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Abstract

Online graph problems are considered in models where the irrevo-
cability requirement is relaxed. We consider the Late Accept model,
where a request can be accepted at a later point, but any acceptance
is irrevocable. Similarly, we consider a Late Reject model, where an
accepted request can later be rejected, but any rejection is irrevocable
(this is sometimes called preemption). Finally, we consider the Late
Accept/Reject model, where late accepts and rejects are both allowed,
but any late reject is irrevocable. We consider four classical graph prob-
lems: For Maximum Independent Set, the Late Accept/Reject model is
necessary to obtain a constant competitive ratio, for Minimum Vertex
Cover the Late Accept model is sufficient, and for Minimum Spanning
Forest the Late Reject model is sufficient. The Maximum Matching
problem admits constant competitive ratios in all cases. We also con-
sider Maximum Acyclic Subgraph and Maximum Planar Subgraph,
which exhibit patterns similar to Maximum Independent Set.
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1 Introduction

For an online problem, the input is a sequence of requests. For each request,
the algorithm has to make some decision without any knowledge about pos-
sible future requests. Often (part of) the decision is whether to accept or
reject the request and the decision is usually assumed to be irrevocable.
However, many online problems have applications for which total irrevo-
cability is not inherent or even realistic. Furthermore, when analyzing the
quality of online algorithms, relaxations of the irrevocability constraint often
result in dramatically different results, especially for graph problems. This
has already been realized and several papers study various relaxations of the
irrevocability requirement. In this paper we initiate a systematic study of
the nature of irrevocability and of the implications for the performance of
the algorithms. Our aim is to understand whether it is the lack of knowl-
edge of the future or the irrevocability restrictions on the manipulation of
the solution set that makes an online problem difficult.

We consider graph problems and focus on four classical ones, Maximum
Independent Set, Maximum Matching, Minimum Vertex Cover, and Mini-
mum Spanning Forest. It turns out that the techniques used for analyzing
Maximum Independent Set can easily be generalized to similar problems
like Maximum Acyclic Graph and Maximum Planar Subgraph. Maximum
Independent Set and Minimum Vertex Cover are studied in the vertex ar-
rival model. In this model, vertices arrive one by one together with all the
edges between the newly arrived vertex and previous vertices. Maximum
Matching and Minimum Spanning Forest are studied in the edge arrival
model, but the results hold in the vertex arrival model as well. In the edge
arrival model, edges arrive one by one, and if a vertex incident with the
newly-arrived edge was not seen previously, it is also revealed.

As is customary for these problems, we consider simple graphs, i.e., undi-
rected graphs without multi-edges or self-loops.

1.1 Relaxed irrevocability

For the problems considered in this paper, the online decision is whether to
accept or reject the current request. In the standard model of online prob-
lems, this decision is irrevocable and has to be made without any knowledge
about possible future requests. We relax the irrevocability requirement by
allowing the algorithm to perform two additional operations, namely late ac-
cept and late reject. Late accept allows the algorithm to accept not only the
current request but also requests that arrived earlier (at any time). Thus,
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late accept relaxes irrevocability by not forcing the algorithm to discard the
items that are not used immediately. Late reject allows the algorithm to
remove items from the solution being constructed (at any time), relaxing
the irrevocability of the decision to accept an item. When the algorithm is
allowed to perform late accept or late reject, but not both, we speak of a
Late Accept model and Late Reject model, respectively. Note that, in these
two models, the late operations are irrevocable. We also consider the situ-
ation where the algorithm is allowed to perform both late accepts and late
rejects, focusing on the Late Accept/Reject model, where any item can be
late-accepted and late-rejected, but once it is late-rejected, this decision is
irrevocable. In other words, if the algorithm performs both late accept and
late reject on a single item, the late accept has to precede the late reject.

We believe that the Late Accept, Late Reject, and Late Accept/Reject
models are appropriate modeling tools corresponding to many natural set-
tings. Maximum Matching, for example, in the context of online gaming or
chats, functions in the Late Accept model. Indeed, the users are in the pool
until assigned, allowing the late accept, but once the users are paired, the
connection should not be broken by the operator. Note that the matching
problem is a maximization problem. For minimization problems, accepting
a request may correspond to establishing a resource at some cost. Often
there is no natural reason to require the establishment to happen at a spe-
cific time. Late acceptance was considered for the dominating set problem
in [3], which also contains further feasible practical applications and addi-
tional rationale behind the model.

When the knapsack problem is studied in the Late Reject model, items
are usually called removable; see for example [19, 16, 15, 7, 17]. For most
other problems, late rejection is usually called preemption and has been
studied in variants of many online problems, for example call control [2,
12], maximum coverage [33, 31], weighted matching problems [9, 10], and
submodular maximization [6]. Preemption was also previously considered
for one of the problems we consider here, independent set, in [25], but in
a model where advice is used, presenting lower bounds on the amount of
advice necessary to achieve given competitive ratios in a stated range. Also
focusing on advice results, [32] investigates graph problems where node or
edge deletions are carried out to keep the graph in some fixed graph class.
These deletions can be deferred but are irrevocable when executed.

Online Minimum Vertex Cover was studied in [8], where the authors
considered the possibility of swapping some of the accepted vertices for other
vertices at the very end, at some cost depending on the number of vertices
involved.
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A similar concept has been studied in, for example, [18, 30, 13, 14] for
online Steiner tree problems, MST, and TSP. Here, replacing an accepted
edge with another is allowed, and the objective is to minimize the number
of times this occurs while obtaining a good competitive ratio. The problem
is said to allow rearrangements or recourse.

TSP has also been studied [20] in a model where the actual acceptances
and rejections (rejections carry a cost) are made at any time.

In [1], which is a continuation of the work on matching from the present
paper (the conference version [4]), the authors consider more levels of late
accept/reject.

1.2 Competitive analysis

For each graph problem, we study online algorithms in the standard, Late
Accept, Late Reject, and Late Accept/Reject models using the standard
tool of competitive analysis, where the performance of an online algorithm
is compared to the optimum algorithm Opt via the competitive ratio [34, 22]
or the competitive function [5]. For any algorithm (online or offline), A, we
let A(σ) denote the value of the objective function when A is applied to the
input sequence σ.

For minimization problems, an algorithm Alg is c-competitive if there
exists a constant α such that, for all inputs σ,

Alg(σ) ≤ c ·Opt(σ) + α .

Similarly, for maximization problems, Alg is c-competitive, if there exists
a constant α such that, for all inputs σ,

Opt(σ) ≤ c ·Alg(σ) + α .

In both cases, if the inequality holds for α = 0, the algorithm is strictly
c-competitive. The (strict) competitive ratio of Alg is the infimum over
all c such that Alg is (strictly) c-competitive. The competitive ratio of a
problem P is the infimum over the competitive ratios of all online algorithms
for the problem.

For algorithms that do not have a constant competitive ratio, we use the
competitive function as defined in [5], to emphasize the high order term in
the function and the constant in front of it.

Most often in the area (including textbooks), people define the competi-
tive ratio for constants only, but then use it for functions of n as well. Given
the focus of this paper, we find it necessary to be precise about the mix of
constants and asymptotic notation.
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For minimization problems, an algorithm Alg is f(n)-competitive, if for
all inputs σ of length n,

Alg(σ) ≤ (f(n) + o(f(n)) ·Opt(σ) .

Similarly, for maximization problems, an algorithm Alg is f(n)-competitive,
if for all inputs σ of length n,

Opt(σ) ≤ (f(n) + o(f(n)) ·Alg(σ) .

An algorithm Alg has competitive function f(n), if Alg is f(n)-competitive,
and for any g(n) such that Alg is g(n)-competitive,

lim
n→∞

f(n)

g(n)
≤ 1 .

A problem P has competitive function f(n), if the problem has an f(n)-
competitive algorithm, and for any g(n)-competitive algorithm for the prob-
lem,

lim
n→∞

f(n)

g(n)
≤ 1 .

For most combinations of the problem and the model, we obtain match-
ing lower and upper bounds on the competitive ratio/function. For results
on the competitive ratio, the upper bounds hold for the strict competitive
ratio, and the lower bounds hold for the (non-strict) competitive ratio. For
convenience, when stating results containing both an upper bound on the
strict competitive ratio and a lower bound on the competitive ratio, we use
the term “competitive ratio”.

For ease of notation for our results, we adopt the following convention
(see Theorem 2, for example). We say that a problem has competitive
function n/Θ(1) if

• for any f(n)-competitive algorithm, there is a constant b > 0 such that

lim
n→∞

f(n)

n/b
≥ 1 ,

and

• for any constant b, there is an f(n)-competitive algorithm for graphs
with at least b vertices, such that

lim
n→∞

f(n)

n/b
≤ 1 .
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1.3 Our results

The paper shows that for some problems the Late Accept model allows for
algorithms with significantly better competitive ratios, while for others it
is the Late Reject model which does. For a third class of problems, the
Late Accept/Reject model is necessary to get these improvements. Table 1
illustrates these varying patterns. The results for Maximum Independent
Set are repeated in Table 2 together with the results for the two related
problems. Note that only deterministic algorithms are considered, not ran-
domized algorithms.

Our results on Minimum Spanning Forest follow from previous results.
Thus, they are mainly included to give an example where late rejects bring
down the competitive ratio dramatically. In fact, for any cost function,
the problem of finding an independent set of minimum (maximum) cost
for any matroid has competitive ratio 1 in both the Late Reject and the
Late Accept/Reject models. The technical highlights of the paper are the
results for Maximum Independent Set in the Late Accept/Reject model
(Theorems 8 and 9) and Maximum Planar Subgraph in the Late Reject
model (Theorems 5 and 6).

Table 1: Competitive ratios/functions of the four main problems in each
of the four models under the standard model, as well as Late Accept, Late
Reject, and Late Accept/Reject. W is the ratio of the largest weight to the

smallest, and 3
√

3
2 ≈ 2.598.

Problem Std. Late A Late R Late A/R

Maximum Independent Set n n
Θ(1)

n
2

3
√

3
2

Maximum Matching 2 2 2 3
2

Minimum Vertex Cover n 2 n 2

Minimum Spanning Forest W W 1 1

We consider only undirected graphs G = (V,E). Throughout the paper,
G will denote the graph under consideration, and V and E will denote its
vertex and edge set, respectively. Moreover, n = |V | will always denote
the number of vertices in G. We use uv for the undirected edge connecting
vertices u and v, so vu denotes the same edge.
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Table 2: Comparison of the competitive ratios/functions of Maximum In-
dependent Set and the two related problems under the standard model, as
well as Late Accept, Late Reject, and Late Accept/Reject.

