Department of Mathematics and Computer Science January 20, 2012
University of Southern Denmark, Odense KSL

Exam Project in Compiler Construction, part 1

Kim Skak Larsen
Spring 2012

I ntroduction

In this note, we describe one part of the exam project that brisolved in connection
with the project "A compiler for an imperative programmiranguage”, Spring 2012.
Itis important to read through the entire project desaviptiefore starting the work on
the project; also the sections on requirements and how hdarurour solution.

Deadline

Wednesday, February 8, 2012, at 12:00 (noon).

A Symbol Tablein C

Among other things, you must turn in a program which must bigevwrin the program-
ming language C. It must be the c99 ANSI standard as specijitiieboptions below.
This excludes C++, in particular. Your programs should baited using

gcc -std=c99 -Wall -Wextra -pedantic

In this assignment, you must construct an advanced form yifndosl table where data
is stored in a collection of connected hash tables. See Fih& entire construction
illustrates the symbol table and each box illustrates a tetsb.

You may use the filsynbol . h, which is available via the course home page, as a
starting point for this assignment (see Fig. 2).

Your task is to implement the six functions listed last. Thgpiementation should be
placed in a new filsynbol . c. In addition, you must write and include test examples,
commenting on what is tested, what is expected, and whasisreed.

The elements in the symbol table are stringape, with an associated value field,
val ue. When such an element is inserted into the symbol table, tbred into one
of the hash tables. This will be described in detail below.

d
e

VTV

Figure 1: An example of connections between hash tables.

A pointer to a hash table can also be thought of as a pointgraiag of) the symbol
table which can be accessed through the pointer to the gasimtable.

Conflicts during insertions into the hash tables are resobgng chaining. Thus, the

entries in the hash table arrays are (possibly empty) litikesiof elements of the type

SYMBOL (linked viaSYMBOL's next field). For eactmane, there is a value of type

SYMBQL in which nane is stored. To avoid any confusion, chaining is handled withi
each hash table and has nothing to do with the pointers sdég.if.

We now discuss the functionality of the six functions.

e Hash computes the hash values (see how below).

e i ni t Synbol Tabl e returns a pointer to a new initialized hash table (of type
Synbol Tabl e).

e scopeSynbol Tabl e takes a pointer to a hash tableas argument and returns
a new hash table with a pointerttain its next field.

e put Synbol takes a hash table and a strimggne, as arguments and inserts
nane into the hash table together with the associated vaaleue. A pointer
to theSYMBOL value which storesare is returned.

e get Synbol takes a hash table and a strimgne as arguments and searches for
nane in the following manner: First search foane in the hash table which
is one of the arguments of the function call.niéne is not there, continue the
search in the next hash table. This process is repeatedissieely. If nane has
not been found after the root of the tree (see Fig. 1) has beerked, the result
NULL is returned. Ifnane is found, return a pointer to th@YMBOL value in
which name is stored.

#defi ne HashSi ze 317
#define NEWtype) (type *)nalloc(sizeof(type))
voi d *mal | oc(unsi gned n);

/+ SYMBOL will be extended |ater
Function calls will take nore paraneters |ater
*/
typedef struct SYMBOL {
char =*name
i nt val ue;
struct SYMBOL =*next;
} SYMBOL;
typedef struct Synbol Tabl e {
SYMBOL =+t abl e[HashSi ze] ;
struct Synbol Tabl e *next;
} Synbol Tabl e;
int Hash(char =*str);
Synbol Tabl e *i ni t Synbol Tabl e();
Synbol Tabl e *scopeSynbol Tabl e(Synbol Tabl e *t);
SYMBOL *put Synbol (Synbol Tabl e *t, char *nanme, int val ue);
SYMBOL *get Synbol (Synbol Tabl e *t, char =*nane);

voi d dunmpSynbol Tabl e(Synbol Tabl e *t);

Figure 2: The filesynbol . h.

e dunpSynbol Tabl e takes a pointer to a hash tablas argument and prints all
the (nane, val ue) pairs that are found in the hash tables fromp to the root.
Hash tables are printed one at a time. The printing shouldiedtted in a nice
way and is intended to be used for debugging (of other pattssoéompiler).

The tests should, among other things, demonstrate that avkearch for a givenane
is carried out, the one closest to the argument hash talbamslf A given stringnane,
can be stored in many of the hash tables, but each hash tadidyiallowed to store
a givennane once. In the testing, theal ue field can be used to show whictane
value is found.

One of the tests must build a structure corresponding tonlkellustrated in Fig. 1.

Computation of Hash Values

It is well known that for efficiency it is important that theteies inserted into a hash
table are spread out fairly evenly over the hash table swumimtiost of the linked lists
end up relatively short.

Experience shows that the following works well: One considae ASCII values of

each character. Thus, each character is considered aerintedit string. The char-

acters are treated one at a time. Each treatment of a charestdts in an adjustment
of a partial result which is zero initially. To be preciser &ach character, the partial
result is shifted one position to the left and then the AS@Iue of the character in
guestion is added to the partial result.

