
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

February 26, 2012
KSL

Exam Project in Compiler Construction, part 4
Kim Skak Larsen

Spring 2012

Introduction

In this note, we describe one part of the exam project that must be solved in connection
with the project ”A compiler for an imperative programming language”, Spring 2012.
It is important to read through the entire project description before starting the work on
the project; also the sections on requirements and how to turn in your solution.

Deadline

Compiler Wednesday, May 16, 2012 at 12:00 (noon)
Report Thursday, May 24, 2012 at 12:00 (noon)

A Hungry Compiler

Among other things, you must turn in a program which must be written in the program-
ming language C. It must be the c99 ANSI standard as specified by the options below.
This excludes C++, in particular. Your programs should be compiled using

gcc -std=c99 -Wall -Wextra -pedantic -m32

The primary new task of this part of the project is code generation, including optimiza-
tion. These phases must then be combined with the front-end produced in part 3 of
the project to form a complete compiler. The report must treat all the issues raised in
the four project parts. The requirements for the compiler and report consist of all the
requirements from the four project parts.

The report must be structured logically as one document, i.e., it cannot just be the
reports from the various project parts with a “rubber band” around. A report draft is
available via the course home page.1

Note that the deadlines do not imply that you can write a satisfactory report in one
week.

1The draft is in Danish since this would be what almost all students would want. Please contact the
lecturer if you have a translation problem.

1

Code Generation

Code generation must be handled in at least two subphases. Inthe following, these two
phases are described, but more can be added in between the two.

The first phase generates abstract assembler code, which could be Pentium code, but
which could be somewhat or significantly different. Some possibly differences could
be that jump addresses are pointers to the linked list storing the (abstract) instructions.
Another possibility is that temporary variables are used instead of explicit references
to either stack or registers.

In the last phase, you must generate Intel Pentium AssemblerAT&T style from the
more or less abstract assembler code. You are allowed to useprintf statements in
your assembler code, as it has been done in the examples on thecourse home page. You
are not allowed to use other functions from the C-library without explicit permission.

In between the two phases, you may place a number of optimization phases. If you
have used temporary variables in your abstract assembler code, then such a phase could
determine which temporary variables are placed in registers and which are placed on
the stack.

Independent of the choice of abstract assembler code, peep-hole optimization is an
obvious possibility for an optimization phase.

Execution Requirements

The makefile you turn in must be able to generate the complete compiler as an exe-
cutable file using only your flex, bison, and C source files. It must of course be able
to run on the department’s computers, i.e., the ones in the terminal room. Example
computers arelogon〈digit〉.imada.sdu.dk, where〈digit〉 can be any of the digits
1, . . . , 9. These are the computers you can connect to using ssh from outside IMADA.

The compiler (the executable) must be calledhungry (all lower case) and it must
(even though it can be generated by the makefile) already be generated in the directory
you are turning in.

If you write hungry < filename.hun on command line and the HUNGRY pro-
gramfilename.hun is correct, then your compiler must produce Intel Pentium As-
sembler code AT&T style for the program. This must be sent tostdout. If the
HUNGRY program contains errors, absolutely nothing should be written tostdout.
Instead, an error message must be written tostderr. In either case, every time a new
phase is started, the name of the phase should be written tostderr.

The compiler (main in the C program) must return0 if the compilation is successful
and another integer otherwise (1 if you do not have a reason to choose something else).

If, after a successful compilation, the output from your compiler has been placed on
a filefilename.s and you writegcc filename.s on command line, then a file
a.out must be generated which executes with the correct result on the department’s

2

computers. This requires that you strictly respect the requirements forwrite which
must write its argument followed by a newline without any extra spaces or other char-
acters tostdout. The only output that is permitted onstdout is what is written
usingwrite. If you would like to write nice error messages in case of a runtime error,
you must write them tostderr.

The generated assembler code must return0, i.e., as the last code you generate,0 must
be placed in %eax, followed by code to return to the operatingsystem according to the
conventions for this. There is one exception from this: If, at runtime, you catch one of
the errors described under the heading “Runtime Safety Improvements”, the assembler
program should return the value indicated there.

Testing

The first code generation phase should be tested through a C function printing the more
or less abstract assembler code to a file such that you can verify that the code produced
is what you expect. This work can to a large extent be reused inthe last phase of the
code generation.

