal competitive ratio of O(logn),
where n is the number of nodes in the graph. We describe the
randomized solution [16].

Algorithm COINFLIP: If there is a read request at node v and v
does not have the page, then with probability %, replicate the page
to v. If there is a write request at node v, then with probability ﬁ,
migrate the page to v and erase all other page replicas.

44

8. SCHEDULING AND LOAD BALANCING

Theorem 27 The COINFLIP algorithm is O(log n)-competitive on
an arbitrary graph with n nodes.

8 Scheduling and load balancing

8.1 Scheduling

The general situation in online scheduling is as follows. We are given
a set of m machines. A sequence of jobs ¢ = Jy, J5, ..., J, arrives
online. Each job J; has a processing p; time that may or may not
be known in advance. As each job arrives, it has to be scheduled
immediately on of the m machines. The goal is to optimize, i.e.
usually to minimize, a given objective function. There are many
problem variants. We can study various machine types and various
objective functions.

We consider a classical setting. Suppose that we are given m iden-
tical machines. As each job arrives, its processing time is known in
advance. The goal is to minimize the makespan, i.e., the completion
time of the last job that finishes.

Graham [31] analyzed the GREEDY algorithm.
Algorithm GREEDY: Always assign a new job to the least loaded

machine.

Theorem 28 The GREEDY algorithm is (2 — L+)-competitive.

m

Proof: Given an arbitrary job sequence o, let T (o) denote make-
span of the schedule produced by GREEDY and let Topr(o) be the
optimum makespan. Let t; denote the length of the time interval
(starting from time 0) during which all machines are busy in the on-
line schedule. Let t; = Tz(0)—t;. By the definition of the GREEDY
algorithm, the job that finishes last in the GREEDY schedule starts

45

COMPETITIVE ONLINE ALGORITHMS

at some time t < tq, i.e., its processing time is at least ¢5. Thus,
to < maxXi<k<n pr. It 1s not hard to see that ¢; < % > r—1 Pk-

Clearly, Topr(o) > max{% > h—1 Pk, MaxXi<i<y Pk }. Thus,

1 n
To(o) =t + 1y < Zmax{%];pk,lrgkag;pk} <2-Topr(o)

and this shows that GREEDY is 2-competitive. A more refined
analysis of ¢; and t5 gives that competitive ratio is 2 — % Details
are omitted here. a

Graham already analyzed GREEDY in 1966. It was unknown for
a long time whether GREEDY achieves the best possible compet-
itive ratio. Recently, a number of improved algorithms were pre-
sented. Bartal et al. [15] gave an algorithm that is 1.986-competitive.
The best algorithm currently known is due to Karger et al. [38]
and achieves a competitive ratio of 1.945. We describe their algo-
rithm and first explain the intuition behind the improvement. The
GREEDY algorithm always tries to maintain a flat schedule, i.e., all
machine should be equally loaded. Problems arise if the schedule is
completely flat and a large job comes in. On the other hand, the
improved algorithms try to maintain some heavily loaded and some
lightly loaded machines. Now, when a large job arrives, it can be
assigned to a lightly loaded machine so that the makespan does not
increase too much.

Algorithm IMBALANCE. Set a = 1.945. A new incoming job
Jy 1s scheduled as follows. Let h; be the height of the :-th smallest
machine, 1 < ¢ < m, and let A; be the average height of the : — 1
smallest machines. Set Ag = oo. Schedule job J; on the tallest
machine j such that h; + p, < aA;.

Next we discuss some extensions of the scheduling problem studied
above.

Identical machines, restricted assignment We have a set of
m identical machines, but now each job can only be assigned to

46

8. SCHEDULING AND LOAD BALANCING

one of a subset of admissible machines. Azar et al. [9] showed that
the GREEDY algorithm, which always assigns a new job to the
least loaded machine among the admissible machines, is O(log m)-
competitive.

Related machines Each machinei has a speed s;, 1 <7 < m. The
processing time of job .Ji on machine ¢ is equal to pi/s;. Aspnes et al.
[6] showed that the GREEDY algorithm, that always assigns a new
job to a machine so that the load after the assignment in minimized,
is O(log m)-competitive. They also presented an algorithm that is
8-competitive.

