
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

November 13, 2008
KSL

DM509 Exam
Obligatory Assignment, part 1: PROLOG

Kim Skak Larsen
Fall 2008

Introduction

In this note, we describe one part of the exam project which must be solved in connection with the course
DM509, Programming Languages, Fall 2008. It is important toread through the entire project description
before starting the work on the project; also the sections onrequirements and how to turn in your solution.

Deadline

Thursday, December 4, 2008 at noon.

Mazes and Minefields

You must solve two different, though very related, problems. First, you must design a maze solver, and
then you must write a script to find the best possibly path, in asense to be described.

A Maze Solver

You are given a description of a maze in a PROLOG format. Each unit of the maze is referred to using
coordinates, and you are told where to start and where your goal is. In Fig. 1, you can see an example of
this format. After the start and goal predicated, the file simply lists all free units. An illustration of this
maze can be seen in Fig. 2.

You must define a predicateshortest/1 such that the goalshortest(L). produces all shortest paths
from the start to the goal. In the given example, there is onlyone path from the start to the goal which is
therefore the only answer. The effect we want to see is listedin Fig. 3.

This example also defines the output format we want. The functor symbolc stands for “coordinates”.
Notice how the output specifies the path from the start to the goal in the maze. Also notice how you can
start PROLOG up on your script file and then afterwards load a file defining the maze.

If we addcell(5,5) to the file, we get the file illustrated in Fig. 4. Here, the solution is still unique,
because even though there are two different paths from startto goal, one is shorter than the other. We would
expect the output given in Fig. 5.

However, ifinstead of addingcell(5,5) , we addcell(1,1) , and obtain the maze illustrated in Fig. 6,
then there are suddenly two shortest paths, and we should seethe result given in Fig. 7.

A Mine Solver

You are given a description of an area in a PROLOG format. Each unit of the area is referred to using
coordinates, and a third value (the unit’sweight) specifies how unpleasant that unit is (this is a generalized

1

minefield). You are also told where to start and where your goal is. In Fig. 8, you can see an example of
this format. An illustration of this minefield can be seen in Fig. 9. For clarity, the indication of start and
goal have been omitted from the illustration.

You must define a predicatelightest/1 that finds all lightest paths from the start to the goal, wherethe
weight of a path is the sum of all weights on it.

In this little example, the predicate must find the unique lightest path which goes through the unit of weight
four and otherwise only ones. The output format should be thesame as for the maze problem.

Execution Requirements

The programs must be written in GNU PROLOG. They must of course be able to run on the department’s
computers, i.e., the ones in the terminal room. Example computers arelogon 〈digit〉.imada.sdu.dk ,
where〈digit〉 can be any of the digits1, . . . , 9. These are the computers you can connect to usingssh
from outside IMADA.

You are very welcome to develop your programs at home, but it is your responsibility. This includes
technical problems at home, lack of access to relevant software, moving data to IMADA via modem, e-
mail, ftp, floppy disks, USB keys, etc. and converting to the correct format, e.g., between Windows and
Linux.

You must hand in two separate PROLOG scripts that must be calledmaze.pl andmine.pl (all lower
case). The first should contain the definition of the predicate shortest and the second should contain
the definition of the predicatelightest .

Turning In

You should produce a small report describing what you have done. A sufficient collection of tests must be
carried, and you must verify and document in the report that the correct results are produced. The report
must also contain a complete listing of programs.

Possible omissions, known errors, etc. should be describedin the report. It is often a good idea to do this
in a separate section instead of mixing it in with the rest of the report.

All the material described above must be turned in on paper atthe secretaries’ office and also electronically
via Blackboard.

The paper version and the electronic version must of course be identical, except that you must date and
sign the paper version. Also, for the purpose of the exam protocol, please clearly indicate your full name
and birthday to make sure that we correctly identify you. It is also a good idea to write your IMADA login
as well as your preferred e-mail address.

The secretaries’ office may be closed for very short periods of time. If, for some unexpected reason, the
office must be closed for longer periods of time close to the deadline, an announcement will be made
outside the office, giving instructions as to where you turn in your report.

Exam Rules

An obligatory assignment is an exam project. Cooperation beyond what is explicitly permitted will be
considered cheating and will be treated as such. You have a duty to keep your notes private and protect
your files against reading and copying by others. Both parties involved in a possible plagiarism can be held
responsible.

There will be given what we judge to be more than sufficient time for each assignment and you are strongly
encouraged to plan your work such that you will finish some days before the deadline.

2

Assignments which are turned in after the deadline will not be accepted. Downtime on the system or the
printers will not automatically result in an extension; noteven if it is the last hours before the deadline.
Neither will own or children’s illness without a statement from your physician, etc.