As the final testing, a sufficient collection of HUNGRY programs must be tested, and
you must verify that the correct result is produced. This should be supplemented by
well chosen internal tests of critical functionalities.

In the directory/home/IMADA/courses/cc, you will find a checking program,
check.py. It is highly recommended that in addition to your own careful testing,
you also test using this program, since this is the program which will be used by us in
connection with an automatic testing of all compilers. In the beginning of this check
program, you can see how to use it.

We emphasize that testing using onlycheck.py is not considered a sufficient test of
the compiler.

Extensions

A minimal core language, HUNGRY, has been chosen as the starting point. The pur-
pose of only including the most necessary constructions in the language definition is
to leave room for an individualization of the project by giving you the choice of which
extensions to make. Thus, you are expected to add more features to your compiler.

In that context, there are the following requirements:

• You should not start work on extensions before having completed the basic work
of implementing a compiler for the core language.

• It really should be extensions. You are not allowed to modifythe core language.
In particular, your compiler should be able to compile all the test programs.

3

• Any new facility should be motivated, described, and documented.

Below, we list some possibilities, but you are very welcome to introduce your own
ideas. Some of the extensions are (much) harder than others.Your goal should be
to implement at least (part of) one extension from each of thethree collections: lan-
guage extensions, runtime safety improvements, and advanced extensions. From the
collection with advanced extensions, the peep-hole optimization is a task which is both
interesting and can be limited to be quite manageable. Furthermore, it has the ad-
vantage that you can start with a simple version with few patterns and then gradually
include more.

If you spend time considering extensions, but do not manage to complete the imple-
mentation, give a short account of your considerations and the status of your work
implementing it.

Language Extensions

• Unary minus (−42 instead of0− 42, for instance).

• Multi-dimensional arrays (this is different from arrays ofarrays; you must have a
layout such that for instance the address of A[i,j,k] can be computed directly and
not via three pointer/offset operations as one would naturally do using A[i][j][k]).

• Array and record constants.

• Increment/decrement and assignment short-hands.

• For loops.

• Print of strings; possibly extended to strings as a type withvarious string opera-
tors.

• An input facility (herescanf from the C library may be used).

• Coercion from one type to another.

• More flexible assignment compatibility (including transfer of parameters).

• Possibility for structural assignment of records and arrays (making a copy instead
of a reference to the same object).

• Extended loop control. Allow for the use of the keywordscontinue andbreak
in while-constructions. The keywordcontinue starts the execution of the nearest
enclosing while-loop from the beginning whereasbreak terminates the execu-
tion of the nearest enclosing while-loop. As an example, thefollowing code adds
positive numbers from an array A, stopping when a zero is encountered:

4

i = −1;
sum = 0;
while i+1< |A| {

i = i + 1;
if A[i] == 0 then break;
if A[i] < 0 then continue;
sum = sum + A[i];

}

Runtime Safety Improvements

• Run-time check for array index values (return value 2).

• Run-time check for division by zero (return value 3).

• Run-time check for positive argument for array allocation (return value 4).

• Run-time check for use of uninitialized variables, including indexing and deref-
erencing of null pointers (return value 5).

• Run-time check for out-of-memory (return value 6).

Advanced Extensions

• Peep-hole optimization.

• Introduction of afree command to free previously allocated array and record
space. For this to be at all useful, your system should of course allow reuse of
this space.

• Full (automatic) garbage collection of (unused) arrays andrecords.

• Advanced register allocation.

• Reuse of stack space for local variables and spilled temporaries not used simul-
taneously.

• Adding class definitions, class hierarchy, and objects to the language.

In addition to these three collections of extensions, whereeach group should make at
least one from each, there are many further possibilities. For instance, the following:

Extra Extensions

• Constant folding.

• Algebraic simplification.

5

Turning In

Electronically, you must turn in

• all relevant files from this and previous parts of the project.

• a makefile, connecting all of the above.

• The compilerhungry as an executable file.

In addition, you must turn in two identical print-outs of your report and code files.
There should be a reasonable and documented test of all phases. See also the standard
requirements.

Evaluation

In order to pass, the compiler must work on a reasonable subset of HUNGRY. A com-
piler which does not generate working code for even the smallest and simplest HUN-
GRY programs will not be accepted.

Additionally, your compiler will be judged on structure, correctness, elegance, and
extent.

