
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

February 13, 2007
KSL

DM18 – Exam Project, part 2
Kim Skak Larsen

Spring 2007

Introduction

In this note, we describe one part of the exam project which must be solved in con-
nection with DM18, Spring 2007. It is important to read through the entire project
description before starting the work on the project; also the sections on requirements
and how to turn in your solution.

Deadline

Wednesday, March 14, 2007, at 12:00.

A scanner and parser in C

Among other things, you must turn in a program which must be written in the program-
ming language C. It must be the variant which is called ANSI-C. This excludes C++,
in particular.

You must construct a scanner using the tool FLEX and a parser using the tool BISON.
Using BISON, you must build an abstract syntax tree. Finally, you must write a pret-
typrinter, which should be used to document that the scanning, parsing, and building of
the syntax tree have been carried out correctly. Here, a prettyprinter is a program which
prints the abstract syntax tree with appropriately chosen indentation and/or sufficiently
many parenthesis to make it possible, preferably easy, to verify the abstract syntax tree.

The language you will work with is called TIGRIS, and it is partially defined by the
grammar in Fig. 1 and 2. The figure has been split in two for typographical reasons
only.

The start symbol is〈body〉, and all terminal symbols are written in bold face.

There is more information about the language below. It is part of the assignment to
decide which of these could most conveniently be dealt with in these phases and which
should be postponed until the phases weed, symbol, type checking, and code genera-
tion.

1



〈function〉 : 〈head〉 〈body〉 〈tail〉
〈head〉 : func id ( 〈par decl list〉 ) : 〈type〉
〈tail〉 : end id
〈type〉 : id

| int
| bool
| array of 〈type〉
| record of { 〈var decl list〉 }

〈par decl list〉 : 〈var decl list〉
| ε

〈var decl list〉 : 〈var decl list〉 , 〈var type〉
| 〈var type〉

〈var type〉 : id : 〈type〉
〈body〉 : 〈decl list〉 〈statementlist〉
〈decl list〉 : 〈decl list〉 〈declaration〉

| ε

〈declaration〉 : type id = 〈type〉 ;
| 〈function〉
| var 〈var decl list〉 ;

〈statementlist〉 : 〈statement〉
| 〈statementlist〉 〈statement〉

〈statement〉 : return 〈expression〉 ;
| write 〈expression〉 ;
| allocate 〈variable〉 〈opt length〉 ;
| 〈variable〉 = 〈expression〉 ;
| if 〈expression〉 then 〈statement〉 〈opt else〉
| loop 〈statement〉
| continue ;
| break ;
| { 〈statementlist〉 }

〈opt length〉 : of length 〈expression〉
| ε

〈opt else〉 : else 〈statement〉
| ε

〈variable〉 : id
| 〈variable〉 [ 〈expression〉 ]
| 〈variable〉 . id

Figure 1: Grammar for TIGRIS, part 1.

2



〈expression〉 : 〈expression〉 op 〈expression〉
| 〈term〉

〈term〉 : 〈variable〉
| id ( 〈act list〉 )
| ( 〈expression〉 )
| ! 〈term〉
| | 〈expression〉 |
| num
| true
| false
| null

〈act list〉 : 〈exp list〉
| ε

〈exp list〉 : 〈expression〉
| 〈exp list〉 , 〈expression〉

Figure 2: Grammar for TIGRIS, part 2.

The semantics of the various constructions are mostly obvious, based on usual com-
puter scientific tradition. The few which are not are also discussed below.

Further requirements for Tigris programs

The list below is intentionally incomplete. Partly becausenot all information is relevant
right now and partly because some of the decisions of this nature should be made as a
part of answering the project as a whole. Some information isrelevant for this part of
the project, but most have been included to give a sufficient impression of the language.

• id are usual identifiers.

• num are usual integers.

• A function name is repeated after theend which terminates the function defini-
tion. Thus, the twoids afterfunc andend must be identical.

• At a function call, parameters which are simple types are passed as values where-
as composite types (arrays and records) are passed by reference.

• All invocations of a function must result in the execution ofareturn statement.

• write prints the value of〈expression〉, which can be limited to being an integer,
followed by a return.

• allocate 〈variable〉 of length 〈expression〉 allocates space in memory. This space
is of size 〈expression〉 for an array with the name〈variable〉, while allocate
〈variable〉 allocates space for a record of〈variable〉’s type.

3



• A function definition introduces a new (nested) scope.

• { 〈statementlist〉 } is a “compund statement”, which can be used for group-
ing statements such that more than one statement can be executed in a loop-
construction, for example.

• The keywordscontinue andbreak are for use in aloop-construction. A loop
is by default infinite. The keywordcontinue starts the execution of the nearest
enclosing loop from the beginning whereasbreak terminates the execution of
the nearest enclosing loop. As an example, the following code adds positive
numbers from an array A, stopping when a zero is encountered:

i = −1;
sum = 0;
loop {

i = i + 1;
if |A| == i || A[i] == 0 then break;
if A[i] < 0 then continue;
sum = sum + A[i];

}

• op can be+, −, *, /, ==, !=, >, <, >=, <=, &&, | |.