Problem Std. Late A Late R Late A/R

Maximum Independent Set n n
Θ(1)

n
2

3
√

3
2

Maximum Acyclic Subgraph n
2

n
Θ(1)

n
3 [3

√
3

2 ; 3]

Maximum Planar Subgraph n
4

n
Θ(1)

5n
28 [3

√
3

2 ; 3]

2 Maximum Independent Set and Friends

In this section, we study the graph problems Maximum Independent Set,
Maximum Acyclic Subgraph, and Maximum Planar Subgraph defined below.

An independent set for a graph G = (V,E) is a subset I ⊆ V such
that no two vertices in I are connected by an edge. For the problem called
Maximum Independent Set, the objective is to find an independent set of
maximum cardinality. Similarly, Maximum Acyclic Subgraph (Maximum
Planar Subgraph) is the problem of finding a maximum cardinality subset
V ′ of the vertices in the input graph, such that V ′ induces an acyclic (planar)
subgraph.

We consider the three problems in the vertex arrival model.

2.1 Standard model

It turns out that some quite general observations can be used to obtain
results for three specific problems. In the below, we consider graph problems
where the objective is to select a largest possible, feasible subset of the
vertices.

Theorem 1 Let P be a graph problem and assume there exists an integer
cP such that P has the following properties.

• Any independent set is a valid solution to P.

• Any set of at most cP vertices is a valid solution to P.

• No set of size cP + 1 inducing a clique is a valid solution to P.

For P in the standard model, the competitive function is n/cP.
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Proof The greedy algorithm, which accepts whenever the inclusion of the
next vertex is still a valid solution, will accept at least the first cP vertices.
Since Opt can accept at most n vertices, the greedy algorithm is n/cP-
competitive, giving the upper bound.

For the lower bound, we use the following adversarial strategy. For each
new vertex v, we define its neighbor set, N(v), to be equal to S, where S is
the set of vertices accepted by the online algorithm. Note that S is always a
clique, and V \ S is an independent set. Thus, |S| ≤ cP and Opt ≥ n− |S|,
so no algorithm can be better than n/cP-competitive. 2

For completeness, we show below how this theorem implies results in the
standard model. The results themselves are trivial and have certainly been
observed directly many times before.

Corollary 1 For the following three problems in the standard model, the
competitive function is as follows.

• Maximum Independent Set: n.

• Maximum Acyclic Subgraph: n/2.

• Maximum Planar Subgraph: n/4.

Proof These results follow from Theorem 1 by observing that in any simple
graph, any single vertex is an independent set (cP = 1), the induced graph
of any two vertices is acyclic (cP = 2), and the induced graph of any four
vertices is planar (cP = 4). 2

2.2 Late Accept model

Theorem 2 Let P be a graph problem and assume there exists an integer
cP such that P has the following properties.

• Any independent set is a valid solution to P.

• No set of size cP + 1 inducing a clique is a valid solution to P.

For P in the Late Accept model, the competitive function is n/Θ(1).

Proof For any integer c, we define an n/c-competitive algorithm: The
algorithm does not accept any vertex until the partial input presented so
far contains a solution of size at least c and then accepts any such set of
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vertices. Note that if Alg does not accept any vertices, then Opt ≤ c− 1.
Hence, Opt ≤ n/c ·Alg+c− 1 for any input.

Conversely, let Alg be any algorithm for P in the Late Accept model.
The adversarial strategy is the same as in the proof of Theorem 1: For each
new vertex v, the neighborhood of v is exactly the set of vertices accepted
by Alg just before the arrival of v.

After each request, Alg has the possibility of (late-)accepting one or
more vertices. A set of vertices accepted at the same time is called an
accept set. Since all vertices in any given accept set are connected to all
vertices in accept sets accepted earlier, picking one vertex from each accept
set forms a clique. Thus, there can be at most cP accept sets; otherwise,
Alg has not produced a valid solution. Let m be the size of the largest of
these at most cP accept sets. Then, Alg accepts at most a = m ·cP vertices,
whereas Opt accepts at least n− a. Consequently, Opt ≥ (n/a− 1) ·Alg.

2

Corollary 2 For all of the problems Maximum Independent Set, Maxi-
mum Acyclic Subgraph, and Maximum Planar Subgraph in the Late Accept
model, the competitive function is n/Θ(1).

2.3 Late Reject model

In this section, we prove that, in the Late Reject model, the competitive
functions of Maximum Independent Set, Maximum Acyclic Subgraph, and
Maximum Planar Subgraph are n/2, n/3, and 5n/28, respectively.

2.3.1 Maximum Independent Set

Theorem 3 For Maximum Independent Set in the Late Reject model, the
competitive function is n/2.

Proof For the lower bound, whenever there is at least one vertex v in
the current independent set constructed by Alg, the adversary presents a
vertex incident only to v. The only vertex which can be accepted when Alg
rejects v is the vertex which just arrived, so Alg will never have more than
one accepted vertex. On the other hand, the graph the adversary produces
is bipartite, so Opt can accept at least half of its vertices.

For the upper bound, consider the following algorithm, Alg: If the
presented vertex v can be added to the independent set I being constructed,
then accept it. Otherwise, if v is adjacent to only one vertex u in I, then
remove u from I and add v to I.
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By definition, Alg accepts the first vertex. If Alg ever has two accepted
vertices, it will also have at least two accepted vertices at the end, and the
result holds. Otherwise, consider some vertex u accepted at some point by
Alg. If the adversary presented a vertex not adjacent to u, Alg would
accept it without rejecting u, which would be a contradiction. Thus, each
vertex presented by the adversary is connected to the unique vertex currently
in I. By definition of the algorithm, in every step, the currently accepted
vertex is rejected and the new one accepted. Thus, considering the vertices
in the order they are presented, they form a path. No algorithm can accept
more than every second vertex from a path to form an independent set, and
since all vertices are on the path, Opt accepts at most dn/2e vertices, and
the result follows. 2

2.3.2 Maximum Acyclic Subgraph

Theorem 4 For Maximum Acyclic Subgraph in the Late Reject model, the
competitive function is n/3.

Proof For the lower bound, we use the same adversarial strategy as in the
proofs of Theorems 1 and 2.

Consider any algorithm, Alg. By the adversarial strategy, at any point
when Alg changes from having one to having two accepted vertices, those
vertices are connected. Also, when the algorithm has two accepted vertices,
accepting a new one requires rejecting one of the currently accepted vertices,
and if it has two accepted vertices after such a procedure, they are connected.
Thus, Alg cannot accept more than two vertices.

Figure 1 depicts an example of the resulting graph when six vertices
are given, and the algorithm under consideration always accepts the current
vertex and, if forced to by the acyclicity requirement, late-rejects the oldest
vertex it currently has in its set. The last two, the red vertices, are the ones
it accepts at the end. Note that Opt can accept vertices 1, 2, 4, and 5, for
example.

We now give an upper bound on the number of vertices that Opt can
accept from such an adversarial graph. To see that each graph G constructed
by the adversary is chordal, consider a cycle C of length at least 4 and
consider the point in time where the last vertex v of C arrived. Since v
establishes the cycle, it was adjacent to two other vertices in the cycle, u
and w. This means that u and w were already accepted at the point where
v was given and, as argued above, also connected, so uw is a chord of C.

The graphs constructed by the adversary do not contain cliques of size
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2

3

4

5

6

Figure 1: Possible adversarial graph with 6 vertices against example algo-
rithm, having the red vertices as the accepted ones at the end.

more than three, since each arriving vertex is adjacent to at most two pre-
vious vertices, and the last vertex of a clique has to be adjacent to all other
vertices of the clique when it arrives. It is well known that all chordal graphs
are perfect, so all graphs constructed by the adversary are colorable by three
colors, the size of their maximum cliques [21].

Consider any 3-coloring of one of these graphs, G. The subgraph induced
by the vertices colored by any two of these three colors is acyclic, since any
induced cycle in G of length at least four has a chord, and any 3-cycle must
have three different colors. One of the colors must be used on at most

⌊
n
3

⌋
vertices, so there must exist a subset of at least

⌈
2n
3

⌉
of the vertices having

only two of the colors. Thus, Opt may accept at least
⌈

2n
3

⌉
vertices, and

the competitive function is then at least
⌈

2n
3

⌉
/2.

For the upper bound, we define an algorithm, Alg, as follows: Alg
always accepts the newest vertex, and rejects the oldest of its accepted
vertices if this is necessary to break a cycle. Note that if Alg ever accepts
three vertices, we are below the claimed bound on the competitive function
and therefore done.

Alg accepts the first vertex. If the next vertex is not adjacent to the
first, Alg will accept it and will be able to accept any third vertex given,
and we would be done. Thus, we may assume that the first two vertices
given are connected. Alg accepts both and will never reduce the number
of accepted vertices it has.

If any future vertex given by the adversary is not connected to both of
the accepted vertices at the time, Alg gets up to three accepted vertices.
Thus, we may assume that in every step from the third step, the adversary
gives vertices that are connected to the two vertices accepted by Alg at the
given time, plus possibly to older, rejected vertices.

Thus, ignoring the edges possibly given to older, rejected vertices, the
adversary is giving a graph as the one illustrated in Figure 1 for n = 6. We
give an upper bound on how large an acyclic subgraph Opt can accept in
such a graph (ignoring some edges only makes it easier for Opt).
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To be acyclic, Opt must reject at least one vertex of any triangle, of
which there are n−2. Since no vertex is incident to more than three triangles,
it must reject at least

⌈
n−2

3

⌉
vertices. Thus, it can accept no more than

n−
⌈
n−2

3

⌉
=
⌊

2n+2
3

⌋
=
⌈

2n
3

⌉
.

We have shown that Alg is
⌈

2n
3

⌉
/2-competitive and have matching up-

per and lower bounds on the competitive function. 2

2.3.3 Maximum Planar Subgraph

For Maximum Planar Subgraph in the Late Reject model, we first give a
general lower bound of 5n/28 (Theorem 5) and then present an algorithm
with a matching upper bound (Theorem 6). For both results, we use Kura-
towski’s Theorem [36], stating that a graph is planar if and only if it does
not contain a (subdivision of) K5 or K3,3. We start by briefly outlining our
approach.

For the lower bound, we use the following adversary strategy: Each new
vertex has edges to exactly the vertices that are currently accepted by the
online algorithm, Alg, considered. This ensures that, at any time during
execution, the set, S, of vertices accepted by Alg induces a clique. Thus,
at any time, |S| ≤ 4.

Note that the adversary graph constructed in this way is an interval
graph. If a vertex, v, is ever in S, the corresponding interval is the time
interval in which it is in S. Thus, if v is late-rejected at the arrival of
another vertex, u, the interval corresponding to v has its endpoints at the
arrival times of the vertices v and u. If v never belongs to S, i.e., is not
accepted by Alg, then the corresponding interval consists of just one point:
the point in time where v arrives. For any point in time, we define the
depth of the adversary graph to be the number of intervals containing this
point. The depth is at most 5 at any point. Furthermore, for any time
interval containing more than one point, the minimum depth of G within
the interval is at most 4.