The report should not be a textbook. Thus, in general you may assume what all partic-
ipants in the course know. However, do keep the censor in mindand it is nice with a
brief description of the setting in each section as a reference point for your own work.

Most importantly, the report should contain description and documentation for the most
important choices made. A report is not good just because it is long! Think carefully
about what to include and try to make it “to the point”, but do not exclude interesting
choices and considerations.

Requirements

All material should be turned in on paper (referred to asthe report) and electronically
(a few exceptions are mentioned below). In addition, since this is an exam project,
there are a number of important rules that will be detailed below.

Exam Rules

This is an exam project. Cooperation beyond what is explicitly permitted will be con-
sidered cheating and will be treated as such. You have a duty to keep your notes private
and protect your files against reading and copying by others.Both parties involved in
a possible plagiarism can be held responsible.

6

There will be given what we judge to be more than sufficient time for each assignment
and you are strongly encouraged to plan your work such that you will finish some days
before the deadline.

Assignments that are turned in after the deadline will not beaccepted. Downtime on
the system or the printers will not automatically result in an extension; not even if it
is the last hours before the deadline. Neither will own or children’s illness without a
statement from your physician, etc.

Solutions

All specific requirements posed in the project description must of course be fulfilled.

The Report

The report should in the best possible manner account for theentire solution. Possible
omissions, known errors, etc. should be described in the report. It is often a good idea
to do this in a separate section instead of mixing it in with the rest of the report.

You must include the page at the end of this document as the front page of your report
or attached in some way such that it is easily located. The report must be dated and
signed by the members of the group.

For programs turned in as part of your solution, you must takecare of the following:

The report must contain (possibly as an appendix) a printingof the entire program. This
printing must be identical to the program that is turned in electronically. All the pages
of your program print-out must contain your group number. One way of obtaining this
is to use (all on one line)

a2ps -Pd3 --line-numbers=1 --tabsize=4 -g
--header="Printed by group NN" file.c

whereNN is your group number.

The report must contain a description of the most important and relevant decisions that
have been made in the process of answering the assignment andreasons must be given
where this is appropriate.

You must also explain how the program has been tested. Test examples and test runs
can and should be included to the extent that this is meaningful (really large test files
can just be turned in electronically).

Programs

Programs must be well-structured with appropriately chosen names and indentation
and tested sufficiently. The numbers of characters (including blanks and 4 times the
number of tabs) on a program line is limited to 79. This is important for various tools

7

used for inspecting, evaluating, and viewing your programs, and it is important for the
print-out of parts of your own program that you will see at theexam.

Programs will often be tested automatically. This makes it extremely important to
respect all interface-like demands, e.g., input/output formats.

Programs that are turned in must compile and run on IMADA’s machines. You are
very welcome to develop your programs at home, but it is your responsibility. This in-
cludes technical problems at home, lack of access to relevant software, moving data to
IMADA via e-mail, USB keys, etc. and converting to the correct format, e.g., between
Windows and Linux.

Turning In

The report should be turned in at IMADA’s secretaries’ office. The office may be closed
for very short periods of time. If, for some unexpected reason, the office must be closed
for longer periods of time close to the deadline, an announcement will be made outside
the office, giving instructions as to where you turn in your report.

For the first parts of the projects, you only need to turn in onecopy of the report. For the
final part, you must turn in two copies. For all parts, you mustturn in all the material
electronically.

Programs, test files, etc. should be turned in electronically. Your report should also be
turned in electronically as a pdf file. As opposed to the paperversion of your report,
this version does not necessarily have to include programs and test files, since they are
turned in separately. Also, signatures and the front page from the end of this document
are not required in the pdf file.

The procedure for turning in electronically can be found viathe project home page:

http://www.imada.sdu.dk/∼kslarsen/CC/Projekt/

Avoid Danish (and other non-ascii) letters (such as æ, ø, andå) in your directory and
file names (Blackboard does not handle this well).

You may upload your files individually or collect your files into one (archive) file before
uploading. If you choose to do the latter, you must use eithertar or zip for this.

8

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

Spring 2012
KSL

CC, Spring 2012
Exam Project, part 4

Group

Date

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

This report contains a total of pages.
Please writevery clearly. Under Logins, give your IMADA followed by your student (student.sdu.dk) login.

