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Abstract. Relative worst-order analysis is a technique for assessing the
relative quality of online algorithms. We survey the most important results
obtained with this technique and compare it with other quality measures.

1 Introduction

Online problems are optimization problems where the input arrives one request
at a time, and each request must be processed without knowledge of future
requests. The investigation of online algorithms was largely initiated by the
introduction of competitive analysis by Sleator and Tarjan [62]. They introduced
the method as a general analysis technique, inspired by approximation algorithms.
The term “competitive” is from Karlin et al. [52] who named the worst-case ratio
of the performance of the online to the offline algorithm the “competitive ratio”.
Many years earlier, Graham carried out what is now viewed as an example of a
competitive analysis [44].

The over-all goal of a theoretical quality measure is to predict behavior of
algorithms in practice. In that respect, competitive analysis works well in some
cases, but, as pointed out by the inventors [62] and others, fails to discriminate
between good and bad algorithms in other cases. Ever since its introduction,
researchers have worked on improving the measure, defining variants, or defining
measures based on other concepts to improve on the situation. Relative worst-
order analysis (RWOA), a technique for assessing the relative quality of online
algorithms, is one of the most thoroughly tested such proposals.

RWOA was originally defined by Boyar and Favrholdt [18], and the definitions
were extended together with Larsen [21]. As for all quality measures, an important
issue is to be able to separate algorithms, i.e., determine which of two algorithms
is the best. RWOA has been shown to be applicable to a wide variety of problems
and provide separations, not obtainable using competitive analysis, corresponding
better to experimental results or intuition in many cases.

In this survey, we motivate and define RWOA, outline the background for
its introduction, survey the most important results, and compare it to other
measures.
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2 Relative Worst-Order Analysis

As a motivation for RWOA, consider the following desirable property of a quality
measure for online algorithms: For a given problem P and two algorithms A and
B for P , if A performs at least as well as B on every possible request sequence
and better on many, then the quality measure indicates that A is better than B.
We consider an example of such a situation for the paging problem.

2.1 A Motivating Example

In the paging problem, there is a cache with k pages and a larger, slow memory
with N > k pages. The request sequence consists of page numbers in {1, . . . , N}.
When a page is requested, if it is not among the at most k pages in cache, there is
a fault, and the missing page must be brought into cache. If the cache is full, this
means that some page must be evicted from the cache. The goal is to minimize
the number of faults. Clearly, the only thing we can control algorithmically is
the eviction strategy.

We consider two paging algorithms, LRU (Least-Recently-Used) and FWF
(Flush-When-Full). On a fault with a full cache, LRU always evicts its least
recently used page from cache. FWF, on the other hand, evicts everything from
cache in this situation. It is easy to see that, if run on the same sequence, whenever
LRU faults, FWF also faults, so LRU performs at least as well as FWF on
every sequence. LRU usually faults less than FWF [65]. It is well known that
LRU and FWF both have competitive ratio k, so competitive analysis does
not distinguish between them, and there are relatively few measures which do.
RWOA, however, is one such measure [21]. In Subsection 3.1, we consider LRU
and FWF in greater detail to give a concrete example of RWOA.

2.2 Background and Informal Description

Table 1 gives informal “definitions” of the relative worst-order ratio and related
measures. The ratios shown in the table capture the general ideas, although
they do not reflect that the measures are asymptotic measures. We discuss the
measures below, ending with a formal definition of the relative worst-order ratio.

RWOA compares two online algorithms directly, rather than indirectly by
first comparing both to an optimal offline algorithm. When differentiating be-
tween online algorithms is the goal, performing a direct comparison between the
algorithms can be an advantage; first comparing both to an optimal offline algo-
rithm and then comparing the results, as many performance measures including
competitive analysis do, can lead to a loss of information. This appears to be
at least part of the problem when comparing LRU to FWF with competitive
analysis, which finds them equally bad. Measures comparing directly, such as
RWOA, bijective and average analysis [5], and relative interval analysis [37],
would generally indicate correctly that LRU is the better algorithm.

