
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

February 22, 2019
KSL

Exam Project in Compiler Construction, part 4
Kim Skak Larsen

Spring 2019

Introduction

In this note, we describe one part of the exam project that must be solved in connection
with the compiler project, Spring 2019. It is important to read through the entire project
description before starting the work on the project; also the sections on requirements
and how to turn in your solution.

Deadlines

The compiler code and the report are handed in separately with different deadlines:

Deliverable Deadline

Compiler Thursday, May 16, 2019 at 12:00 (noon)
Report Thursday, May 23, 2019 at 12:00 (noon)

A Kitty Compiler

The primary new task of this part of the project is code generation, including optimiza-
tion. These phases must then be combined with the front-end produced in part 3 of
the project to form a complete compiler. The report must treat all the issues raised in
the four project parts. The requirements for the compiler and report consist of all the
requirements from the four project parts.

The report must be structured logically as one document, i.e., it cannot just be the
reports from the various project parts with a “rubber band” around. A report draft is
available via the activity’s home page. The report should be self-contained and not
contain references to the four project descriptions.

Note that the deadlines do not imply that you can write a satisfactory report in one
week.

1

Code Generation

Code generation must be handled in at least two subphases. In the following, these two
phases are described, but more can be added in between the two.

The first phase generates abstract assembler code, which could be Pentium code, but
which could be somewhat or significantly different. Some possibly differences could
be that jump addresses are pointers to the linked list storing the (abstract) instructions.
Another possibility is that temporary variables are used instead of explicit references
to either stack or registers.

In the last phase, you must generate Intel Pentium Assembler AT&T style from the
more or less abstract assembler code. You are allowed to use printf statements in
your assembler code, as it has been done in the examples on the DM546 course home
page. You are not allowed to use other functions from the C-library without explicit
permission.

In between the two phases, you may place a number of optimization phases. If you
have used temporary variables in your abstract assembler code, then such a phase could
determine which temporary variables are placed in registers and which are placed on
the stack.

Independent of the choice of abstract assembler code, peep-hole optimization is an
obvious possibility for an optimization phase.

Testing

The first code generation phase should be tested through a C function printing the more
or less abstract assembler code to a file such that you can verify that the code produced
is what you expect. This work can to a large extent be reused in the last phase of the
code generation.

As the final testing, a sufficient collection of KITTY programs must be tested, and you
must verify that the correct result is produced. This should be supplemented by well
chosen internal tests of critical functionalities.

On the activity home page, you will find a test environment and a checking program,
check.py. It is highly recommended that, in addition to your own careful testing,
you also test using this program, since this is the program which will be used by us in
connection with an automatic testing of all compilers. In the beginning of this check
program, you can see how to use it.

We emphasize that testing using only check.py is not considered a sufficient test of
the compiler.

2

Extensions

A minimal core language, KITTY, has been chosen as the starting point. The pur-
pose of only including the most necessary constructions in the language definition is
to leave room for an individualization of the project by giving you the choice of which
extensions to make. Thus, you are expected to add more features to your compiler.

In that context, there are the following requirements:

• You should not start work on extensions before having completed the basic work
of implementing a compiler for the core language.

• It really should be extensions. You are not allowed to modify the core language.
In particular, your compiler should be able to compile all the test programs.

• Any new facility should be motivated, described, and documented.

Below, we list some possibilities, but you are very welcome to introduce your own
ideas. Some of the extensions are (much) harder than others. Your goal should be to
implement at least (part of) one extension from each of the three collections: language
extensions, runtime safety improvements, and advanced extensions. From the collec-
tion with advanced extensions, the peep-hole optimization is a task which is interesting
and can be limited to be quite manageable. Furthermore, it has the advantage that you
can start with a simple version with few patterns and then gradually include more.

If you spend time considering extensions, but do not manage to complete the imple-
mentation, give a short account of your considerations and the status of your work
implementing it.