Among a set of vertices, the last-living vertex is the vertex that is in S
at the latest point in time. If more vertices are late-rejected at the same
time, ties are broken arbitrarily.

To give a lower bound on Opt for adversary graphs, we define an offline
algorithm, Off. The vertices of the adversary graph are partitioned into
groups, each consisting of 7, 11, or 14 vertices, and Off processes the vertices
group by group. For each group of size 7, it rejects the two last-living vertices
of the group. For each group of size 11, it rejects three vertices, two of which
are the two last-living vertices of the group. For each group of size 14, it
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rejects four vertices, two of which are the two last-living vertices of the
group.

Note that Off accepts at least 5n/7 vertices, and Alg accepts at most
4 vertices, resulting in a ratio of at least 5n/28. We prove, by induction
on the number of groups, that the set of vertices accepted by Off indeed
induces a planar graph.

We define the algorithm Off in detail in Algorithm 1, but first we prove
some basic properties of the adversary graph (Lemmas 1–4 and Corollary 3).

Lemma 1 For any adversary graph, G, the following holds. Let G′ be a
subgraph of G containing exactly six vertices. Assume that G′ contains a
K3,3 as a subgraph and denote the two partitions by X and Y . Then the
vertices of X or Y induce a triangle.

Proof Let x1, x2, x3 and y1, y2, y3 be the vertices of X and Y , respectively,
numbered according to their relative order of arrival. Assume without loss
of generality that x1 arrives before y1. If Y induces a triangle, we are done.
Thus, assume that the vertices of Y do not form a triangle.

By the definition of X and Y , x1 is still in S at the arrival of y3. Since
Y does not form a clique, at least one vertex y′ ∈ {y1, y2} is rejected before
the arrival of y3, and hence, before x1 is rejected. Since each vertex of X
arrives no later than the rejection of y′ and is rejected no earlier than the
arrival of y3, there must be a point in time (in fact, every point between
the rejection of y′ and the arrival of y3), where x1, x2, and x3 are all in S.
Hence, X induces a clique. 2

Corollary 3 For any adversary graph, G, the following holds. Let G′ be a
subgraph of G containing exactly six vertices. Assume that G′ contains a
K3,3 as a subgraph. Then each vertex in G′ is contained in a 4-clique in G′.

Proof By Lemma 1, one of the partitions, Z, of G′ induces a clique. Since
any vertex, v, of the other partition is adjacent to all vertices in Z, Z ∪ {v}
induces a 4-clique. 2

Lemma 2 Let G be an adversary graph. If G contains (a subdivision of) a
K3,3 as a subgraph, then it contains (a subdivision of) a K3,3 for which the
vertices of one partition constitute a triangle.

Proof Please refer to Fig. 2 for an illustration of the subgraph discussed
in this proof.
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Figure 2: Illustration of the subgraph discussed in Lemma 2.

Let X and Y denote the two partitions of the (subdivision of a) K3,3. If
Y induces a triangle, we are done. Otherwise, a vertex y′ ∈ Y is rejected
before the last vertex y′′ ∈ Y arrives. If there are two vertices in Y that are
rejected before the arrival of y′′, we let y′ be the one which is rejected first
(breaking ties arbitrarily).

For each vertex xi ∈ X, we let P ′i be a path in (the subdivision of)
the K3,3, possibly consisting only of xi, between xi and a vertex adjacent to
y′. Similarly, we let P ′′i be a path between xi and a vertex adjacent to y′′.
We choose these six paths such that they are pairwise vertex-disjoint, except
that they all contain xi. This is possible since there are vertex-disjoint paths
(except for the endpoints) between any pair of vertices x ∈ X and y ∈ Y .

For each xi, we let Pi be the union of P ′i and P ′′i . Thus, Pi is a path
connecting a neighbor of y′ to a neighbor of y′′ and containing xi.

At any point in the time interval starting with the rejection of y′ and
ending with the arrival of y′′, S contains a vertex from each of the three
paths, P1, P2, P3. Moreover, there must be a point, t, in this time interval
at which the vertex y ∈ Y \ {y′, y′′} is rejected or contained in S. Consider
the three vertices, z1 ∈ P1, z2 ∈ P2, z3 ∈ P3, contained in S at time t. Note
that, for each i, zi could be equal to xi. Since S always induces a clique, it
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follows that each of these three vertices is adjacent to y and also that they
are pairwise adjacent. Moreover, each of them has a path to both y′ and
y′′ and all of these paths are disjoint. Thus, letting Z = {z1, z2, z3}, (Y, Z)
forms the bipartition of a, possibly different, (subdivision of a) K3,3, and Z
induces a triangle. 2

The idea behind the first part of the following proof is that the con-
traction of an edge in an adversary graph G amounts to merging the cor-
responding (overlapping) intervals in the interval representation of G. Con-
sequently, if G′ is obtained from an adversary graph G by contracting an
edge, the depth of any point in G′ is at most as large as the corresponding
depth in G.

Lemma 3 Any nonplanar adversary graph contains a K5 or a K3,3 as a
subgraph.

Proof By Kuratowski’s Theorem, a graph is nonplanar if and only if it
contains a (subdivision of) K5 or K3,3. Thus, we just need to show that any
adversary graph containing a subdivision of a K5 or a K3,3 also contains a
K5 or a K3,3.

Consider an arbitrary adversary graph, G. First, assume that G has
a subgraph, G′, which is a subdivision of a K5. Let v1, v2, . . . , v5 be the
vertices corresponding to the vertices of K5. G′ contains disjoint paths
between every pair vi, vj , 1 ≤ i, j ≤ 5. Assume that we contract each of
these paths into one edge, resulting in the graph G′′. In any point, the
depth of G′ is at least as large as that of G′′, and in some points it is larger.
Since G′′ is a 5-clique, there is at least one point where it has depth 5. In
this point, the depth of G′ is also 5. Hence, G′ also contains a 5-clique.

Now, assume that G has a subgraph which is a subdivision of a K3,3.
According to Lemma 2, there exists (another) subgraph which is a subdivi-
sion of a K3,3 for which the vertices of one partition constitute a triangle, Z.
Each vertex, x, in the other partition, X, has three disjoint paths to the
three vertices in Z, giving a total of nine disjoint paths. Let I be the inter-
val where all three of the vertices in Z are in S, and let z′′ be the last of these
three vertices to arrive and z′ be the first of the three to leave S. The third
vertex in Z, z, must arrive no later that z′′ and leave no earlier than z′. Each
of the disjoint paths from x ∈ X to the vertices in Z must have overlapping
intervals for successive vertices on the paths. If x is in S during the interval
I, then X has edges to all three vertices in Z. If x arrives before I, then the
path from x to z′′ must contain a vertex overlapping I. If x arrives after I,
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then the path from z′ to x must contain a vertex overlapping I. In both
of these cases, let yx be that vertex overlapping I. Each vertex x ∈ X and
the three paths connecting it to Z can be replaced by this yx and the three
edges connecting it to the vertices of Z. These three yx vertices, together
with Z, form a K3,3. 2

Call the consecutive groups of vertices produced by Off from the orig-
inal input sequence I, U1, U2, . . ., to indicate the order in which they are
processed. The vertices in Ui will arrive before those in Ui+1. We show later
that the set of vertices Off produces does not contain the two last-living
vertices from each group. This allows us to use the following lemma. The
proof uses the fact that |S| ≤ 4. Because of the two vertices missing from
S from each group Ui, there are at most two vertices in both S and the
set being created just before the first vertex from Ui+1 arrives. These are
the only vertices from Ui in Off’s output graph that any vertex from Ui+1

could be adjacent to.

Lemma 4 Consider an arbitrary adversary graph, G. Assume that the
vertices of G are partitioned into groups, U1, U2, . . ., such that for any pair
of vertices, u ∈ Ui and v ∈ Uj , accepted by Alg, if u arrives before v,
then i ≤ j. Consider the graph G′ obtained by deleting the two last-living
vertices from each group. If G′ contains a K5 or a K3,3 as a subgraph, then
this subgraph cannot contain vertices from more than one group.

Proof Let V ′ denote the vertex set of G′. Consider the set S at the time
just before the arrival of the first vertex of some group, Uj . If S ∩ V ′ = ∅ at
this time, then no vertices of Uj will be connected to any vertices of V ′ from
previous groups. Otherwise, we argue that S \ V ′ contains two vertices, x
and y, that both stay in S until all vertices currently in S ∩ V ′ are rejected.
Consider any vertex v ∈ S ∩ V ′. Let Ui be the group that v belongs to.
Then, by the assumption that V ′ is created by deleting the two last-living
vertices of each group, Ui \ V ′ contains two vertices that both stay in S at
least until v is rejected.

Note that a K5 can only be created in G′ if, at the arrival of some vertex,
S contains four vertices of V ′. Since S contains at most four vertices at a
time, it follows from the above that all vertices from previous groups must
be rejected before S can contain four vertices of V ′ at the same time.

Now assume for the sake of contradiction that, after processing the ver-
tices of Uj , G

′ contains a K3,3 containing at least one vertex, u ∈ Uj , and
at least one vertex, v, from a previous group. By Corollary 3, u and v are
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each contained in a 4-clique contained in the K3,3. When the last vertex of
the 4-clique containing v arrives, the first three vertices of the clique are all
in S. Since x and y stay in S at least until v is rejected, this must be before
the start of Uj . Thus, none of these four vertices belong to Uj . Similarly,
the vertices of the 4-clique containing u must all belong to Uj . Since both
of these disjoint 4-cliques are contained in the K3,3, there are at least eight
vertices in the K3,3, giving a contradiction. 2

The input to Off (see Algorithm 1) is a sequence I containing the ver-
tices of an adversary graph in the order Alg receives them.

Lemma 5 When presented with an adversary graph, Off produces a pla-
nar subgraph.

Proof Each set U , created in line 5, 11, 15, or 20, is called a group. If the
vertices of I are sorted by order of arrival, the vertices of each group are
consecutive vertices. Hence, by Lemmas 3 and 4, it is sufficient to prove the
following invariant:

• Within each group, Off rejects the two last-living vertices.

• No single group contains a K5 or a K3,3.

Consider an arbitrary group, U .
If the first five vertices, u1, . . . , u5, of U do not induce a K5, it follows

trivially from the definition of Off that it rejects the two last-living vertices
of U (see lines 4–7 of Algorithm 1). It is not difficult to see that removing
these two vertices ensures that the remaining five vertices in the group induce
a planar graph: If {u1, . . . , u6} induces a nonplanar graph, the problem can
be solved by rejecting u6, since {u1, . . . , u5} induces a planar graph. Since
the last-living vertex in {u1, . . . , u6} arrives no later than u6, it is in S all
the time that u6 is there. Hence, rejecting the last-living vertex also solves
the problem, even if it is not u6. Similarly, if a problem occurs at the arrival
of u7, it can be solved by deleting the last-living remaining vertex. Finally,
note that the subgraph induced by U \ {u, u′} does not induce a K3,3, since
that would require six vertices.