Up to permutations of the request sequences, if an algorithm is always at
least as good and sometimes better than another, RWOA separates them. RWOA
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Table 1. Simplified “definitions” of measures

Measure Value

Competitive ratio CRA = sup
I

A(I)
Opt(I)

Max/max ratio MRA =
max
|I|=n

A(I)

max
|I′|=n

Opt(I ′)

Random-order ratio RRA = sup
I

Eπ
[
A(π(I))

]
Opt(I)

Relative worst-order ratio WRA,B = sup
I

sup
π

{
A(π(I))

}
sup
π′

{
B(π′(I))

}

compares two algorithms on their respective worst orderings of sequences having
the same content. This is different from competitive analysis where an algorithm
and Opt are compared on the same sequence. When comparing algorithms
directly, using exactly the same sequences will tend to produce the result that
many algorithms are not comparable, because one algorithm does well on one type
of sequence, while the other does well on another type. In addition, comparing
on possibly different sequences can make it harder for the adversary to produce
unwanted, pathological sequences which may occur seldom in practice, but skew
the theoretical results. Instead, with RWOA, online algorithms are compared
directly to each other on their respective worst permutations of the request
sequences. This comparison in RWOA combines some of the desirable properties
of the max/max ratio [9] and the random-order ratio [53].

The Max/Max Ratio. With the max/max ratio defined by Ben-David and
Borodin, an algorithm is compared to Opt on its and Opt’s respective worst-case
sequences of the same length. Since Opt’s worst sequence of any given length is
the same, regardless of which algorithm it is being compared to, comparing two
online algorithms directly gives the same result as dividing their max/max ratios.
Thus, the max/max ratio allows direct comparison of two online algorithms, to
some extent, without the intermediate comparison to Opt. The max/max ratio
can only provide interesting results when the length of an input sequence yields
a bound on the cost/profit of an optimal solution.

In the paper [9] introducing the max/max ratio, the k-server problem is
analyzed. This is the problem where k servers are placed in a metric space, and
the input is a sequence of requests to points in that space. At each request, a
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server must be moved to the requested point if there is not already a server at
the point. The objective is to minimize the total distance the servers are moved.
It is demonstrated that, for k-server on a bounded metric space, the max/max
ratio can provide more optimistic and detailed results than competitive analysis.
Unfortunately, there is still the loss of information as generally occurs with
the indirect comparison to Opt, and the max/max ratio does not distinguish
between LRU and FWF, or actually between any two deterministic online paging
algorithms.

However, the possibility of directly comparing online algorithms and com-
paring them on their respective worst-case sequences from some partition of the
space of request sequences was inspirational. RWOA uses a more fine-grained
partition than partitioning with respect to the sequence length. The idea for the
specific partition used stems from the random-order ratio.

The Random-Order Ratio. The random-order ratio was introduced in [53]
by Kenyon (now Mathieu). The appeal of this quality measure is that it allows
considering some randomness of the input sequences without specifying a complete
probability distribution. It was introduced in connection with bin packing, i.e.,
the problem of packing items of sizes between 0 and 1 into as few bins of size 1
as possible. For an algorithm A for this minimization problem, the random-
order ratio is the maximum ratio, over all multi-sets of items, of the expected
performance, over all permutations of the multi-set, of A compared with an
optimal solution; see also Table 1. If, for all possible multi-sets of items, any
permutation of these items is equally likely, this ratio gives a meaningful worst-
case measure of how well an algorithm can perform.

In the paper introducing the random-order ratio, it was shown that for
bin packing, the random-order ratio of Best-Fit lies between 1.08 and 1.5. In
contrast, the competitive ratio of Best-Fit is 1.7 [49].

Random-order analysis has also been applied to other problems, e.g., knap-
sack [7], bipartite matching [35,43], scheduling [42, 60], bin covering [30, 41], and
facility location [57]. However, the analysis is often rather challenging, and in [50],
a simplified version of the random-order ratio is used for bin packing.

2.3 Definitions
Let I be a request sequence of length n for an online problem P . If π is a
permutation on n elements, then π(I) denotes I permuted by π.

If P is a minimization problem, A(I) denotes the cost of the algorithm A on
the sequence I, and

AW (I) = max
π
A(π(I)),

where π ranges over the set of all permutations of n elements.
If P is a maximization problem, A(I) denotes the profit of the algorithm A

on the sequence I, and

AW (I) = min
π
A(π(I)).
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Table 2. Relative worst-order ratio interpretation, depending on whether the problem
is a minimization or a maximization problem.