Language Extensions

• Unary minus (-42 instead of 0-42, for instance).

• Multi-dimensional arrays; this is different from arrays of arrays; you must have
a layout such that for instance the address of A[i,j,k] can be computed di-
rectly and not via three pointer/offset operations as one would naturally do using
A[i][j][k].

• Array and record constants.

• Increment/decrement and assignment short-hands.

• For-loops.

• Print of strings; possibly even strings as a type with various string operators.

• An input facility (here scanf from the C library may be used).

• Coercion from one type to another.

3

• More flexible assignment compatibility (including transfer of parameters).

• Possibility for structural assignment of records and arrays (making a copy instead
of a reference to the same object).

• Extended loop control. Allow for the use of the keywords continue and break
in while-constructions. The keyword continue starts the execution of the nearest
enclosing while-loop from the beginning whereas break terminates the execu-
tion of the nearest enclosing while-loop. As an example, the following code adds
positive numbers from an array A, stopping when a zero is encountered:

i = −1;
sum = 0;
while i+1 < |A| {

i = i + 1;
if A[i] == 0 then break;
if A[i] < 0 then continue;
sum = sum + A[i];

}

Runtime Safety Improvements

• Run-time check for array index values (return value 2).

• Run-time check for division by zero (return value 3).

• Run-time check for positive argument for array allocation (return value 4).

• Run-time check for use of uninitialized variables, including indexing and deref-
erencing of null pointers (return value 5).

• Run-time check for out-of-memory (return value 6).

Advanced Extensions

• Peep-hole optimization.

• Introduction of a free command to free previously allocated array and record
space. For this to be at all useful, your system should of course allow reuse of
this space.

• Full (automatic) garbage collection of (unused) arrays and records.

• Advanced register allocation.

• Reuse of stack space for local variables and spilled temporaries not used simul-
taneously.

• Adding class definitions, class hierarchy, and objects to the language.

4

• Structural equivalence of composite types of records and arrays.

• Exceptions in the form of try/catch (and possibly throw) and one or more types
of exceptions.

In addition to these three collections of extensions, where each group should make at
least one from each, there are many further possibilities. For instance, the following:

Extra Extensions

• Constant folding.

• Algebraic simplification.

Evaluation

In order to pass, the compiler must work on a reasonable subset of KITTY. A com-
piler which does not generate working code for even the smallest and simplest KITTY
programs will not be accepted.

Additionally, your compiler will be judged on structure, correctness, elegance, and
extent.

The report should not be a textbook. Thus, in general you may assume what all par-
ticipants in the DM546 course know. However, do keep the censor in mind and it is
nice with a brief description of the setting in each section as a reference point for your
own work. The report should be self-contained, i.e., not contain references to the four
project descriptions.

Most importantly, the report should contain description and documentation for the most
important choices made. A report is not good just because it is long! Think carefully
about what to include and try to make it “to the point”, but do not exclude interesting
choices and considerations. However, we do not operate with a fixed page limit, i.e.,
you are not limited to 30 pages as in some other educations.

General Requirements and Rules

Here we list general requirement, procedures for turning in, and exam rules.

Exam Rules

This is an exam project. Cooperation beyond what is explicitly permitted will be con-
sidered cheating and will be treated as such. You have a duty to keep your notes private
and protect your files against reading and copying by others. Both parties involved in
a possible plagiarism can be held responsible.

5

There will be given what we judge to be more than sufficient time for solving the
project. Still, we strongly encourage you to plan your work such that you will finish
some days before the deadline.

Solutions that are turned in after the deadline will not be accepted. Downtime on the
system or the printers will not automatically result in an extension; not even if it is
the last hours before the deadline. Neither will own or children’s illness without a
statement from your physician, etc.

The solution

The solution consists of a program, test material, and a report. Thus, we use the term
“report” to mean your description of the solution to the project without the program
listing and listing of test examples and results (other than what may have been merged
into the report as examples, etc.).