Unrelated machines The processing time of job .J; on machine
iis priy, 1 <k < n, 1 <i < m. Aspnes et al. [6] showed that
GREEDY is only m-competitive. However, they also gave an algo-
rithm that is O(log m)-competitive.

8.2 Load balancing

In online load balancing we have again a set of m machines and a
sequence of jobs ¢ = Jy,J5,...,J, that arrives online. However,
each job Ji has a weight w(k) and an unknown duration. For any
time t, let [;(t) denote the load of machine ¢, 1 < i < m, at time
t, which is the sum of the weights of the jobs present on machine 2
at time ¢t. The goal is to minimize the maximum load that occurs
during the processing of o.

We concentrate on settings with m identical machines. Azar and Ep-
stein showed that the GREEDY algorithm is (2 — 1)-competitive.
In the following we will study the situation with identical machines
and restricted assignment, i.e., each job can only be assigned to a
subset of admissible machines. Azar et al. [7] proved that GREEDY
is ©(m??)-competitive. They also proved that no online algorithm
can be better than (y/m)-competitive. Azar et al. [8] gave a match-
ing upper bound. The algorithm is called ROBIN HOOD.

47

COMPETITIVE ONLINE ALGORITHMS

Algorithm ROBIN HOOD: Let OPT be the optimum load achieved
by the offline algorithm. ROBIN HOOD maintains an estimate L
for OPT satisfying . < OPT. At any time ¢, machine 7 is called
rich if [;(t) > \/mL; otherwise machine ¢ is called poor. When a
new job Jj arrives, the estimate L is updated, i.e.,

m

(w(k) + > L(1)}-

i=1

L := max{L,w(k),

k)
m

If possible, Ji is assigned to a poor machine. Otherwise it is assigned
to the rich machine that became rich most recently.

Azar et al. [8] analyzed the performance of ROBIN HOOD.

Theorem 29 ROBIN HOOD is O(\/m)-competitive.
Lemma 5 At most [\/m| machine can be rich at any time.

Proof: If more than [y/m] machines were rich, then the aggregate
load on the machines would be greater than [\/m]\/mL > mL.
However, by the definition of L, L < L(w(k) + Y12, li(t)), i.e., mL
is a lower bound on the aggregate load. O

Lemma 6 At all times L < OPT.

Proof: The proof is by induction on the number of assigned jobs.
We only have to consider the times when I changes. The lemma

follows because w(k) < OPT and %(w(k) +>m,L(t) <OPT. O

Proof of Theorem 29: Consider a fixed time t. We show that for
any machine 7, [;(t) < [v/m]|(L + OPT). If machine i is poor, then
the inequality is obvious. So suppose that machine z is rich and let
to be the most recent time when machine ¢ became rich. Let M (tg)
be the set of machines that are rich at time ¢ and the last instance
at which they became rich is no later then ¢,. Note that ¢ € M(ty).

48

9. ROBOT NAVIGATION AND EXPLORATION

Let S be the set of jobs that were assigned to machine z after .
All these jobs could only be scheduled on machines in M(to). Let
J =|M(to)|. We have OPT > %Ehes'w(k).

First suppose that j < [\/m] — 1. Let J, be the job assigned to
machine ¢ that caused machine ¢ to become rich. Then

Li(t) < [Vm]L +w(q) + > w(k) < [vVm](L+ OPT).

JkeS

The last inequality follows because w(q) < OPT.

Now suppose that j = [/m]|. Then [;(ty) = /mL since otherwise
the aggregate load in the system would exceed mL. Thus,

L(t) < VimL+ Y w(k) < [Vl (L + OPT).

JL€S

9 Robot navigation and exploration

Suppose that a robot is placed in an unknown environment. In
navigation problems the robot has to find a path from a source point
s to a target t. In exploration problems the robot has to construct
a complete map of the environment. In each case, the goal is to
minimize the distance traveled by the robot.

In the following we concentrate on robot navigation and study a
simple problem introduced by Baeza-Yates et al. [11]. Assume that
the robot is placed on a line. It starts at some point s and has to
find a point ¢ on the line that is a distance of n away. The robot
is tactile, i.e., it has no vision and only knows that is has reached
the target when it is actually located on t. We call a robot strategy
c-competitive if the length of the path of the robot is at most ¢ times
the distance between s and t.