Result Minimization Maximization

A better than B < 1 > 1

B better than A > 1 < 1

Informally, RWOA compares two algorithms, A and B, by partitioning the set
of request sequences as follows: Sequences are in the same part of the partition if
and only if they are permutations of each other. The relative worst-order ratio is
defined for algorithms A and B, whenever one algorithm performs at least as
well as the other on every part of the partition, i.e., whenever AW (I) ≤ BW (I),
for all request sequences I, or AW (I) ≥ BW (I), for all request sequences I (in
the definition below, this corresponds to cu(A,B) ≤ 1 or cl(A,B) ≥ 1). In this
case, to compute the relative worst-order ratio of A to B, we compute a bound
(cl(A,B) or cu(A,B)) on the ratio of how the two algorithms perform on their
respective worst permutations of some sequence. Note that the two algorithms
may have different worst permutations for the same sequence.

We now state the formal definition:

Definition 1. For any pair of algorithms A and B, we define

cl(A,B) = sup {c | ∃b∀I : AW (I) ≥ cBW (I)− b} and
cu(A,B) = inf {c | ∃b∀I : AW (I) ≤ cBW (I) + b}.

If cl(A,B) ≥ 1 or cu(A,B) ≤ 1, the algorithms are said to be comparable and
the relative worst-order ratio WRA,B of algorithm A to algorithm B is defined as

WRA,B =
{
cu(A,B), if cl(A,B) ≥ 1, and
cl(A,B), if cu(A,B) ≤ 1.

Otherwise, WRA,B is undefined.
For a minimization (maximization) problem, the algorithms A and B are

said to be comparable in A’s favor if WRA,B < 1 (WRA,B > 1). Similarly, the
algorithms are said to be comparable in B’s favor, if WRA,B > 1 (WRA,B < 1).

Note that the ratio WRA,B can be larger than or smaller than one depending
on whether the problem is a minimization problem or a maximization problem
and which of A and B is the better algorithm. Table 2 indicates the result in
each case. Instead of saying that two algorithms, A and B, are comparable in
A’s favor, one would often just say that A is better than B according to RWOA.

For quality measures evaluating algorithms by comparing them to each other
directly, it is particularly important to be transitive: If A and B are comparable in
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A’s favor and B and C are comparable in B’s favor, then A and C are comparable
in A’s favor. When this transitivity holds, to prove that a new algorithm is better
than all previously known algorithms, one only has to prove that it is better than
the best among them. This holds for RWOA [18].

3 Paging

In this section, we survey the most important RWOA results for paging and
explain how they differ from the results obtained with competitive analysis. As a
relatively simple, concrete example of RWOA, we first explain how to obtain the
separation of LRU and FWF [21] mentioned in Subsection 2.1.

3.1 LRU vs. FWF

The first step in computing the relative worst-order ratio, WRFWF,LRU, is to
show that LRU and FWF are comparable. Consider any request sequence I for
paging with cache size k. For any request r to a page p in I, if LRU faults on r,
either p has never been requested before or there have been at least k different
requests to distinct pages other than p since the last request to p. In the case
where p has never been requested before, any online algorithm faults on r. If there
have been at least k requests to distinct pages other than p since the last request
to p, FWF has flushed since that last request to p, so p is no longer in its cache
and FWF faults, too. Thus, for any request sequence I, FWF(I) ≥ LRU(I).
Consider LRU’s worst ordering, ILRU, of a sequence I. Since FWF’s performance
on its worst ordering of any sequence is at least as bad as its performance on the
sequence itself, FWFW (ILRU) ≥ FWF(ILRU) ≥ LRU(ILRU) = LRUW (ILRU).
Thus, cl(FWF,LRU) ≥ 1.

As a remark, in general, to prove that one algorithm is at least as good as
another on their respective worst orderings of all sequences, one usually starts
with an arbitrary sequence and its worst ordering for the better algorithm. Then,
that sequence is gradually permuted, starting at the beginning, so that the poorer
algorithm does at least as badly on the permutation being created.

