Institut for Matematik og Datalogi
Syddansk Universitet

Assignment 4 — Introduction to Computer Science
2015

This is your fourth assignment in DM534/DM558. The assignment is
due at 8:15 on Thursday, November 19. You may write this either in
Danish or English. It must be made in ITEX. Write your full name, your
section number (D1, D2, or D3), and your “instruktor”s name (Kristine
Vitting Klinkby Knudsen, Mathias W. Svendsen, or Jesper With Mikkelsen)
clearly on the first page of your assignment (on the top, if it’s not a cover
page). You should turn it in as a PDF file via Blackboard through your
DM534/DM558 course. The assignment hand-in is in the menu for the
course and is called “SDU Assignment”. Choose the correct one for your
section number, D1, D2 or D3. Keep the receipt it gives you proving that
you turned your assignment in on time. Blackboard will not allow you to
turn in an assignment late.

Cheating on this assignment is viewed as cheating on an exam. You are
allowed to talk about course material with your fellow students, but working
together on this assignment is cheating. If you have questions about the
assignment, come to Joan Boyar or your “instruktor” for DM534/DM558.

Please note that you must have this assignment approved in order to
pass DM534/DM558. If it is not turned in on time, or if you do not get it
approved, it will count as one of your two retries in the course, and you must
have it approved on your single allowed retry for this assignment. Note that
you have only two retries in total for the assignments in DM534.

Assignment 4

Do the following problems and write your solutions in IATEX. Write clear,
complete answers, but not longer than necessary. Do not include the state-
ments of the problems or other information not asked for in the problems.

1. Do problem 15b on page 452 of the textbook. Note that the problem
asks for a solution using relational operations, not SQL.

2. Assume a hash table is partitioned into 12 buckets. Assume that the
hash function is such that a randomly chosen record is equally likely



to hash to any of the buckets. In these problems, you may use a
program to check your answer, but show the intermediate steps of
your calculations, so it is clear what is being calculated and why.

(a)
(b)

What is the probability of at least two of three arbitrary records
hashing to the same bucket?

How many records must be stored in the table in order for it
to be more likely for at least one collision to occur than for no
collisions to occur? Give the smallest possible number for which
this holds.

3. Do one of the following two problems. The second is the more chal-
lenging.

(a)

Assume sets of numbers are represented by sequential files, sorted
on element value. For example, the set {14,27,13,9, 32} is repre-
sented by a sequential file of length 5 containing [9, 13, 14, 27, 32].
Since, by definition, sets do not have duplicate elements, these
files do not either. Write a procedure in pseudocode for con-
structing AN (BUC), where A, B, and C are sorted sequential
files. Use an algorithm similar to that in Figure 9.15 (which goes
through each file only once, never reading any element more than
once). Or you can use the API from the slides

http://www.imada.sdu.dk/~joan /intro/15slide9.pdf

using open, close, isEnd0fFile, readNext, writeNext. As
in problem 3 (from the discussion section described on the note
for week 44), process the three sequential files simultaneously (do
not first calculate BUC' and then the intersection with A). Make
sure your algorithm works correctly in all cases, and explain why
it does.

Consider the problem of merging four sorted files, each of length
n. Call the files A, B, C, and D. There are two obvious ways to
do this. One is to first merge the files A and B, then merge the
files C' and D, and then merge the two resulting files. The second
processes the four files simultaneously (as in the above problem,
never reading any element more than once). Analyze both of
these algorithms (worst case), calculating the number of reads,
the number of writes, and the number of comparisons, separately.
Express your results in the form i-n + j in all cases. The value ¢


http://www.imada.sdu.dk/~joan/intro/15slide9.pdf

should be as low as possible, and both ¢ and j should always be
constants, not functions of n. When counting comparisons, you
should be able to get the same value for ¢ for both algorithms.
This requires being careful in designing the second algorithm.
Specify exactly which comparisons are done by that second al-
gorithm (this may be clearest with pseudocode). Explain your
answers.

4. Include your BTEX code for this assignment at the end.