49

COMPETITIVE ONLINE ALGORITHMS

Since the robot does not know whether ¢ is located to the left or
to the right of s, it should not move into one direction for a very
long time. Rather, after the robot has traveled a certain distance
into one direction, it should return to the start point s and move
into the other direction. For i = 1,2,..., let f(z) be the distance
walked by the robot before the i-th turn since its last visit to s.
Baeza-Yates et al. [11] proposed a “doubling” strategy, i.e., they
considered f(i) = 2°. It is easy to verify that the total distance
traveled by the robot is bounded by
[logn]+1
2 Z 2"+ n < 9n.
i=1
Baeza-Yates et al. also proved that this robot strategy is optimal.

A more complex navigation problem can be described as follows. A
robot is placed in a 2-dimensional scene with obstacles. It starts
at some point s and has to find a short path to a target {. When
traveling through the scenes of obstacles, the robot always knows its
current position and the position of ¢. However, the robot does not
know the positions and extends of the obstacles in advance. Rather,
it learns about the obstacles as it walks through the scene. Again
we have tactile robot that learns about an obstacle by touching it.
We call a robot strategy c-competitive, if for all scenes of obstacles,
the length of the path traveled by the robot is at most ¢ times the
shortest path from s to ¢.

Most previous work on this problem has concentrated on the case
that the obstacles are axis-parallel rectangles. Papadimitriou and
Yannakakis [44] gave a lower bound.

Theorem 30 No deterministic online navigation algorithm in a
general scene with n rectangular, axis parallel obstacles can have
a competitive ratio smaller than Q(y/n).

Proof: We consider a relaxed problem. A robot has to reach an
arbitrary point on a vertical, infinitely long wall. The wall is a

50

REFERENCES

distance of n away. We place long thin obstacles of width 1 and
length 2n at integer coordinates. Whenever the robot circumvents
an obstacle and makes a progress of 1 into z-direction, we place a
new obstacle in front of him. After having placed n obstacles, we
stop this process. The robot has traveled a distance of at least n - .

Since n obstacles were placed, the must be a y-coordinate of at most
n%/? that has at most /n obstacles. Thus, the optimal path to the
wall has a length of O(n®?). 0

Blum et al. [22] developed a deterministic online navigation algo-
rithm that achieves a tight upper bound of O(y/n), where n is again
the number of obstacles. Recently, Berman et al. [13] gave a random-
ized algorithm that is O(n?/®log n)-competitive against any oblivi-
ous adversary. An interesting open problem is to develop improved
randomized online algorithms.

References

[1] D. Achlioptas, M. Chrobak and J. Noga. Competitive analy-
sis of randomized paging algorithms. To appear in the Fourth
Annual European Symposium on Algorithms (ESA96), 1996.

[2] S. Albers. Improved randomized on-line algorithms for the list
update problem. In Proc. of the 6th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 412-419, 1995.

[3] S. Albers and H. Koga. New on-line algorithms for the page
replication problem. In Proc. of the 4th Scandinavian Work-
shop on Algorithm Theory, Springer Lecture Notes in Com-
puter Science, Volume 824, pages 25-36, 1994.

[4] S. Albers and M. Mitzenmacher. Average case analyses of list
update algorithms, with applications to data compression. In

51

REFERENCES

[10]

[11]

[12]

Proc. of the 23rd International Colloquium on Automata, Lan-

guages and Programming, Springer Lecture Notes in Computer
Science, Volume 1099, pages 514-525, 1996.

S. Albers, B. von Stengel and R. Werchner. A combined BIT
and TIMESTAMP algorithm for the list update problem. In-
formation Processing Letters, 56:135-139, 1995.

J. Aspnes, Y. Azar A. Fiat, S. Plotkin and O. Waarts. On-line
load balancing with applications to machine scheduling and vir-
tual circuit routing. In Proc. 25th ACM Annual ACM Sympo-
sium on the Theory of Computing, pages 623-631, 1993.

Y. Azar, A. Broder and A. Karlin. On-line load balancing. In
Proc. 36th IEEE Symposium on Foundations of Computer Sci-
ence, pages 218-225, 1992.

Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs and O.
Waarts. Online load balancing of temporary tasks. In Proc.
Workshop on Algorithms and Data Structures, Springer Lec-
ture Notes in Computer Science, pages 119-130, 1993.