All specific requirements posed in the project description must of course be fulfilled.

The Report

The report should in the best possible manner account for the entire solution, i.e., it
must contain a description of the most important and relevant decisions that have been
made in the process of developing the solution and reasons must be given where this is
appropriate.

You must also explain how the program has been tested. Test examples or references
to test examples and test runs can and should be included to the extent that this is
meaningful.

Possible omissions, known errors, etc. should be described in the report. It is often a
good idea to do this in a separate section instead of mixing it in with the rest of the
report.

Programs

Files and directories should be named and organized logically. Programs must be well-
structured with appropriately chosen names and indentation and tested sufficiently. The
numbers of characters (including blanks and 4 times the number of tabs) on a program
line is limited to 79. This is important for various tools used for inspecting, evaluating,
and viewing your programs, and it is important for the print-out of parts of your own
program that you will see at the exam.

Programs will often be tested automatically. This makes it extremely important to
respect all interface-like demands, e.g., input/output formats.

Programs that are turned in must compile and run on IMADA’s machines. In particu-
lar, they should be written in the programming language C. It must be the c11 ANSI

6

standard as specified by the options below. This excludes C++, in particular. Your
programs should be compiled using

gcc -std=c11 -Wall -Wextra -pedantic

In particular, no architecture-dependent option should be added, such as, for instance,
-m32 or -m64.

You are very welcome to develop your programs at home, but it is your responsibility.
This includes technical problems at home, lack of access to relevant software, moving
data to IMADA via e-mail, USB keys, etc. and converting to the correct format, e.g.,
between Windows, Mac, and Linux.

Execution

This section on execution does not apply to part 1, but starts applying gradually through
the project parts until it applies fully at the end. It is included in every project descrip-
tion, so you are not surprised at the end.

In the following, we list execution requirements regarding your compiler as well as the
code your compiler produces. In most cases, this is just to conform to default standards
or to choose one among alternatives:

• Your compiler (executable) must be called compiler.

• Behavior of your compiler:

– Your compiler must read from stdin.
– In the final part, only correct assembler code may be written to stdout.
– If the compilation succeeds, the compiler must return zero.
– If an error occurs during compilation, then
∗ nothing should be written to stdout,
∗ an error message should be written to stderr, and
∗ a value different from zero must be returned.

– It is recommended that the beginning of each phase of the compilation is
announced on stderr.

• Behavior of the code your compiler produces:

– The code produced must be X86 Assembly/GAS Syntax, compilable with

gcc -no-pie -m64

– Only write statements may write to stdout and it should write its integer
or boolean argument followed by a newline.

– If no error occurs, the code must return zero.
– If an error occurs (that you catch), the code must return a value different

from zero. If you write an error message, it must go to stderr.

7

Turning In

You must turn in on paper and electronically. The details are given below. All material
that is turned in both on paper and electronically must be identical.

On Paper

You must turn in your

• report.

The front page of your report should contain your group number and the full names
and student logins of all group members.

Procedure for turning in on paper: The material on paper should be turned in by
placing it in the lecturer’s letterbox. You are also welcome to give it directly to the
lecturer.

Electronically

Electronically, you must turn in

• the report as report.pdf,

• all relevant program and test files,

• a makefile, connecting the program files,

• the compiler as compiler, which should be an executable file.

Procedure for turning in electronically: The procedure for turning in electronically
can be found via the project home page or this direct link:

https://imada.sdu.dk/∼kslarsen/CC/elafl.php

However, it might be good to know already now that you should avoid Danish (and
other non-ascii) characters (such as æ, ø, and å) in your directory and file names (Black-
board does not handle this well). To be safe, also avoid whitespace and special charac-
ters not normally occurring in file names.

You may upload your files individually or collect your files into one (archive) file (rec-
ommended) before uploading. If you choose to do the latter, you must use either tar
(optionally also gzip’ed) or zip for this.

8