The second step is to show the separation, giving a lower bound on the
term cu(FWF,LRU). We assume that the cache is initially empty. Consider
the sequence Is = 〈1, 2, . . . , k, k + 1, k, . . . , 2〉s, where FWF faults on all 2ks
requests. LRU only faults on 2s+ k − 1 requests in all, the first k requests and
every request to 1 or k + 1 after that, but we need to consider how many times
LRU faults on its worst ordering of Is.

It is proven in [21] that, for any sequence I, there is a worst ordering of I for
LRU that has all faults before all hits (requests which are not faults). The idea is
to consider any worst order of I for LRU and move requests which are hits, but
are followed by a fault towards the end of the sequence without decreasing the
number of faults. Since LRU needs k distinct requests between two requests to the
same page in order to fault, with only k+ 1 distinct pages in all, the faults at the
beginning must be a cyclic repetition of the k+1 pages. Thus, a worst ordering of Is
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for LRU is I ′
s = 〈2, 3, . . . , k, k + 1, 1〉s, 〈2, . . . , k〉s, and LRU(I ′

s) = (k+1)s+k−1.
This means that, asymptotically, cu(FWF,LRU) ≥ 2k

k+1 . We now know that
WRFWF,LRU ≥ 2k

k+1 , showing that FWF and LRU are comparable in LRU’s
favor, which is the most interesting piece of information.

However, one can prove that this is the exact result. In the third step, we
prove that cu(FWF,LRU) cannot be larger than 2k

k+1 , asymptotically. In fact,
this is shown in [21] by proving the more general result that, for any marking
algorithm [13], M, and for any request sequence I, MW (I) ≤ 2k

k+1 LRUW (I) + k.
A marking algorithm is defined with respect to k-phases, a partitioning of the
request sequence. Starting at the beginning of I, the first phase ends with the
request immediately preceding the (k+ 1)st distinct page, and succeeding phases
are also longest intervals containing at most k distinct pages. An algorithm is a
marking algorithm if, assuming we mark a page each time it is requested and start
with no pages marked at the beginning of each phase, the algorithm never evicts
a marked page. As an example, FWF is a marking algorithm. Now, consider any
sequence, I, with m k-phases. A marking algorithm M faults at most km times
on I. Any two consecutive k-phases in I contain at least k + 1 pages, so there
must be a permutation of the sequence where LRU faults at least k+ 1 times on
the requests of each of the bm2 c consecutive pairs of k-phases in I. This gives the
desired asymptotic upper bound, showing that WRFWF,LRU = 2k

k+1 .

3.2 Other Paging Algorithms

Like LRU and FWF, the algorithm FIFO also has competitive ratio k [12].
FIFO simply evicts the first page that entered the cache, regardless of its use
while in cache. In experiments, both LRU and FIFO are consistently much better
than FWF. LRU and FIFO are both conservative algorithms [65], meaning that
on any sequence of requests to at most k different pages, each of them faults at
most k times. This means that, according to RWOA, they are equally good and
both are better than FWF, since for any pair of conservative paging algorithms,
A and B, WRA,B = 1 and WRFWF,A = 2k

k+1 [21].
With a quality measure that separates FWF and LRU, an obvious ques-

tion to ask is: Is there a paging algorithm which is better than LRU according
to RWOA? The answer to this is “yes”. LRU-2 [59], which was proposed for
database disk buffering, is the algorithm which evicts the page with the earli-
est second-to-last request. LRU-2 and LRU are (1 + 1

2k+2 ,
k+1

2 )-related. This
concept was introduced in [21], expressing that cu(LRU-2,LRU) = 1 + 1

2k+2
and cu(LRU,LRU-2) = k+1

2 (see Definition 1 for a definition of cu). Thus, the
algorithms are asymptotically comparable in LRU-2’s favor [14].

In addition, a new algorithm, RLRU (Retrospective LRU), was defined
in [21] and shown to be better than LRU according to RWOA. Experiments,
simply comparing the number of page faults on the same input sequences, have
shown that RLRU is consistently slightly better than LRU [58]. RLRU is a
phase-based algorithm. When considering a request, it determines whether Opt
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would have had the page in cache given the sequence seen so far (this is efficiently
computable), and uses that information in a marking procedure.

Interestingly, LRU-2 has competitive ratio 2k and RLRU has competitive
ratio k + 1, so both are worse than LRU according to competitive analysis.