For the remaining part of the proof, we assume that u1, . . . , u5 induce
a K5 and let u denote the last-living vertex among u1, . . . , u5. We let
v1, v2, v3, v4 denote the vertices in {u1, . . . , u5} \ {u}, sorted according to
when they leave S (that is, last-living vertices appear last in the sorted se-
quence). We consider three cases. Note that lines 9– 13 of the algorithm
are treated in both Case 1 and Case 2.
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Algorithm 1: The algorithm Off

Input: I
Result: A subsequence VOff of I, where the vertices of VOff induce

a planar graph

1 VOff ← ∅
2 while |I| ≥ 14 do
3 Let u1, u2, . . . , u14 be the first 14 vertices of I, numbered

according to their relative order of arrival
4 if {u1, . . . , u5} does not induce a K5 then
5 U ← {u1, . . . , u7}
6 u, u′ ← the two last-living vertices in U
7 UOff ← U \ {u, u′}
8 else
9 u ← last-living vertex in {u1, . . . , u5}

10 if the subgraph induced by {u1, . . . , u9} \ {u} contains a
K3,3 then

11 U ← {u1, . . . , u7}
12 u′ ← last-living vertex in U \ {u}
13 UOff ← U \ {u, u′}
14 if the last-living vertex in U \ {u, u′} is rejected later

than u then
15 U ← {u1, . . . , u14}
16 v ← last-living vertex in {u8, . . . , u13}
17 v′ ← last-living vertex in {u8, . . . , u14} \ {v}
18 UOff ← UOff ∪ {u8, . . . , u14} \ {v, v′}
19 else
20 U ← {u1, . . . , u11}
21 u′, u′′ ← the two last-living vertices in U \ {u}
22 UOff ← U \ {u, u′, u′′}
23 From I, remove the prefix consisting of vertices in U
24 VOff ← VOff ∪ UOff
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Case 1 [The subgraph induced by {u1, . . . , u7} \ {u} contains a K3,3.] In
this case, U = {u1, . . . , u7} (see lines 10–11). By Lemma 1, U \{u} contains
a set, Z, of three vertices inducing a clique. Each vertex in Z is also adjacent
to the three other vertices in U \ {u}. Before the arrival of u6, v1 must be
rejected, since |S| ≤ 4 at all times. Hence, v1 6∈ Z, since it cannot be
adjacent to five other vertices from U \ {u}. Similarly, u6, u7 6∈ Z, since
vertices in Z must be in S at times overlapping with all other vertices of
the K3,3 and u6 and u7 do not overlap in time with v1. In other words,
Z = {v2, v3, v4}. Thus, u7 is adjacent to each of v2, v3, v4. Since u stays in
S at least until all of these three vertices are rejected, u7 can be adjacent to
all three only if u6 is not in S when u7 arrives. Thus, u7 is the only vertex
in U that possibly stays in S after u is rejected. This means that the two
vertices deleted from U in line 13 are indeed the two last-living vertices of
U .

The set {u1, . . . , u5} \ {u} has size four and therefore does not induce
a K5, and since u is the last-living vertex in {u1, . . . , u5}, a K5 cannot be
created in U \{u} before all vertices in {u1, . . . , u5} have left S and four new
vertices have entered. Clearly, the subgraph induced by U \ {u, u′} does not
contain a K3,3, since that would require six vertices.

Case 2 [The subgraph induced by {u1, . . . , u7} \ {u} does not contain a
K3,3, but {u1, . . . , u9} \ {u} does contain a K3,3.] In this case, we have
U = {u1, . . . , u7} or U = {u1, . . . , u14} (see lines 10–11 and 14–15). Let U ′

be the set containing the six vertices of this K3,3.
Since {v1, v2, v3, v4, u} induces a K5, {v1, . . . , v4} also forms a clique.

Since the subgraph induced by {v1, v2, v3, v4, u6, u7} does not contain a
K3,3, this means that u6 and u7 are not both adjacent to all of the ver-
tices v2, v3, v4. Since u7 arrives after u6, it means in particular that u7 is
not adjacent to v2, which in turn implies that none of the vertices u7, u8, u9

is adjacent to any of the vertices v1, v2.
By Lemma 1, at least one partition, Z, of the K3,3 induces a clique. We

note that v1, v2 6∈ Z, since neither v1 nor v2 has five neighbors in U \ {u}.
This means that if v1 and v2 are both in U ′, they are in the same partition.
As argued before, v1 is not adjacent to u6 because it must leave S before u6

arrives to keep |S| ≤ 4, so now v1 cannot have three neighbors in U \{u, v2},
and therefore, v1 6∈ U ′.

If v2 ∈ U ′, v3, v4, and u6 must all be in the partition not containing v2,
since v2 has no neighbors in U ′ \ {v3, v4, u6} (recall that v1 6∈ U ′ and that
v2 leaves S before the arrival of u7). The vertices v3, v4, and u6 (and hence,
u) all stay in S at least until the arrival of the last vertex of U ′. Thus, u7
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cannot enter S. This means that u6 is the only vertex in U that may stay
in S after u is rejected. We conclude that the two vertices deleted from U
are the two last-living vertices.

Having accomplished this, we may now assume that v2 6∈ U ′, i.e.,

U ′ = {v3, v4, u6, u7, u8, u9}.

If v3 and v4 are in the same partition, they must both stay in S until the
three vertices of the other partition have arrived. Similarly, the remaining
vertex, x, of the partition containing v3 and v4 must stay in S until the last
vertex of the other partition has arrived, or the three vertices of the other
partition must stay in S until x has arrived. Since u stays in S at least until
v3 and v4 are rejected, there is only room for one more vertex in S. This
must be the third vertex of the partition containing v3 and v4, which must
then be u6. This means that none of the vertices u7 and u8 can be accepted
by the algorithm. In particular, this means that u6 is the only vertex in
{u1, . . . , u7} that can possibly stay in S after u is rejected. Hence, deleting
the last-living vertex in {u1, . . . , u7} \ {u} together with u ensures that the
two last-living vertices are deleted.

If v3 and v4 are in opposite partitions, v3 must stay in S until all vertices
of v4’s partition have arrived, and vice versa. Since u stays in S at least until
v3 and v4 are rejected, the two vertices of v4’s partition must arrive before
any of the two vertices of v3’s partition, and the algorithm must reject v3

at the arrival of the last vertex of v4’s partition. Hence, the two vertices in
the same partition as v4 must be u6 and u7. The three vertices v4, u6, and
u7 must all stay in S until both u8 and u9 have arrived. This means that
u8 cannot enter S.

Since, among the vertices in U , only u6 and u7 can possibly stay in S after
u is rejected, deleting u and the last-living vertex, u′, in {u1, . . . , u7} \ {u}
results in deleting the last-living vertex and the second or third last-living
vertex of {u1, . . . , u7}. If the two last-living vertices are deleted, we are
done. Otherwise, the group is extended with the vertex set {u8, . . . , u14} (see
lines 14–15). In this case, we let x denote the vertex in {u1, . . . , u7} \ {u′}
that stays in S after u is rejected and note that {x, u′} = {u6, u7}.

Since u and u′ are deleted and u8 does not enter S, no K5 can occur
before five vertices after u8 have arrived, i.e., before the arrival of u13. Hence,
deleting the last-living vertex, v, in {u8, . . . , u13} ensures that no K5 will be
created during the arrival of vertices u8, . . . , u14.

Assume that a K3,3 is created during the arrival of vertices u8, . . . , u14.
This K3,3 cannot contain any of the vertices v1, v2, v3, since v3 is rejected
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at the arrival of u7. The vertex u8 cannot be contained in this K3,3 either,
since u8 does not enter S and therefore is adjacent only to u4, u6, and u7.

Since u and u′ stay in S at least until u4 is rejected, u4 cannot be part
of a 4-clique in the subgraph induced by {u4, . . . , u14} \ {u, u′}. Hence, by
Corollary 3, u4 cannot be part of the K3,3. We conclude that the vertex set of
the K3,3 must be contained in {x, u9, . . . , u14}. For the remaining part of the
case, see lines 16–17 for the choice of v and v′ discussed below. Recall that
u8 does not enter into S, so v 6= u8, and, thus, |{x, u9, . . . , u14} \ {v}| = 6.
This means that choosing any vertex v′ ∈ {u9, . . . , u14}\{v} will ensure that
{u9, . . . , u14} \ {v, v′} does not contain a K3,3.

Case 3 [{u1, . . . , u9} \ {u} does not contain a K3,3.] In this case, removing
the two last-living vertices from {u1, . . . , u11}\{u} ensures that the resulting
set does not contain a K5 or a K3,3. In this case, it follows directly from the
definition of Off that the two last-living vertices in U are rejected.

2

Theorem 5 For Maximum Planar Subgraph in the Late Reject model, the
competitive function is at least 5n/28.

Proof We have described an adversary strategy ensuring that any online
algorithm accepts at most 4 vertices. We have also described an offline
algorithm, Off, accepting at least 5/7 of the vertices in such an adversarial
input. By Lemma 5, Off is a valid offline algorithm for the problem. The
result follows. 2

We now define a 5n/28-competitive algorithm for Maximum Planar Sub-
graph in the Late Reject model, proving that the above lower bound is tight.
The pseudocode is given as Algorithm 2.

The algorithm maintains a set, S, of accepted vertices. It always accepts
the first four vertices, and the number of accepted vertices never decreases.

If the number of accepted vertices gets up to six, the algorithm keeps
the six accepted vertices and rejects all future vertices. In this case, a ratio
of at most n/6 < 5n/28 is obtained.

The input vertices are divided into groups, each consisting of seven or
eight consecutive vertices. When the last vertex of a group has been handled,
the group is closed and a new group is opened. At any given time, the
current open group is called U , and in the analysis, the vertices of U are
called u1, u2, u3, . . ., numbered according to their relative arrival times.
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We prove that, as long |S| = 4, Opt will reject at least two vertices in
each group, and as long as |S| = 5, Opt will reject at least one vertex in
each group.

As long as |S| < 6, the algorithm accepts each new vertex v, if S ∪ {v}
induces a planar subgraph. Otherwise, if S \U 6= ∅, it tries to swap a vertex
in S \ U for v. Otherwise, depending on the sizes of S and U , it may swap
a vertex in S for v. Note that as long as S contains vertices outside U , no
vertex in U is late-rejected.

This ends the informal description of the algorithm. The details are in
the pseudocode of Algorithm 2.

Algorithm 2: Algorithm for Maximum Planar Subgraph in the
Late Reject model.