Y. Azar, J. Naor and R. Rom. The competitiveness of on-line
assignments. In Proc. of the 3th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 203-210, 1992.

B. Awerbuch, Y. Bartal and A. Fiat. Competitive distributed
file allocation. In Proc. 25th Annual ACM Symposium on The-
ory of Computing, pages 164-173, 1993.

R.A. Baeza-Yates, J.C. Culberson and G.J.E. Rawlins. Search-
ing in the plane. Information and Computation, 106:234-252,
1993.

L.A. Belady. A study of replacement algorithms for virtual stor-
age computers. IBM Systems Journal, 5:78-101, 1966.

52

REFERENCES

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

P. Berman, A. Blum, A. Fiat, H. Karloff, A. Roséen and M.
Saks. Randomized robot navigation algorithm. In Proc. of the
4th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 74-84, 1996.

Y. Bartal, M. Charikar and P. Indyk. On page migration and

other relaxed task systems. To appear in Proc. of the 8th An-
nual ACM-STIAM Symposium on Discrete Algorithms, 1997.

Y. Bartal, A. Fiat, H. Karloff and R. Vohra. New algorithms
for an ancient scheduling problem. In Proc. 24th Annual ACM
Symposium on Theory of Computing, pages 5H1-58, 1992.

Y. Bartal, A. Fiat and Y. Rabani. Competitive algorithms for
distributed data management. In Proc. 24th Annual ACM Sym-
posium on Theory of Computing, pages 39-50, 1992.

S. Ben-David, A. Borodin, R.M. Karp, G. Tardos and A.
Wigderson. On the power of randomization in on-line algo-
rithms. Algorithmica, 11:2-14,1994.

J.L. Bentley, K.L. Clarkson and D.B. Levine. Fast linear
expected-time algorithms for computing maxima and convex
hulls. In Proc. of the 1st Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 179187, 1990.

J.L. Bentley and C.C. McGeoch. Amortized analyses of self-
organizing sequential search heuristics. Communication of the

ACM, 28:404-411, 1985.
J.L. Bentley, D.S. Sleator, R.E. Tarjan and V.K. Wei. A lo-

cally adaptive data compression scheme. Communication of the

ACM, 29:320-330, 1986.

D.L. Black and D.D. Sleator. Competitive algorithms for repli-
cation and migration problems. Technical Report Carnegie Mel-

lon University, CMU-CS-89-201, 19809.
53

REFERENCES

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

A. Blum, P. Raghavan and B. Schieber. Navigating in unfamil-
iar geometric terrain. In Proc. 23th Annual ACM Symposium
on Theory of Computing, pages 494-504, 1991.

A. Borodin, S. Irani, P. Raghavan and B. Schieber. Competi-
tive paging with locality of reference. In Proc. of the 23rd An-

nual ACM Symposium on Theory of Computing, pages 249-
259, 1991.

M. Burrows and D.J. Wheeler. A block-sorting lossless data
compression algorithm. DEC SRC Research Report 124, 1994.

F.R.K. Chung, D.J. Hajela and P.D. Seymour. Self-organzing
sequential search and Hilbert’s inequality. Proc. 17th Annual
Symposium on the Theory of Computing, pages 217-223, 1985..

P. Elias. Universal codeword sets and the representation of the
integers. IEEE Transactions on Information Theory, 21:194-
203, 1975.

A. Fiat, R.M. Karp, L.A. McGeoch, D.D. Sleator and N.E.
Young. Competitive paging algorithms. Journal of Algorithms,
12:685-699, 1991.

G.H. Gonnet, J.I. Munro and H. Suwanda. Towards self-
organizing linear search. In Proc. 19th Annual IEEE Sympo-
sium on Foundations of Computer Science, pages, 169-174,

1979.

R.G. Gallager. Information Theory and Reliable Communica-
tion. Wiley, New York, 1968.

M.J. Golin. PhD thesis, Department of Computer Science,
Princeton University, 1990. Technical Report CS-TR-266-90.

R.L. Graham. Bounds for certain multiprocessor anomalies.

Bell System Technical Journal, 45:1563-1581, 1966.
54

REFERENCES

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

E.F. Grove. The Harmonic online k-server algorithm is compet-
itive. In Proc. of the 23rd Annual ACM Symposium on Theory
of Computing, pages 260-266, 1991.