Also for paging, considering LRU and LRU(`), which is LRU adapted to
use look-ahead ` (the next ` requests after the current one), evicting a least
recently used page not occurring in the look-ahead, both algorithms have com-
petitive ratio k, though look-ahead helps significantly in practice. Using RWOA,
WRLRU,LRU(`) = min{k, `+ 1}, so LRU(`) is better [21].

4 Other Online Problems

In this section, we give further examples of problems and algorithms where
RWOA gives results that are qualitatively different from those obtained with
competitive analysis. We consider various problems, including list accessing, bin
packing, bin coloring, and scheduling.

List accessing [4, 62] is a classic problem in data structures, focusing on
maintaining an optimal ordering in a linked list. In online algorithms, it also has
the rôle of a theoretical benchmark problem, together with paging and a few
other problems, on which many researchers evaluate new techniques or quality
measures.

The problem is defined as follows: A list of items is given and requests are
to items in the list. Treating a request requires accessing the item, and the cost
of that access is the index of the item, starting with one. After the access, the
item can be moved to any location closer to the front of the list at no cost. In
addition, any two consecutive items may be transposed at a cost of one. The
objective is to minimize the total cost of processing the input sequence.

We consider three list accessing algorithms: On a request to an item x, the
algorithm Move-To-Front (MTF) [56] moves x to the front of the list, whereas
the algorithm Transpose (Trans) just swaps x with its predecessor. The third
algorithm, Frequency-Count (FC), keeps the list sorted by the number of
times each item has been requested.

For list accessing [62], letting l denote the length of the list, the algorithm
Move-To-Front has strict competitive ratio 2− 2

l+1 [47] (referring to personal
communication, Irani credits Karp and Raghavan with the lower bound). In con-
trast, Frequency-Count and Transpose both have competitive ratioΩ(l) [12].
Extensive experiments demonstrate that MTF and FC are approximately equally
good, whereas Trans is much worse [8, 10]. Using RWOA, MTF and FC are
equally good, whereas both WRTrans,MTF ∈ Ω(l) and WRTrans,FC ∈ Ω(l), so
Trans is much worse [38].

For bin packing, both Worst-Fit (WF), which places an item in a bin with
largest available space (but never opens a new bin unless it has to), and Next-Fit
(NF), which closes its current bin whenever an item does not fit (and never
considers that bin again), have competitive ratio 2 [48]. However, WF is at least
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as good as NF on every sequence and sometimes much better [17]. Using RWOA,
WRNF,WF = 2, so WF is the better algorithm.

Bin coloring is a variant of bin packing, where items are unit-sized and each
have a color. The goal is to minimize the maximum number of colors in any bin,
under the restriction that only a certain number, q, of bins are allowed to be
open at any time and a bin is not closed until it is full. Consider the algorithms
One-Bin, which never has more than one bin open, and Greedy-Fit, which
always keeps q open bins, placing an item in a bin already having that color, if
possible, and otherwise in a bin with fewest colors. We claim that Greedy-Fit
is obviously the better algorithm, but if the bin size is larger than approximately
q3, One-Bin has a better competitive ratio than Greedy-Fit [55]. However,
according to RWOA, Greedy-Fit is better [40].

For Scheduling on two related machines to minimize makespan (the time when
all jobs are completed), the algorithm Fast, which only uses the fast machine, is
s
s+1 -competitive, where s is the speed ratio of the two machines. If s is larger
than the golden ratio, this is the best possible competitive ratio. However, the
algorithm Post-Greedy, which schedules each job on the machine where it
would finish first, is never worse than Fast and sometimes better. This is reflected
in the relative worst-order ratio, since WRFast,Post-Greedy = s+1

s [39].
In addition to these examples, it is widely believed and consistent with

experiments that for bin packing problems, First-Fit algorithms perform better
than Worst-Fit algorithms, and that processing larger items first is better
than processing smaller items first. For the problem examples below, competitive
analysis cannot distinguish between the algorithms, that is, they have the same
competitive ratio, whereas using RWOA, we get the separation in the right
direction. The examples are the following: For dual bin packing (the variant of
bin packing where there is a fixed number of bins, the aim is to pack as many items
as possible, and all bins are considered open from the beginning), First-Fit is
better than Worst-Fit [18]. For grid scheduling (a variant of bin packing where
the items are given from the beginning and variable-sized bins arrive online),
First-Fit-Decreasing is better than First-Fit-Increasing [19]. For seat
reservation (the problem where a train with a certain number of seats travels
from station 1 to some station k ∈ Z+, requests to travel from some station i to
a station j > i arrive online, and the aim is to maximize either the number of
passengers or the total distance traveled), First-Fit and Best-Fit are better
than Worst-Fit [29] with regards to both objective functions.