Result: A valid solution vertex set S

1 S ← ∅
2 U ← ∅
3 while a vertex v is presented do
4 if |S| < 6 then
5 U ← U ∪ {v}
6 if S ∪ {v} induces a planar graph then
7 S ← S ∪ {v}
8 else if S \ U 6= ∅ then
9 Among the vertices in S \ U , let x be a vertex with a

maximum number of neighbors in S ∪ {v}
10 if (S \ {x}) ∪ {v} induces a planar graph then
11 S ← (S \ {x}) ∪ {v}
12 else if |S| = 4 and |U | ∈ {5, 7} then
13 Among the vertices in S, let u be a vertex with a

maximum number of neighbors in S ∪ {v}
14 S ← (S \ {u}) ∪ {v}
15 if (|U | = 7 and |S| = 4) or |U | = 8 then
16 U ← ∅

Throughout the analysis, we will use the fact that the number of accepted
vertices is monotonically nondecreasing.

Lemma 6 Consider the time of arrival of a vertex v during the execution
of Algorithm 2. Assume that |S| ≤ 5 and S \ U 6= ∅. Let x ∈ S \ U be
a vertex such that, in the subgraph induced by S ∪ {v}, x has maximum
degree among the vertices in S \ U . Then (S \ {x}) ∪ {v} induces a planar
subgraph, if at least one of the following conditions hold:
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(a) |S| ≤ 4.

(b) There is a vertex y ∈ S \ U such that (S \ {y}) ∪ {v} induces a planar
subgraph.

(c) |S \ U | ≥ 3.

Proof Condition (a) is trivially sufficient, since any nonplanar graph has
at least five vertices.

Assume for the sake of contradiction that Condition (b) holds, but (S \
{x})∪{v} does not induce a planar subgraph. Then (S \ {x})∪{v} induces
a K5, but there is a vertex y ∈ (S \ U) \ {x} such that (S \ {y}) ∪ {v} does
not induce a K5. This contradicts the fact that, in the subgraph induced by
S ∪ {v}, the degree of x is at least as high as that of y.

Finally, consider Condition (c). Since Condition (a) covers the case
|S| ≤ 4, we can assume that |S| = 5. Note that at least two vertices a, b ∈ S
are not neighbors, since otherwise S would contain a K5. Since |S \U | ≥ 3,
there is a vertex z ∈ (S \ U) \ {a, b}, and since a and b are not neighbors,
(S \ z) ∪ {v} induces a planar graph. Hence, Condition (b) is fulfilled, and
it follows that (S \ {x}) ∪ {v} induces a planar subgraph. 2

Note that by Lemma 6(a), the check in line 10 of Algorithm 2 is successful
as long as |S| ≤ 4.

We now prove that the first three or four vertices of a group are always
accepted:

Corollary 4 For the first four vertices u1, u2, u3, u4 of any group U during
the execution of Algorithm 2, the following conditions hold.

(a) If |S| ≤ 5 at the arrival of u3, the vertices u1, u2, and u3 are all accepted.

(b) If |S| ≤ 4 at the arrival of u4, then u4 is also accepted.

(c) If |S| = 5 after u3 is accepted, none of the vertices u1, u2, u3 is late-
rejected until after U is closed.

Proof For Condition (a), we consider three cases:
If |S| ≤ 3 at the arrival of u3, then |S| ≤ 3 at the arrival of u1 and u2 as

well. Hence, since any nonplanar graph has at least five vertices, all three
vertices are accepted.

If |S| = 4 at the arrival of u3, then |S| ≤ 4 and |S \U | ≥ 2 at the arrival
of each of u1, u2, and u3. Hence, by Lemma 6(a), all three vertices are
accepted.
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If |S| = 5 at the arrival of u3, then |S \ U | ≥ 3. Since |S \ U | can only
decrease as vertices from U arrive, |S \U | ≥ 3 at the arrival of u1 and u2 as
well. Hence, by Lemma 6(c), all three vertices are accepted.

For Condition (b), we consider two cases:
If |S| ≤ 3 at the arrival of u4, u4 is accepted, since any nonplanar graph

has at least five vertices.
If |S| = 4 at the arrival of u4, |S\U | ≥ 1, and it follows from Lemma 6(a)

that u4 is accepted.
For Condition (c), note that except for line 14, the algorithm never late-

rejects a vertex of U . Thus, Condition (c) follows from the fact that line 14
can be reached only if |S| = 4. 2

Note that no vertices of U are late-rejected before the arrival of u5.
Moreover, as long as S \U 6= ∅, no vertices of U are late-rejected. Thus, u1,
u2, and u3 stay in S at least until the arrival of u5.

Lemma 7 For any group U , if |S| = 4 just after u7 has been handled, then
Opt rejects at least two vertices from U .

Proof Since |S| = 4 after the arrival of u7, we have |S| ≤ 4 when u4

arrives. Hence, it follows from Corollary 4 that the vertices u1, . . . , u4 are
accepted. Additionally, u1, . . . , u5 induce a K5, since otherwise |S| ≥ 5 after
the arrival of u5. Thus, when u5 arrives, since the conditions in line 12 hold,
Algorithm 2 late-rejects a vertex to accept u5. Let ui denote the vertex which
is late-rejected. Then, u6 is adjacent to all vertices in {u1, ..., u5}\{ui}, since
otherwise the algorithm would accept it, and |S| ≥ 5. S is not changed when
u6 arrives, since |U | = 6, so the condition in line 12 does not hold. Similarly
to u6, u7 is adjacent to all vertices in {u1, ..., u5} \ {ui}.

If Opt keeps all vertices in {u1, ..., u5} \ {ui}, it must reject u6 and u7.
Thus, we assume that it rejects one of the four vertices in {u1, ..., u5}\{ui}.
Call this vertex uj . However, {u1, . . . , u7} \ {uj} induces a K3,3, with ui,
u6 and u7 in one partition, since u1, u6, and u7 each forms a K5 with
{u1, ..., u5} \ {ui}. Thus, Opt must also reject one of these six vertices. 2

Lemma 8 For any group U , if |S| = 5 just after u7 has been handled, then
either |S| = 6 when U is closed or Opt rejects at least one vertex from U .

Proof Consider the time just after u7 has been handled and assume that
|S| = 5. By Corollary 4(c), {u1, u2, u3} ⊆ S when U is closed. Thus, we
only need to consider the cases |S ∩ U | = 3, |S ∩ U | = 4, and |S ∩ U | = 5.
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If |S ∩ U | = 3, S ∩ U = {u1, u2, u3} and all of the vertices u4, . . . , u7

have been rejected. This means that rejecting one of the two vertices in
S \ U was not enough to enable the algorithm to accept any of the vertices
u4, . . . , u7. Let x ∈ S \ U and ui ∈ {u4, . . . , u7}. Then, by Lemma 6(b),
{x, u1, u2, u3, ui} is nonplanar. Thus, any of u4, . . . , u7 would form a K5

together with u1, u2, u3 and any accepted vertex outside U . In particular,
this means that each of u4, . . . , u7 is connected to each of u1, u2, u3. Thus,
U induces a K3,3, and Opt must reject at least one vertex from U .

Similarly, if |S∩U | = 4, exactly one of the vertices u4, . . . , u7 is accepted.
Hence, at least three of the vertices u4, . . . , u7 must be connected to each of
u1, u2, u3. Again, U induces a K3,3.

Finally, if |S ∩ U | = 5, then S ⊆ U . Hence, if u8 is not accepted by the
algorithm, then U is not planar, and Opt has to reject at least one vertex
from U . 2

Theorem 6 The competitive function of Algorithm 2 is at most 5n/28.

Proof Clearly, we can assume that |S| never reaches 6, since that would
result in a ratio of at most n/6 < 5n/28. Thus, since the first four vertices
are accepted, and since |S| never decreases, we only need to consider the
cases |S| = 4 and |S| = 5. The result now follows from Lemmas 7 and 8: If
the algorithm accepts only four vertices, then Opt accepts at most 5/7 of
the vertices, resulting in a ratio of at most 5n/28. If the algorithm accepts
five vertices, then Opt accepts at most 7/8 of the vertices, resulting in a
ratio of at most 7n/40 < 5n/28. 2

Corollary 5 For Maximum Planar Subgraph in the Late Reject model, the
competitive function is 5n/28.

2.4 Late Accept/Reject model

In the remainder of the section, we consider the Late Accept/Reject model.
We show that there exists a 3

√
3/2-competitive algorithm for Maximum

Independent Set and 3-competitive algorithms for both Maximum Acyclic
Subgraph and Maximum Planar Subgraph. After this, we give a lower bound
of 3
√

3/2 for all three problems. Thus, the result for Maximum Independent
Set is tight. The upper bounds come from a variant of the greedy algorithm,
Algorithm 3, rejecting a set of vertices if it can be replaced by a set at least
r times as large. For Maximum Independent Set, we use r =

√
3, and for

Maximum Acyclic Subgraph and Maximum Planar Subgraph, we use r = 2.
The algorithmic idea is natural and has been used before in [31, 33], for
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example. Thus, the challenge lies in deciding the parameter and proving the
resulting competitive ratio. Pseudocode for Algorithm 3 is given below.

For Algorithm 3, we introduce the following notation. Let S be the
current set of vertices that have been accepted and not late-rejected. Let
R be the set of vertices that have been late-rejected, and let P denote the
set V \ (R ∪ S) of vertices that have not been accepted (and, hence, not
late-rejected).

For any r > 1, a pair (T,Q) of vertex sets is called an r-admissible pair
if all the following conditions are satisfied:

1) (S \Q) ∪ T is a valid solution;

2) T ⊆ P ;

3) |T | ≥ r |Q|.

A set T ⊆ S is called r-admissible, if there exists a Q ⊆ S such that (T,Q)
is an r-admissible pair.

Algorithm 3: Algorithm for maximization graph problems in the
Late Accept/Reject model.

Result: A valid solution vertex set S

1 S ← ∅
2 while a vertex v is presented do
3 if S ∪ {v} is a valid solution then
4 S ← S ∪ {v}
5 else
6 while there exists an r-admissible pair do
7 Let (T,Q) be an admissible pair minimizing |Q|
8 S ← (S \Q) ∪ T

For the analysis of Algorithm 3, we partition S into the set, A, of vertices
accepted in line 4 and the set, B, of vertices accepted in line 8. We let O
be the valid solution constructed by Opt. For any set, U , of vertices, we let
U+ = U∩O and U− = U\O. Thus, O = P+∪S+∪R+ = P+∪A+∪B+∪R+.

Lemma 9 When Algorithm 3 terminates, |B| ≥ (r − 1)|R|.

Proof Clearly, the inequality is true before the first vertex is presented.
Each time a set, X, of vertices is moved from S = A∪B to R, a set at least
r times as large as X is added to B. Thus, each time the size of R increases
by some number x, the size of B increases by at least rx − x. The result
follows inductively. 2
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Lemma 10 When Algorithm 3 terminates, |P+| < r |S−|.

