DM42 – Advanced Data Structures Addition to Weekly Note 2

Defining Asymptotic Notation

Let $\mathbb{N} =$ denote the natural numbers $\{0, 1, 2, \ldots\}$ and let \mathbb{R}^+ the positive real numbers.

$$O(f) = \{g \colon \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+ \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \colon \ n \ge n_0 \Rightarrow g(n) \le cf(n)\}$$

$$\Omega(f) = \{g \colon \mathbb{N} \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \colon n \ge n_0 \Rightarrow g(n) \ge cf(n)\}$$

$$\Theta(f) = O(f) \cap \Omega(f)$$

$$o(f) = O(f) \setminus \Theta(f)$$

$$\omega(f) = \Omega(f) \setminus \Theta(f)$$

$$O(f(m,n)) = \{g : \mathbb{N}^2 \to \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+ \exists m_0, n_0 \in \mathbb{N} \ \forall m, n \in \mathbb{N} : m \ge m_0 \land n \ge n_0 \Rightarrow g(m,n) \le cf(m,n)\}$$

[there are many alternative ways of defining asymptotic notation]

Repetition Problems

- 1. Show that $O(\log_a n) = O(\log_b n)$, where a, b > 1.
- 2. Show that $O(n) \subset O(n \log n) \subset O(n^2)$.
- 3. Fill in the following table with X's; and arguments.

A	B	$A \in O(B)$	$A \in o(B)$	$A \in \Omega(B)$	$A \in \omega(B)$	$A \in \Theta(B)$
$\log \log n$	$\log n$					
$(\log n)^c$	n^k					
$\frac{\log n}{\log \log n}$	$\log \log n$					
\sqrt{n}	$n^{\sin n}$					
$\log n!$	$\log n^n$					

where c and k are positive constants.

4. Let c, c_1, c_2 be constants. How does T(n) grow asymptotically with the following definitions of T?

(a)
$$T(n) = T(\frac{n}{2}) + c$$

(b)
$$T(n) = 2T(\frac{n}{2}) + c$$

(c)
$$T(n) = 3T(\frac{n}{2}) + c$$

(d)
$$T(n) = T(\frac{n}{2}) + n$$

(e)
$$T(n) = 3T(\frac{n}{2}) + n$$

(f)
$$T(n) = T(n - c_1) + c_2$$

(g)
$$T(n) = T(n-c) + n$$

Assume that n is on some convenient form (a power of two or similar is often helpful) and that T(1) is some (appropriate) constant.