5 Approaches to Understanding Online Computation

In this section, we discuss other means of analyzing and thereby gaining insight
into online computation. This includes other performance measures and advice
complexity.
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5.1 Other Performance Measures

Other than competitive analysis, many alternative measures have been introduced
with the aim of getting a better or more refined picture of the (relative) quality
of online algorithms.

In chronological order, the main contributions are the following: online/online
ratio [45], statistical adversary [61], loose competitive ratio [65], max/max ratio [9],
access graphs (incorporating locality of reference) [13], random-order ratio [53],
accommodating ratio [25], extra resource analysis [51], diffuse adversary [54],
accommodating function [28], smoothed analysis [63], working set (incorporating
locality of reference) [2], relative worst-order analysis [18,21], bijective and average
analysis [5], relative interval analysis [37], bijective ratio [6], and online-bounded
analysis [15,16].

We are not defining all of these measures here, but we give some insight into
the strengths and weaknesses of selected measures in the following. We start with
a discussion of work directly targeted at performance measure comparison.

Comparisons of Performance Measures. A systematic comparison of per-
formance measures for online algorithms was initiated in [24], comparing some
measures which are applicable to many types of problems. To make this feasible,
a particularly simple problem was chosen: the 2-server problem on a line with
three points, one point farther away from the middle point than the other.

A well known algorithm, Double Coverage (DC), is 2-competitive and best
possible for this problem [31] according to competitive analysis. A lazy version
of this, LDC, is at least as good as DC on every sequence and often better.
Investigating which measures can make this distinction, LDC was found to be
better than DC by bijective analysis and RWOA, but equivalent to DC according
to competitive analysis, the max/max ratio, and the random-order ratio. The
first proof, for any problem, of an algorithm being best possible under RWOA
established this for LDC.

Greedy performs unboundedly worse than LDC on certain sequences, so
ideally a performance measure would not find Greedy to be superior to LDC.
According to the max/max ratio and bijective analysis, Greedy is the better
algorithm, but not according to competitive analysis, random-order analysis, or
RWOA.

Further systematic comparisons of performance measures were made in [26]
and [27], again comparing algorithms on relatively simple problems. The paper [26]
considered competitive analysis, bijective analysis, average analysis, relative
interval analysis, random-order analysis, and RWOA. There were differences
between the measures, but the most clear conclusions were that bijective analysis
found all algorithms incomparable and average analysis preferred an intuitively
poorer algorithm.

Notable omissions from the investigations above are extra resource analysis [51]
and the accommodating function [28], both focusing on resources, which play a
major rôle in most online problems. Both measures have been applied successfully
to a range of problems, giving additional insight; extra resource analysis (also
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referred to as resource augmentation) has been used extensively. They can both
be viewed as extensions of competitive analysis, explaining observed behavior of
algorithms by expressing ratios as functions of resource availability.

5.2 Advice Complexity

As a means of analyzing problems, as opposed to algorithms for those problems,
advice complexity was proposed [11, 36, 46]. The “no knowledge about the future”
property of online algorithms is relaxed, and it is assumed that some bits of
advice are available; such knowledge is available in many situations. One asks
how many bits of advice are necessary and sufficient to obtain a given competitive
ratio, or indeed optimality. For a survey on advice complexity, see [20].

6 Applicability

Competitive analysis has been used for decades and sophisticated, supplementary
analysis techniques have been developed to make proofs more manageable, or
with the purpose of capturing more fine-grained properties of algorithms.

We discuss two of the most prominent examples of these supplementary tech-
niques: list factoring for analyzing list accessing and access graphs for modeling
locality of reference for paging. Both techniques have been shown to work with
RWOA. As far as we know, list factoring has not been established as applicable
to any other alternative to competitive analysis. Access graphs have also been
studied for relative interval analysis [23] with less convincing results.