Proof When the algorithm terminates, there are no r-admissible sets. This
means, in particular, that P+ is not r-admissible. Trivially, P+ does not
violate 2). Furthermore, since P+ ∪ S+ ⊆ O, (P+, S−) fulfills 1). Thus, we
conclude from 3) that |P+| < r|S−|. 2

Theorem 7 For any graph problem with the objective of maximizing the
number of vertices in the solution, using r = 2, Algorithm 3 is strictly
3-competitive.

Proof Since the algorithm accepts |S| vertices and Opt accepts |O| vertices,
the result follows from the following calculations.

|O| = |P+|+ |S+|+ |R+|
< 2|S−|+ |S+|+ |R|, by Lemma 10

≤ 2|S−|+ |S+|+ |B|, by Lemma 9

≤ 3|S|

2

Corollary 6 For Maximum Acyclic Subgraph and Maximum Planar Sub-
graph in the Late Accept/Reject model, there exists a strictly 3-competitive
algorithm.

Using Lemmas 11 and 12 below, we prove that for Maximum Inde-
pendent Set, using r =

√
3, Algorithm 3 has competitive ratio at most

3
√

3/2 ≈ 2.598.

Lemma 11 For Maximum Independent Set, when Algorithm 3 terminates,
|B−|+ |R−| ≥ r |R+|.

Proof Consider a set, T , added to B in line 8. Note that Q = N(T ) ∩ S.
We prove that

|T−| ≥ r|Q+| (1)

If |Q+| = 0, this is trivially true. Thus, we can assume that Q− is a proper
subset of Q. Since T is r-admissible, it follows that

|T | ≥ r|Q| (2)
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Note that (S \ Q−) ∪ T+ is independent, since (S \ Q) ∪ T is independent
and there are no edges between Q+ and T+. Since the algorithm chooses T
such that |Q| is minimized, this means that

|T+| < r|Q−| (3)

Subtracting Ineq. (3) from Ineq. (2), we obtain Ineq. (1).
Let T1, T2, . . . , Tk be all the r-admissible sets that are chosen in line 8

during the run of the algorithm, and let Q1, Q2, . . . , Qk be the corresponding
sets that are removed from S. Then, ∪ki=1Ti ⊆ B ∪R, and thus, ∪ki=1T

−
i ⊆

B− ∪R−. Furthermore, R = ∪ki=1Qi. Hence,

|B−|+ |R−| ≥
k∑

i=1

|T−i | ≥
k∑

i=1

r|Q+
i | = r|R+|,

where the second inequality follows from Ineq. (1). 2

Lemma 12 For Maximum Independent Set, when Algorithm 3 terminates,

|B+|+ |R+| ≤ r
(
|B+|
r+1 + |B|

r2−1

)
.

Proof Since |B+| = |B| − |B−| and |R+| = |R| − |R−|, we obtain the
following.

(r + 1)(|B+|+ |R+|) = r
(
|B+|+ |R+|

)
+
(
|B|+ |R| − (|B−|+ |R−|)

)
≤ r|B+|+ r|R+|+ |B|+ |R| − r|R+|, by Lemma 11

= r|B+|+ |B|+ |R|

≤ r|B+|+ |B|+ 1

r − 1
|B|, by Lemma 9

= r|B+|+ r

r − 1
|B|

The result now follows by dividing both sides by r + 1. 2

Theorem 8 For Maximum Independent Set in the Late Accept/Reject
model, using r =

√
3, Algorithm 3 is strictly 3

√
3/2-competitive.
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Proof We prove that |O| ≤ 3
√

3
2 |S|, establishing the result.

Opt = |P+|+ |A+|+ |B+|+ |R+|
≤
√

3(|A−|+ |B−|) + |A+|+ |B+|+ |R+|, by Lemma 10

≤
√

3(|A|+ |B−|) + |B+|+ |R+|, since |A| = |A+|+ |A−|

≤
√

3

(
|A|+ |B−|+ 1√

3 + 1
|B+|+ 1

2
|B|
)
, by Lemma 12

≤
√

3

(
|A|+ |B|+ 1

2
|B|
)
, since

1√
3 + 1

< 1

≤ 3
√

3

2
(|A|+ |B|), since

1

2
|B| ≤ 1

2
(|A|+ |B|)

2

We prove a matching lower bound:

Theorem 9 For Maximum Independent Set in the Late Accept/Reject

model, the competitive ratio is at least 3
√

3
2 .

Proof Assume that Alg is strictly c-competitive for some c > 1. We first
show that c is at least 3

√
3/2 and then lift the strictness restriction. Assume

for the sake of contradiction that c < 3
√

3/2.
Incrementally, we construct an input graph consisting of a collection of

bags, where each bag is an independent set. Whenever a new vertex, v,
belonging to some bag B is given, we make it adjacent to every vertex not
in B, except vertices that have been late-rejected by Alg. Thus, if Alg
accepts v, it cannot hold any vertex in any other bag. This implies that
the currently accepted vertices of Alg always form a subset of a single bag,
which we refer to as Alg’s bag, and this is the crucial invariant in the proof.
We say that Alg switches when it rejects the vertices of its current bag and
accepts vertices of a different bag.

For the incremental construction, the first bag is special in the sense
that Alg cannot switch to another bag. We discuss later when we decide
to create the second bag, but all we will need is that the first bag is large
enough. From the point where we have created a second bag, Alg has the
option of switching. Whenever Alg switches from a bag, B, to a bag, B′, we
start the next bag, B′′, and Alg must late-reject the vertices it has accepted
in bag B since the vertices in B′ are adjacent to those in B that have not
already been late-rejected. The vertices we give from this point on and until
Alg switches bag again belong to B′′, and Alg never holds vertices in this
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newest bag. However, since it is possible that Alg did not accept all of the
vertices in B before it accepted some vertices in B′, theoretically, at some
later point other vertices in B could be accepted. This is also a switch, and
a new bag is started. Note that new vertices are never added to an earlier
bag.

Now we argue that as long as we keep giving vertices, Alg will repeatedly
have to switch bags in order to be c-competitive. Choose some ε > 0, let B
be Alg’s bag, B′ be the new bag, and let s be the number of vertices which
are not adjacent to any vertices in B′. The s vertices are from earlier bags
that were late-rejected by Alg before vertices from the successor bag were
given, as explained above. Thus, they can be spread out over many earlier
bags, but have no edges to vertices in later bags. If Alg has accepted a
vertices of B, after (c+ ε)a− s vertices of the new bag B′ have been given,
Alg has to accept at least one additional vertex to be c-competitive, since
at this point Opt could accept all of the vertices in B′ and the s additional
vertices. Since B′ is the new bag, B has reached its final size, so eventually
Alg will have to switch to a different bag.

For the proof, we keep track of relevant parts of the behavior of Alg
using a tree structure. The first bag is the root of the tree. Recall that
whenever Alg switches to a bag, say X, we start a new bag Y . In our tree
structure we make Y a child of X.

Since Alg is c-competitive and always holds vertices only from a single
bag B, the number a of vertices held in B satisfies a ≥ |B|/c. Since, by
assumption, c < 3, it follows that Alg can accept and then reject disjoint
sets of vertices of B at most twice, or equivalently, that each bag in the
tree has at most two children. As we proved above, Alg will have to keep
switching bags, so if we keep giving vertices, this will eventually lead to
leaves arbitrarily far from the root.

Consider a bag Bm that Alg holds after a sufficiently long sequence has
been presented. Label the bags from the root to Alg’s bag by B1, . . . , Bm,
where Bi+1 is a child of Bi for each i = 1, . . . ,m − 1. Let aj , 1 ≤ j < m,
be the number of vertices of Bj held by Alg immediately before it rejected
already accepted vertices from Bj for the first time and let am be the number
of vertices currently accepted in Bm. Let nj = |Bj |, 1 ≤ j ≤ m.

Furthermore, for each 0 ≤ j ≤ m, if j is even, let sj = a2 + a4 + · · · +
aj , and if j is odd, let sj = a1 + a3 + · · · + aj . Note that our choice of
adjacencies between bags implies that Opt can hold at least sj vertices in
bags B1, B2, . . . , Bj .

Thus, just before Alg rejects the vertices in Bj−1 (just before the njth
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vertex of Bj is given), we must have

caj−1 ≥ nj − 1 + sj−2, (4)

by the assumption that Alg is c-competitive. We want to introduce the
arbitrarily small ε chosen above and eliminate the “−1” in this inequality:
Since Opt can always hold the a1 vertices from the root bag,

caj ≥ a1 (5)

must hold for all j. Since a1 ≥ (n1 − 1)/c, we get that

aj ≥
n1 − 1

c2
. (6)

We want to establish that εaj−1 ≥ 1. By Ineq. (6), we can make aj−1 as large
as desired by increasing n1. Thus, we give sufficiently many independent
vertices in the beginning of the input sequence for the first bag, making n1

large enough such that aj becomes large enough. Now, using εaj−1 ≥ 1 and
Ineq. (4), we establish that (c+ ε)aj−1 ≥ nj + sj−2. Trivially, nj ≥ aj , so

(c+ ε)aj−1 − sj−2 ≥ aj . (7)

Next, we want to show that for any 1 ≤ c < 3
√

3/2, there exists an m such
that

sm > cam, (8)

contradicting the assumption that Alg was c-competitive. To accomplish
this, we repeatedly strengthen Ineq. (8) by replacing aj with the bound
from Ineq. (7), eventually arriving at an inequality which can be proven to
hold, and then this will imply all the strengthened inequalities and, finally,
Ineq. (8).

We first rewrite Ineq. (8), using that sm = am + sm−2 and collecting the
am terms to get

sm−2 > (c− 1)am (9)

We then replace am by the left-hand side of Ineq. (7) with j = m to obtain
the following stronger inequality:

sm−2 > (c− 1)(c+ ε)am−1 − (c− 1)sm−2. (10)

Note that, combined with Ineq. (7), Ineq. (10) implies Ineq. (9), which is
equivalent to Ineq. (8). Collecting sm−2 terms in Ineq. (10) gives

csm−2 > (c− 1)(c+ ε)am−1. (11)

31



Using the left-hand side of Ineq. (7) again, we get a stronger inequality:

csm−2 > (c− 1)(c+ ε)2am−2 − (c− 1)(c+ ε)sm−3, (12)

and, after moving sm−3,

csm−2 + (c− 1)(c+ ε)sm−3 > (c− 1)(c+ ε)2am−2. (13)

We proceed by labeling the coefficients of sj and aj in these inequalities of
the form

fism−i + fi+1sm−(i+1) ≥ giam−i (14)

by sequences {fk}mk=0, respectively {gk}m−1
k=0 . We reverse the order of f and g

so the index k corresponds to k applications of Ineq. (7), and simplifications
as in the above. Therefore, fk and gk are the coefficients of sm−k and am−k,
respectively (recall that m is fixed).