• | 〈expression〉 | can denote the size of an array or the absolute value of an
integer expression.

• Array indices start with0.

• null is the standard value for a reference variable (array and record).

• Type definitions may be limited to one level. Thus, type declarations inside
array and record type definitions may be restricted to just the simple types (int
or bool) or an identifier. Type declaration of function parameters may be limited
in the same way, i.e., if the type is not simple, then the user must write a (type)
identifier which is defined elsewhere in the TIGRIS program. Note that it is only
the syntactic nesting which is simplified. You must still be able to handle nested
constructions via type variables.

• (* is used as the beginning of a comment and*) closes the comment. Comments
may run over several lines and may be nested.

Turning in

Electronically, you must turn in

• a FLEX file.

• a BISON file.

4



• a C-program, which uses the files produced by the definition files above to im-
plement a prettyprinter of TIGRIS-programs from an AST, build via the BISON

definition file.

• a makefile, connecting all of the above.

Additionally, you must hand in a report with program listings of all of the above, along
with brief descriptions of the most important choices made in the process; among these,
grammar rewriting or other actions taken to remove conflicts. You must include a
sufficient and documented testing. See also the standard requirements.

Standard Requirements

This section contains a description of standard requirements in connection with exam
projects and how they should be turned in. All information isnot necessarily relevant
for each part of your project.

You must always turn in your report on paper. This part is in the following referred to
asthe report. If the development of a program is part of the assignment, this program
must be turned in electronically as well.

Exam Rules

This assignment is an exam project. Cooperation beyond whatis explicitly permitted
will be considered cheating and will be treated as such. You have a duty to keep your
notes private and protect your files against reading and copying by others. Both parties
involved in a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficient time for each assignment
and you are strongly encouraged to plan your work such that you will finish some days
before the deadline.

Assignments which are turned in after the deadline will not be accepted. Downtime on
the system or the printers will not automatically result in an extension; not even if it
is the last hours before the deadline. Neither will own or children’s illness without a
statement from your physician, etc.

Solutions

All specific requirements posed in the project description must of course be fulfilled.

The Report

The report should in the best possible manner account for theentire solution. Possible
omissions, known errors, etc. should be described in the report. It is often a good idea
to do this in a separate section instead of mixing it in with the rest of the report.

5



You must include the page at the end of this document as the front page of your report
or attached in some way such that it is easily located. The report must be dated and
signed by the members of the group.

If a program must be turned in as part of your solution, you must take care of the
following:

The report must contain (possibly as an appendix) a printingof the entire program.
This printing must be identical with the program which is turned in electronically. All
the pages of your program print-out must contain your group number. One way of
obtaining this is to use

a2ps -g --header="Printed by group NN"

whereNN is your group number.

The report must contain a description of the most important and relevant decisions
which have been made in the process of answering the assignment and reasons must be
given where this is appropriate.

You must also explain how the program has been tested. Test examples and test runs
can and should be included to the extent that this is meaningful (really large test files
can just be turned in electronically).

Programs

Programs must be well-structured with appropriately chosen names and indentation
and tested sufficiently. The numbers of characters (including blanks) on a program line
is limited to 79. This is important for various tools used forinspecting, evaluating,
and viewing your programs, and it is important for the print-out of parts of your own
program that you will see at the exam.

Programs will often be tested automatically. This makes it extremely important to
respect all interface-like demands, e.g., input/output formats.

Programs which are turned in must compile and run on IMADA’s machines. You are
very welcome to develop your programs at home, but it is your responsibility. This
includes technical problems at home, lack of access to relevant software, moving data
to IMADA via modem, e-mail, ftp, floppy disks, USB keys, etc. and converting to the
correct format, e.g., between Windows and Linux.

Turning In

The report should be turned in at IMADA’s secretaries’ office. The office may be closed
for very short periods of time. If, for some unexpected reason, the office must be closed
for longer periods of time close to the deadline, an announcement will be made outside
the office, giving instructions as to where you turn in your report.

6



For the first parts of the projects, you only need to turn in onecopy. For the final part,
you must turn in two copies.

Programs, test files, etc. should be turned in electronically. The procedure for turning
in electronically can be found at

http://www.imada.sdu.dk/∼kslarsen/dm18/Projekt/elafl.html

7





Department of Mathematics and Computer Science
University of Southern Denmark, Odense

Spring 2007
KSL

DM18, Spring 2007
Exam Project, part 2

Write eligible (block or printed letters)

Group

Date

Name
Birthday
IMADA login
Signature

Name
Birthday
IMADA login
Signature

Name
Birthday
IMADA login
Signature

This report contains a total of . . . . . . . . . . . pages.