6.1 List Factoring for Analyzing List Accessing

The idea behind list factoring is to reduce the analysis to lists of two elements,
thereby making the analysis much more manageable. The technique was first
introduced by Bentley and McGeoch [10] and later extended and improved [1, 3,
47, 64]. In order to use this technique, one uses the partial cost model, where the
cost of each request is one less than in the standard (full) cost model (the access
to the item itself is not counted). The list factoring technique is applicable for
algorithms where, in treating any request sequence I, one gets the same result
by counting only the costs of passing through x or y when searching for y or x
(denoted Axy(I)), as one would get if the original list contained only x and y and
all requests different from those were deleted from the request sequence, denoted
Ixy. If this is the case, that is Axy(I) = A(Ixy) for all I, then A is said to have
the pairwise property, and it is not hard to prove that then A(I) =

∑
x 6=yA(Ixy).

Thus, we can reduce the analysis of A to an analysis of lists of length two.
The results obtained also apply in the full cost model if the algorithms are cost
independent, meaning that their decisions are independent of the costs of the
operations.

Since the cost measure is different, some adaption is required to get this to
work for RWOA:
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We now say that A has the worst-order projection property if and only if,
for all sequences I, there exists a worst ordering πA(I) of I with respect to A,
such that for all pairs {a, b} ⊆ L (a 6= b), πA(I)ab is a worst ordering of Iab with
respect to A on the initial list Lab.

The results on Move-To-Front, Frequency-Count, and Transpose,
reported on in Subsection 3.2, as well as results on Timestamp [1], were ob-
tained [38] using this tool.

6.2 Access Graphs for Modeling Locality of Reference for Paging

Locality of reference refers to the observed behavior of certain sequences from
real life, where requests seem to be far from uniformly distributed, but rather
exhibit some form of locality; for instance with repetitions of pages appearing
in close proximity [33, 34]. Performance measures that are worst-case over all
possible sequences will usually not reflect this, so algorithms exploiting locality of
reference are not deemed better using the theoretical tools, though they may be
superior in practice. This has further been underpinned by the following result [5]
on bijective analysis: For the class of demand paging algorithms (algorithms that
never evict a page unless necessary), for any two positive integers m,n ∈ N, all
algorithms have the same number of input sequences of length n that result in
exactly m faults.

One attempt at formalizing locality of reference, making it amenable to
theoretical analysis, was made in [13], where access graphs were introduced. An
access graph is an undirected graph with vertices representing pages and edges
indicating that the two pages being connected could be accessed immediately
after each other. In the performance analysis of an algorithm, only sequences
respecting the graph are considered, i.e., any two distinct, consecutive requests
must be to the same page or to neighbors in the graph.

Under this restriction on inputs, [13, 32] were able to show that, according to
competitive analysis, LRU is strictly better than FIFO on some access graphs
and never worse on any graph. Thus, they were the first to obtain a separation,
consistent with empirical results.

Using RWOA, [22] proved that on the primary building blocks of access
graphs, paths and cycles, LRU is strictly better than FIFO.

7 Open Problems and Future Work

For problems where competitive analysis deems many algorithms best possible
or gives counter-intuitive results, comparing algorithms with RWOA can often
provide additional information. Such comparisons can be surprisingly easy, since
it is often possible to use parts of previous results when applying RWOA.

Often the exploration for new algorithms for a given problem ends when
an algorithm is proven to have a best possible competitive ratio. Using RWOA
to continue the search for better algorithms after competitive analysis fails to
provide satisfactory answers can lead to interesting discoveries. As an example,
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the paging algorithm RLRU was designed in an effort to find an algorithm that
could outperform LRU with respect to RWOA.

Also for the paging problem, RLRU and LRU-2 are both known to be
better than LRU according to RWOA. It was conjectured [14] that LRU-2 is
comparable to RLRU in LRU-2’s favor. This is still unresolved. It would be
even more interesting to find a new algorithm better than both. It might also be
interesting to apply RWOA to an algorithm from the class of OnOpt algorithms
from [58].

For bin packing, it would be interesting to know whether Best-Fit is better
than First-Fit, according to RWOA.
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