We alternate between replacing sm−i by am−i + sm−i−2 and replacing
am−i by the left-hand side of Ineq. (7), until we reach

fm−1s1 + fms0 ≥ gm−1a1 (15)

The above calculations show that

f0 = 1

f1 = 0

f2 = c

f3 = (c− 1)(c+ ε)

g0 = c

g1 = (c− 1)(c+ ε)

g2 = (c− 1)(c+ ε)2

Our aim is to show that the coefficients fk and gk satisfy

gi+1 = (c+ ε)(gi − fi) (16)

fi+2 = gi (17)

With the derived constants for f and g with small indices given above as the
base case, we proceed by induction, assuming that for i, the coefficients of
Ineq. (14) have the values claimed in Eq. (16) up to index i and in Eq. (17)
up to index i+ 1.

We emphasize that we are still strengthening inequalities, so it is the
inequality for the (i+ 1)-version of Ineq. (14) that we derive that will imply

32



Ineq. (14) for i. The induction is used to show that the coefficients in the
inequalities fulfill the recurrence equations given in Eqs. (16) and (17).

From Ineq. (14), we replace Sm−i by am−i + sm−2 and collect the am−i
terms to obtain

fism−(i+2) + fi+1sm−(i+1) ≥ (gi − fi)am−i,

and replace am−i by the left-hand side of Ineq. (7) with j = m− i, to obtain
the stronger inequality

fism−(i+2) +fi+1sm−(i+1) ≥ (gi−fi)(c+ε)am−(i+1)−(gi−fi)sm−(i+2), (18)

which can be rewritten as

gism−(i+2) + fi+1sm−(i+1) ≥ (gi − fi)(c+ ε)am−(i+1). (19)

Reordering on the left-hand side and inserting the claimed Eqs. (16) and (17),
we arrive at

fi+1sm−(i+1) + fi+2sm−(i+2) ≥ gi+1am−(i+1),

which is the (i+ 1)-version of Ineq. (14), proving Eqs. (16) and (17).
This concludes the strengthening of the inequalities and the sequence of

implications. Thus, to prove Ineq. (8), it is sufficient to prove that there exist
m and i such that Ineq. (14) holds. This, in turn, will follow if gj is negative.
Indeed, if gj eventually becomes negative, we can choose j to be the smallest
such index and Ineq. (14) then implies the desired Ineq. (8). This inequality
contradicts the assumption of the algorithm being c-competitive, and we
will have established the theorem.

Plugging Eq. (17) into Eq. (16) gives us

gi+1 = (c+ ε)(gi − gi−2), (20)

and this is the recurrence we use to show that gi becomes negative.
According to [23, Theorem 1.2.1], every solution to a linear homogeneous

difference equation oscillates (around zero, and thus has negative values
infinitely often) if and only if its characteristic equation has no positive
roots. For a direct proof of the subcase of the above theorem that we need,
see [28].

The characteristic equation of Eq. (20) is r3 − (c + ε)r2 + (c + ε) = 0,

which, for the interval 1 ≤ c + ε < 3
√

3
2 , has two imaginary roots and one

real root. Letting d = c+ ε and

s = − 3

√
108d− 8d3 − 12

√
−12d4 + 81d2,
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this third root is s
6 + 2d2

3s + d
3 , which is negative for 1 ≤ d ≤ 3

√
3

2 . (Note that
s is no longer real when −12d4 + 81d2 becomes negative, which occurs for

d > 3
√

3
2 . At d = 3

√
3

2 , in addition to the negative real root, there is a double

root at
√

3, and the solution to the recurrence never becomes negative.)
Thus, from [23, Theorem 1.2.1], any solution to the recurrence equation

oscillates, implying, in particular, that it becomes negative at some point,
giving the desired contradiction.

Finally, we return to the assumption of strictness, which can easily be
removed. There are only two places we use the relation that holds due to the
assumption of Alg being strictly c-competitive. One place is in the claim
caj ≥ a1. However, we use this only to lead to Ineq. (7), and just as we
used a large enough first bag to make εaj−1 ≥ 1, we can increase the size
of the first bag to eliminate any additive constant. The other place was in
the argument that caj−1 ≥ nj − 1 + sj−2. Also in this case, if the bags are
large enough, no additive constant makes a difference: Using the technique
described immediately following Ineq. (6), the minimum size of all bags can
be increased by increasing n1, since that increases the lower bound on a1,
and the algorithm can never hold fewer vertices in any bag than that. 2

The previous two theorems give us:

Corollary 7 For Maximum Independent Set in the Late Accept/Reject

model, the competitive ratio is 3
√

3
2 .

Making small adjustments to the proof of Theorem 9 for Maximum In-
dependent Set, we can prove the same lower bound for Maximum Acyclic
Subgraph and Maximum Planar Subgraph.

Theorem 10 For Maximum Acyclic Subgraph and Maximum Planar Sub-

graph in the Late Accept/Reject model, the competitive ratio is at least 3
√

3
2 .

Proof We use the same proof as for Theorem 9, with the modifications
described below.

For Maximum Acyclic Subgraph, the algorithm may keep one vertex
from a previous bag. However, since each vertex in the current bag is ad-
jacent to all vertices in previous bags that have not been late-rejected by
the algorithm, keeping two vertices from previous bags would create a cy-
cle. Similarly, for Maximum Planar Subgraph, keeping three vertices from
previous bags would create a K3,3. Thus, for both problems, we can assume
that the algorithm keeps at most two vertices from previous bags.
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Taking into consideration that the algorithm may keep up to two vertices
from previous bags leads to the following adjustments:

As long as a vertex of an old bag is kept by the algorithm, it is connected
to all vertices of the new bag. Thus, Opt may lose up to two vertices from
each bag. Hence, to ensure that our lower bounds on Opt are still valid, we
redefine sj as

sj =

{
a2 + a4 + . . .+ aj − j, if j is even

a1 + a3 + . . .+ aj − j − 1, if j is odd

Eqs. (4), (5), and (6) are changed to

c(aj−1 + 2) ≥ nj − 1 + sj−2, (21)

c(aj + 2) ≥ a1 ≥
n1 − 1

c
,

and

aj ≥
n1 − 1

c2
− 2.

We choose n1 large enough that

εaj−1 ≥
2c+ 2

c− 1
+ 2c+ 1,

instead of εaj−1 ≥ 1 as in the proof of Theorem 9. Thus, using Ineq. (21),
Ineq. (7) can be replaced by

(c+ ε)aj−1 − sj−2 −
2c+ 2

c− 1
≥ aj .

We replace Ineq. (8) by
sm > c(am + 2)

Now, using sm = sm−2 + am − 2 instead of sm = sm−2 + am, we obtain the
following instead of Ineq. (9).

sm−2 > (c− 1)am + 2c+ 2

Substituting (c+ ε)am−1 − sm−2 − 2c+2
c−1 for am, we obtain Ineq. (11). Sub-

stituting (c+ ε)am−2 − sm−3 − 2c+2
c−1 for am−1 in Ineq. (11), we obtain

csm−2 > (c− 1)(c+ ε)2am−2 − (c− 1)(c+ ε)sm−3 − (c+ ε)(2c+ 2),

which is implied by Ineq. (12).
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Each time we substitute sm−i by sm−i−2 +am−i−2, we subtract 2fi from
the left-hand side of the inequality, and substituting am−i by (c+ε)am−i−1−
sm−i−2− 2c+2

c−1 , we subtract 2c+2
c−1 (gi−fi) from the right-hand side. Note that

2fi <
2c+ 2

c− 1
(gi − fi)

m
4cfi < (2c+ 2)gi

m
4cgi−2 < (2c+ 2)gi

m
4c

gi
(c+ ε)2

< (2c+ 2)gi

m
2c < (c+ 1)(c+ ε)2

⇑
c ≥ 1

Thus, we subtract more on the right-hand side than on the left-hand side,
and hence, we keep getting inequalities that are weaker than the correspond-
ing ones in Ineq. (14). Hence, the strongest inequality (the one obtained by
setting i = m−1), is implied by the strongest inequality in Ineq. (14). Since
Ineq. (14) was proven to hold in the proof of Theorem 9, this completes the
proof. 2

3 Maximum Matching

A matching in a graph G = (V,E) is a subset of E consisting of pairwise non-
incident edges. For the problem called Maximum Matching, the objective
is to find a matching of maximum cardinality. We study online Maximum
Matching in the edge arrival model, but note that the results hold in the
vertex arrival model as well: For the upper bounds, an algorithm in the
vertex arrival model can process the edges incident to the current vertex
in any order. For the lower bounds, all adversarial sequences used in this
section consist of paths, and hence, exactly the same input can be given in
the vertex arrival model.

It is well known and easy to prove that the greedy algorithm which
adds an edge to the matching whenever possible is 2-competitive and this is
optimal in the standard model. The first published proof of this is perhaps
in the classical paper of Korte and Hausmann [26]. The paper shows that
in any graph, the ratio of the minimum size of a maximal matching to the
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size of a maximum matching is at least 1
2 , and there are graphs where it is

no more than 1
2 . Since the greedy algorithm produces a maximal matching,

the claim follows.
Late accept or late reject alone does not help:

Theorem 11 For Maximum Matching in the Late Accept model, the com-
petitive ratio is 2.

Proof The upper bound follows from the standard model. For the lower
bound, we can use the same sequence as in the standard model: The adver-
sary presents m mutually non-incident edges to some algorithm, Alg. For
every edge uv accepted by Alg at any point, the adversary presents edges
xu and vy, which Alg cannot accept. Thus, there will be m connected com-
ponents such that in each component, Opt accepts at least twice as many
edges as Alg. 2

Theorem 12 For Maximum Matching in the Late Reject model, the com-
petitive ratio is 2.

Proof The upper bound follows from the standard model. For the lower
bound, the adversary presents m mutually non-incident edges to some al-
gorithm, Alg. For each edge, uv, accepted by Alg, the adversary presents
an edge vx. If Alg late-rejects uv, then the adversary presents an edge xy.
Alg can only accept one of the edges vx and xy and it cannot accept uv
again, but Opt accepts both uv and xy. Otherwise, Alg must reject vx.
In this case, the adversary presents an edge, zu. Alg can only keep zu or
uv, but Opt accepts both zu and vx. This adversarial strategy results in m
connected components such that in each component, Opt accepts at least
twice as many edges as Alg. 2

Theorem 13 For Maximum Matching in the Late Accept/Reject model,
the competitive ratio is at least 3/2.

Proof The adversary presents a number of mutually non-incident edges to
some algorithm, Alg. If, for some such edge uv, during the entire processing
of the input, Alg does not accept uv, then Opt will, and no more edges
incident to u or v will be presented. The ratio is then unbounded on the
subconstruction containing uv.