G.H. Hardy, J.E. Littlewood and G. Polya. Inequalities. Cam-
bridge University Press. Cambridge, England, 1967.

S. Irani. Two results on the list update problem. Information

Processing Letters, 38:301-306, 1991.

S. Irani. Corrected version of the SPLIT algorithm. Manuscript,
January 1996.

S. Irani, A.R. Karlin and S. Phillips. Strongly competitive al-
gorithms for paging with locality of reference. In Proc. 3rd An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages
228-236, 1992.

E. Koutsoupias and C.H. Papadimitriou. On the k-server con-
jecture. In Proceedings of the 26th Annual ACM Symposium
on Theory of Computing, pages 507-511, 1994.

D. Karger, S. Phillips and E. Torng. A better algorithm for an
ancient scheduling problem. In Proc. 3rd Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 132-140, 1994.

R. Karp and P. Raghavan. From a personal communication
cited in [46].

C. Lund, N. Reingold, J. Westbrook and D. Yan. On-line dis-
tributed data management. In Proc. of the 2nd Annual Eu-

ropean Symposium on Algorithms, Springer LNCS Vol. 855,
pages 202-214, 1994.

M.S. Manasse, L.A. McGeoch and D.D. Sleator. Competitive
algorithms for on-line problems. In Proc. 20th Annual ACM
Symposium on Theory of Computing, pages 322-33, 1988.

55

REFERENCES

[42] L.A. McGeoch and D.D. Sleator. A strongly competitive ran-
domized paging algorithm. Algorithmica, 6:816-825, 1991.

[43] R. Motwani and P. Raghavan. Randomized Algorithms, Cam-
bridge University Press, 1995.

[44] C.H. Papadimitriou and M. Yannakakis. Shortest paths without
a map. Theoretical Computer Science, 84:127-150, 1991.

[45] P. Raghavan and M. Snir. Memory versus randomization in on-
line algorithms. In Proc. 16th International Colloquium on Au-
tomata, Languages and Programming, Springer Lecture Notes
in Computer Science, Vol. 372, pages 687-703,1989.

[46] N. Reingold, J. Westbrook and D.D. Sleator. Randomized com-
petitive algorithms for the list update problem. Algorithmica,
11:15-32, 1994.

[47] R. Rivest. On self-organizing sequential search heuristics. Com-

munications of the ACM, 19:63-67, 1997.

[48] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list up-
date and paging rules. Communication of the ACM, 28:202—
208, 1985.

[49] B. Teia. A lower bound for randomized list update algorithms.
Information Processing Letters, 47:5-9, 1993.

[50] R.E. Tarjan. Amortized computational complexity. STAM Jour-
nal on Algebraic and Discrete Methods, 6:306-318, 1985.

[51] J. Westbrook. Randomized algorithms for the multiprocessor
page migration. SIAM Journal on Computing, 23:951-965,
1994.

[52] L.LH. Witten and T. Bell. The Calgary/Canterbury text com-
pression corpus. Anonymous ftp from ftp.cpsc.ucalgary.ca :
/pub/text.compression/corpus/ text.compression.corpus.tar.Z.

56

REFERENCES

[53] A.C.-C. Yao. Probabilistic computations: Towards a unified
measure of complexity. In Proc. 17th Annual IEEE Symposium
on Foundations of Computer Science, pages 222-227, 1977.

57

Recent Publicationsin the BRICS Lecture Series

LS96-2 Susanne Albers. Competitive Online Algorithms. Septem-
ber 1996. iix+57 pp.

LS96-1 Lars Arge. External-Memory Algorithms with Applica-
tionsin Geographic Information Systems. September 1996.
1iX+52 pp.

LS-95-5 Devdatt P. Dubhashi. Complexity of Logical Theories,
September 1995. x+46 pp.

L S-95-4 Dany Bredauer and Devdatt P. Dubhashi. Combinatorics
for Computer Scientists. August 1995. viii+184 pp.

LS95-3 Michael |I. Schwartzbach. Polymorphic Type Inference.
June 1995. viii+24 pp.

LS95-2 Sven Skyum. Introduction to Parallel Algorithms. June
1995. viii+17 pp. Second Edition.

LS95-1 Jaap van Oosten. Basic Category Theory. January 1995.
Vi+75 pp.