Figures

start(0,0).
goal(6,6).
cell(0,0).
cell(0,1).
cell(0,2).
cell(0,3).
cell(0,4).
cell(0,5).
cell(0,6).
cell(1,4).
cell(1,6).
cell(2,0).
cell(2,1).
cell(2,2).
cell(2,3).
cell(2,4).
cell(2,6).
cell(3,4).
cell(4,0).
cell(4,2).
cell(4,3).
cell(4,4).
cell(4,5).
cell(4,6).
cell(5,0).
cell(5,2).
cell(6,0).
cell(6,1).
cell(6,2).
cell(6,3).
cell(6,4).
cell(6,5).
cell(6,6).

Figure 1: Example fileMaze7Unique.pl .

3

0 1 2 3 4 5 6
0
1
2

3
4

5
6

⋆

†

Figure 2: Illustration of example fileMaze7Unique.pl .

(13:42) ˜> gp maze.pl
GNU Prolog 1.3.0
By Daniel Diaz
Copyright (C) 1999-2007 Daniel Diaz
| ?- [’maze.pl’].
compiling /home/kslarsen/maze.pl for byte code...
/home/kslarsen/maze.pl compiled, 24 lines read - 6747 byte s written,
11 ms

yes
| ?- [’Maze7Unique.pl’].
compiling /home/kslarsen/Maze7Unique.pl for byte code.. .
/home/kslarsen/Maze7Unique.pl compiled, 33 lines read - 2 951 bytes
written, 10 ms

yes
| ?- shortest(P).

P = [c(0,0),c(0,1),c(0,2),c(0,3),c(0,4),c(1,4),c(2,4) ,c(3,4),c(4,4),
c(4,3),c(4,2),c(5,2),c(6,2),c(6,3),c(6,4),c(6,5),c(6,6)] ? ;

(580 ms) no
| ?-

Figure 3: Running shortest onMaze7Unique.pl .

4

0 1 2 3 4 5 6
0
1
2

3
4

5
6

⋆

†

Figure 4: Illustration of example fileMaze7UniqueSolution.pl .

| ?- [’Maze7UniqueSolution.pl’].
compiling /home/kslarsen/Maze7UniqueSolution.pl for by te code...
/home/kslarsen/Maze7UniqueSolution.pl compiled, 34 lin es read - 3047
bytes written, 9 ms

yes
| ?- shortest(P).

P = [c(0,0),c(0,1),c(0,2),c(0,3),c(0,4),c(1,4),c(2,4) ,c(3,4),c(4,4),
c(4,5),c(5,5),c(6,5),c(6,6)] ? ;

(920 ms) no
| ?-

Figure 5: Running shortest onMaze7UniqueSolution.pl .

0 1 2 3 4 5 6
0
1
2

3
4

5
6

⋆

†

Figure 6: Illustration of example fileMaze7TwoSolutions.pl .

5

| ?- [’Maze7TwoSolutions.pl’].
compiling /home/kslarsen/Maze7TwoSolutions.pl for byte code...
/home/kslarsen/Maze7TwoSolutions.pl compiled, 34 lines read - 3044
bytes written, 9 ms

yes
| ?- shortest(P).

P = [c(0,0),c(0,1),c(0,2),c(0,3),c(0,4),c(1,4),c(2,4) ,c(3,4),c(4,4),
c(4,3),c(4,2),c(5,2),c(6,2),c(6,3),c(6,4),c(6,5),c(6,6)] ? ;

P = [c(0,0),c(0,1),c(1,1),c(2,1),c(2,2),c(2,3),c(2,4) ,c(3,4),c(4,4),
c(4,3),c(4,2),c(5,2),c(6,2),c(6,3),c(6,4),c(6,5),c(6,6)] ? ;

(1816 ms) no
| ?-

Figure 7: Running shortest onMaze7TwoSolution.pl .

start(0,0).
goal(3,3).
cell(0,0,1).
cell(0,1,3).
cell(0,2,3).
cell(0,3,3).
cell(1,0,1).
cell(1,1,3).
cell(1,2,3).
cell(1,3,3).
cell(2,0,1).
cell(2,1,4).
cell(2,2,1).
cell(2,3,1).
cell(3,0,1).
cell(3,1,3).
cell(3,2,3).
cell(3,3,1).

Figure 8: Example fileMine4.pl .

0 1 2 3
0
1
2

3

1

3
3
3

1

3
3
3

1
4
1
1

1

3
3
1

Figure 9: Illustration of example fileMine4.pl .

6

