DM206 - Advanced Data Structures Addition to Work Note 3

Defining Asymptotic Notation

Let $\mathbb{N}=$ denote the natural numbers $\{0,1,2, \ldots\}$ and let \mathbb{R}^{+}the positive real numbers.
$O(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R}^{+} \mid \exists c \in \mathbb{R}^{+} \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}: n \geq n_{0} \Rightarrow g(n) \leq c f(n)\right\}$
$\Omega(f)=\left\{g: \mathbb{N} \rightarrow \mathbb{R}^{+} \mid \exists c \in \mathbb{R}^{+} \exists n_{0} \in \mathbb{N} \forall n \in \mathbb{N}: n \geq n_{0} \Rightarrow g(n) \geq c f(n)\right\}$
$\Theta(f)=O(f) \cap \Omega(f)$
$o(f)=O(f) \backslash \Theta(f)$
$\omega(f)=\Omega(f) \backslash \Theta(f)$
$O(f(m, n))=\left\{g: \mathbb{N}^{2} \rightarrow \mathbb{R}^{+} \mid \exists c \in \mathbb{R}^{+} \exists m_{0}, n_{0} \in \mathbb{N} \forall m, n \in \mathbb{N}: m \geq m_{0} \wedge n \geq\right.$ $\left.n_{0} \Rightarrow g(m, n) \leq c f(m, n)\right\}$
[there are many alternative ways of defining asymptotic notation]

Repetition Problems

1. Show that $O\left(\log _{a} n\right)=O\left(\log _{b} n\right)$, where $a, b>1$.
2. Show that $O(n) \subset O(n \log n) \subset O\left(n^{2}\right)$.
3. Fill in the following table with X 's; and arguments.

A	B	$A \in O(B)$	$A \in o(B)$	$A \in \Omega(B)$	$A \in \omega(B)$	$A \in \Theta(B)$
$\log \log n$	$\log n$					
$(\log n)^{c}$	n^{k}					
$\frac{\log n}{\log \log n}$	$\log \log n$					
\sqrt{n}	$n^{\sin n}$					
$\log n!$	$\log n^{n}$					

where c and k are positive constants.
4. Let c, c_{1}, c_{2} be constants. How does $T(n)$ grow asymptotically with the following definitions of T ?
(a) $T(n)=T\left(\frac{n}{2}\right)+c$
(b) $T(n)=2 T\left(\frac{n}{2}\right)+c$
(c) $T(n)=3 T\left(\frac{n}{2}\right)+c$
(d) $T(n)=T\left(\frac{n}{2}\right)+n$
(e) $T(n)=3 T\left(\frac{n}{2}\right)+n$
(f) $T(n)=T\left(n-c_{1}\right)+c_{2}$
(g) $T(n)=T(n-c)+n$

Assume that n is on some convenient form (a power of two or similar is often helpful) and that $T(1)$ is some (appropriate) constant.