If Alg accepts an edge uv, the adversary presents xu and vy. If Alg
never rejects uv, no more edges incident to any of these vertices will be
presented, and the ratio is 2 on this subconstruction.
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If Alg late-rejects uv at some point, then the adversary presents x′x and
yy′. The algorithm cannot accept uv again, so it cannot accept more than
two edges from this subconstruction, while Opt can accept three, giving a
ratio of 3/2. 2

To prove a matching upper bound, we give an algorithm, Algorithm 4,
which is strictly 3

2 -competitive in the Late Accept/Reject model.
Recall that for a matching M , a path P = e1, . . . , ek is alternating with

respect to M , if for all i ∈ {1, . . . , k}, ei belongs to M if and only if i is even.
Moreover, an alternating path P is called augmenting if neither endpoint of
P is incident to a matched edge. Note that the symmetric difference of a
matching M and an augmenting path with respect to M is a matching of
size larger than M . We focus on local changes, called short augmentations
in [37]. We use a result which implies that if a maximal matching M does
not admit augmenting paths of length 3, then 3|M | ≥ 2|Opt |. This fact is
part of the folklore and its proof can be found for example in [11, Lemma 2].

Algorithm 4: Algorithm for Maximum Matching in the Late Ac-
cept/Reject model.

Result: Maximum Matching M
1 M ← ∅
2 while an edge e is presented do
3 if M ∪ {e} is a matching then
4 M ←M ∪ {e}
5 if there is an augmenting path xuvy of length 3 then
6 M ← (M ∪ {ux, vy}) \ {uv}

Theorem 14 For Maximum Matching in the Late Accept/Reject model,
Algorithm 4 is strictly 3/2-competitive.

Proof We first show that Algorithm 4 is a Late Accept/Reject algorithm,
i.e., no edge which is late-rejected is later late-accepted. Suppose an edge
e = uv is late-rejected in some step i. For it to be accepted again, there
must later be an augmenting path consisting of three edges, where e is one
of the outer edges, and one endpoint of e must not be incident to any edges
of the matching at that point. However, once a vertex is incident to an edge
in some matching, it is always incident to some edge in all later matchings,
due to the augmentation. Thus, e cannot be late-accepted later, so after
any edge is late-rejected, it will never be accepted again.

Next, we prove that the algorithm is strictly 3/2-competitive. Let M be
the matching constructed by Algorithm 4 on a graph G. Algorithm 4 ensures
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that G does not contain any augmenting paths of length at most three with
respect to M by augmenting on them when they do exist. To prove that
this fact implies the bound, we present a proof similar to [11, Lemma 2].
Let M ′ be any maximum matching in G. Consider the symmetric difference
N of M and M ′. Since M and M ′ are matchings, any path in N contains
alternatingly edges from M and M ′. Since each augmenting path with
respect to M in N contains one more edge of M ′ than of M , we get that N
contains |M ′| − |M | augmenting paths. Clearly, no augmenting path in N
consists of a single edge, since all edges which either are not accepted or are
late-rejected by Algorithm 4 are incident to at least one edge accepted by
the algorithm. Since there is no augmenting path of length at most three
with respect to M in G, it follows that all of the |M ′| − |M | augmenting
paths in N have length at least five. At least two edges of an augmenting
path in N of length at least five are contained in M , and thus accepted by
the algorithm, so we get that |M | ≥ 2(|M ′|−|M |), giving that |M ′| ≤ 3

2 |M |.
2

4 Minimum Vertex Cover

A vertex cover for a graph G = (V,E) is a subset C ⊆ V such that for
any edge, uv ∈ E, {u, v} ∩ C 6= ∅. For the problem called Minimum Vertex
Cover, the objective is to find a vertex cover of minimum cardinality. We
study online Minimum Vertex Cover in the vertex arrival model.

Theorem 15 For Minimum Vertex Cover in the standard model, the com-
petitive function is n.

Proof For the lower bound, consider any online algorithm, Alg. For each
n, the adversary presents independent vertices until Alg rejects some vertex
or n vertices have been presented. If n vertices are presented, Opt accepts
none of them and the ratio is unbounded. If the algorithm rejects some
vertex v, then the remainder of the n vertices will be adjacent only to v.
Opt will only accept v and the result follows.

For the upper bound, the algorithm only accepts a new vertex v if at
least one edge incident with v is not already covered. Thus, it rejects the
first vertex and therefore accepts at most n − 1 vertices. Opt accepts at
least one vertex unless there are no edges, in which case the algorithm does
not accept any vertices either. 2

The situation improves dramatically if we can accept vertices at a later
stage.
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Theorem 16 For Minimum Vertex Cover in the Late Accept model, the
competitive ratio is 2.

Proof The best known offline 2-approximation algorithm for Minimum
Vertex Cover greedily maintains a maximal matching, repeatedly covering
both endpoints of an edge and removing all edges incident to these two
endpoints. In the Late Accept model, a 2-competitive online algorithm can
be obtained by mimicking the offline approximation algorithm. The online
algorithm does not accept any vertex until it sees the second vertex incident
to an uncovered edge; then it accepts both endpoints of that edge.

For the lower bound, consider any algorithm Alg. The adversary presents
isolated pairs of vertices, each pair connected by an edge. After the second
vertex of a pair has arrived, Alg must have accepted at least one of them,
or the adversary could stop the input there, and Alg’s output would not
be a vertex cover. If Alg accepts both vertices, then no further vertices
adjacent to the pair arrive, and Opt could have covered the edge with only
one vertex. If Alg accepts only one vertex u from a pair {u, v}, then an
additional vertex adjacent only to v arrives, and Opt could cover both edges
with only v, but Alg must accept at least two of the three vertices. 2

Allowing both late accept and late reject does not improve the situation
further.

Theorem 17 For Minimum Vertex Cover in the Late Accept/Reject model,
the competitive ratio is 2.

Proof The upper bound follows from Theorem 16. The lower bound follows
from the observation that no algorithm that ever late-rejects a vertex can
be c-competitive for any constant c. Indeed, if Alg late-rejects a vertex v,
then the adversary can present arbitrarily many vertices adjacent only to v.
Therefore, to be c-competitive for any constant c, Alg can never late-reject
a vertex and the lower bound from Theorem 16 applies. 2

Theorem 18 For Minimum Vertex Cover in the Late Reject model, the
competitive function is n.

Proof For the lower bound, the adversary keeps giving independent vertices
until the algorithm rejects at least one vertex, v. Since Opt does not have to
accept any vertices if they are all independent, the algorithm must eventually
reject at least one vertex to avoid an unbounded competitive function. We
let b denote the number of vertices presented at the time the first vertex is
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rejected. After this point, all new vertices are adjacent to v, so the algorithm
has to accept all of them. In total, at least n− b vertices are accepted, and
Opt accepts only v.

For the upper bound, consider the following algorithm, Algb: The first
b + 1 vertices are accepted (if they arrive). After that an optimal vertex
cover, C, for the edges seen so far is calculated. Each vertex not included in
C is rejected. After this, each new vertex is accepted only if necessary. Note
that the size of C is a lower bound on Opt. Thus, for any input sequence
I of length at least b+ 1, either Opt(I) = Alg(I) = 0 or

Algb(I)

Opt(I)
=
|C|+ n− (b+ 1)

Opt(I)
≤ Opt(I) + n− (b+ 1)

Opt(I)
≤ n− b .

2

5 Minimum Spanning Forest

A spanning forest for a graph G = (V,E) is a subset T ⊆ E which forms a
spanning tree on each of the connected components of G. Given a weight
function w : E → R+, the objective of the Minimum Spanning Forest prob-
lem is to find a spanning forest of minimum total weight. We let W denote
the ratio between the largest and the smallest weight of any edge in the
graph.

We study online Minimum Spanning Forest in the edge arrival model,
but the results also hold in the vertex arrival model: For the upper bounds,
an algorithm in the vertex arrival model can process the edges incident to the
current vertex in any order. In the lower bound sequences presented here,
all edges from a new vertex to all previous vertices are presented together
in an arbitrary order.

As also noted in [24], the competitive ratio of any deterministic algorithm
in the standard model can be arbitrarily high, depending only on the edge
weights:

Theorem 19 For Minimum Spanning Forest in the standard model, the
competitive ratio is W .

Proof Since all spanning forests have the same number of edges, the ratio
cannot be worse than W . A matching lower bound can be realized by the
adversary first presenting a tree consisting of edges of weight W , and then
presenting edges of weight 1 from a new vertex v to each of the vertices seen
so far. The ratio is (n−2)W+1

n−1 , giving an asymptotic lower bound of W . 2
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Since the adversary can end the input at any time, an online algorithm
must always have a forest spanning all the vertices seen so far, so in moving
from the standard model to the Late Accept model, we do not gain any
advantage:

Theorem 20 For Minimum Spanning Forest in the Late Accept model, the
competitive ratio is W .

Proof We show that we can never perform a late accept. Assume to the
contrary that an edge uv was late-accepted and added to a solution F ′ for
the current graph G′ = (V ′, E′). Since uv was late-accepted, both vertices u
and v were seen earlier and thus contained in V ′. By our requirement that
the algorithms maintain a spanning forest on the set of vertices presented
so far, F ′ is a spanning forest of G′. Therefore, adding uv created a cycle,
contradicting that the algorithm finds a forest. 2

On the other hand, in the Late Reject model, the greedy online algorithm
mentioned by Tarjan in [35] can be used. We detail the algorithm in the
proof.

Theorem 21 For Minimum Spanning Forest in the Late Reject model, the
competitive ratio is 1.

Proof No algorithm can be better than 1-competitive. For the upper
bound, we note that the greedy online algorithm mentioned by Tarjan in [35]
works in the Late Reject model: Assume that the current forest is F ′ when
an edge e = uv arrives. If at least one of the two endpoints of e is a vertex not
seen earlier, accept e. Otherwise, the greedy algorithm constructs the unique
cycle Ce in F ′ ∪ {e}. If e is not the heaviest edge in Ce, then the algorithm
late-rejects the heaviest edge f in Ce and replaces it by e, obtaining F ′′.
Otherwise, it rejects e. It is easy to see that this produces an optimal
spanning forest; it only uses the so-called red rule [35]. 2

Since the Late Reject model leads to an optimal spanning tree, any model
allowing that possibility inherits the result.

Theorem 22 For Minimum Spanning Forest in the Late Accept/Reject
model, the competitive ratio is 1.

The Minimum Spanning Forest problem is one of the original examples
of a matroid [38]. The last two results hold for any matroid, since the red
rule [35, Chapter 6] can be used for any matroid. A proof of this can be found
in [27, Section 3.2], which credits Lawler [29] for the statement without a
proof.
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Future Work

One could reasonably consider late operations as a resource to be used spar-
ingly, as for the rearrangements in [18, 30, 13, 14], for example. Thus, an
interesting continuation of our work would be a study of trade-offs between
the number of late operations employed and the quality of the solution (in
terms of competitiveness). Obviously, one could also investigate other online
problems and further model variations. Work in the direction of the latter
has been initiated in [1], where the authors investigate further levels of late
accept/reject operations.
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