Consider the example in Fig. 3 where this has been done fattimgki tty.

k = 107 = 0000000001101011

shift 0000000011010110
i = 105 = 0000000001101001
sum 0000000100111111
shift 0000001001111110
t = 116 = 0000000001110100
sum 0000001011110010
shift 0000010111100100
t = 116 = 0000000001110100
sum 0000011001011000
shift 0000110010110000
y = 121 = 0000000001111001
sum 0000110100101001
= 3369

Figure 3: Example computation of a hash value.

This is the method you must use in your implementation.

The Symbol Tablein Your Compiler

The symbol table will later be used to store variable nameas;tfon names, etc. The
value field will be used to store type information etc. Eachhhtble will be used to
store the names within one function. The reason for the treetsre in Fig. 1 is that
the language for which a compiler must be produced can hastechéunctions and the
tree reflects this nesting structure.

The symbol table you implement in this assignment will ikélave to be adjusted
slightly to fit your concrete needs later.

Requirements

All material should be turned in on paper (referred taresreport) and electronically
(a few exceptions are mentioned below). In addition, siii€ is an exam project,
there are a number of important rules that will be detailddvae

Exam Rules

This is an exam project. Cooperation beyond what is explipigrmitted will be con-
sidered cheating and will be treated as such. You have a dlep your notes private
and protect your files against reading and copying by otHgogh parties involved in
a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficienetfor each assignment
and you are strongly encouraged to plan your work such thatythfinish some days
before the deadline.

Assignments that are turned in after the deadline will noabeepted. Downtime on
the system or the printers will not automatically result mextension; not even if it
is the last hours before the deadline. Neither will own ofdrken’s illness without a
statement from your physician, etc.

Solutions

All specific requirements posed in the project descriptiarsthof course be fulfilled.

The Report

The report should in the best possible manner account faeritiee solution. Possible
omissions, known errors, etc. should be described in thertel is often a good idea
to do this in a separate section instead of mixing it in with tbst of the report.

You must include the page at the end of this document as thegege of your report
or attached in some way such that it is easily located. Thertepust be dated and
signed by the members of the group.

For programs turned in as part of your solution, you must tale of the following:

The report must contain (possibly as an appendix) a primtiiige entire program. This
printing must be identical to the program that is turned ecabnically. All the pages
of your program print-out must contain your group numbere @y of obtaining this
is to use

az2ps -Pd3 --line-nunbers=1 --tabsize=3 -g
--header="Printed by group NN' file.c

whereNNis your group number.

The report must contain a description of the most importadtralevant decisions that
have been made in the process of answering the assignmergaswhs must be given
where this is appropriate.

You must also explain how the program has been tested. Testmg&s and test runs
can and should be included to the extent that this is meauifigfally large test files
can just be turned in electronically).

Programs

Programs must be well-structured with appropriately chasemes and indentation
and tested sufficiently. The numbers of characters (inndhlanks and 8 times the
number of tabs) on a program line is limited to 79. This is imi@ot for various tools

used for inspecting, evaluating, and viewing your prograamsl it is important for the

print-out of parts of your own program that you will see at éxam.

Programs will often be tested automatically. This makescitegnely important to
respect all interface-like demands, e.g., input/outprrnfds.

Programs that are turned in must compile and run on IMADA<hi@es. You are
very welcome to develop your programs at home, but it is yesponsibility. This in-

cludes technical problems at home, lack of access to rdleadinvare, moving data to
IMADA via e-mail, USB keys, etc. and converting to the cotriezmat, e.g., between
Windows and Linux.

TurningIn

The report should be turned in at IMADA's secretaries’ offitbe office may be closed
for very short periods of time. If, for some unexpected reatiee office must be closed
for longer periods of time close to the deadline, an annowmece will be made outside
the office, giving instructions as to where you turn in yoypae.

For the first parts of the projects, you only need to turn in@y of the report. For the
final part, you must turn in two copies. For all parts, you ntust in all the material
electronically.

Programs, test files, etc. should be turned in electronicdtur report should also be
turned in electronically as a pdf file. As opposed to the papesion of your report,
this version does not necessarily have to include prograntisest files, since they are
turned in separately. Also, signatures and the front paga the end of this document
are not required in the pdf file.

The procedure for turning in electronically can be foundthia project home page:
http://ww.imada. sdu. dk/ ~ksl arsen/ CC Pr oj ekt /

Avoid Danish (and other non-ascii) letters (such as ae, gajmlyour directory and
file names (Blackboard does not handle this well).

You may upload your files individually or collect your filegdrone (archive) file before
uploading. If you choose to do the latter, you must use ettlaeror zi p for this.

Department of Mathematics and Computer Science Spring 2012
University of Southern Denmark, Odense KSL

CC, Spring 2012
Exam Project, part 1

Group

Date

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

This report contains atotalof pages.

Please writevery clearly. Under Logins, give your IMADA followed by your stedt (student.sdu.dk) login.

