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Access graphs, which have been used previously in connection to competitive
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access graphs. In this model, some of the results obtained are not surprising.

However, although LRU is found to be strictly better than FIFO on paths, it
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analysis.
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1. Introduction

The paging problem is the problem of maintaining a subset of a potentially

very large set of pages from memory in a significantly smaller cache. This prob-

lem, originating in the design of operating systems, has received much attention

in online algorithms research, giving rise to many algorithms and techniques for

analyzing them. This attention is largely due to the importance of the problem

combined with the dissatisfaction with the results obtained using standard com-

petitive analysis, which is unable to distinguish between many paging algorithms

of varying quality.

The paging problem considered in online algorithms is the following: We

have a memory that can hold N pages and a cache that can hold k < N .

A paging algorithm must process a sequence of requests. Each request is a

reference to a page in memory, which may or may not be present in the cache.

If it is present, this is referred to as a “hit” and otherwise we have a “fault”. The

paging algorithm must bring the requested page into cache if it is not already

there. Since the cache is smaller than the memory, this means that when a page

not currently present in cache must be brought in, some other page must be

evicted. The only decision a paging algorithm can make is which page to evict.

For this reason, paging algorithms are also sometimes referred to as eviction

strategies. The problem is online, meaning that when the paging algorithm

processes a given request, it has no information about any future requests, and

the objective is to minimize the total number of faults. We make the common

assumption that the cache is empty to start with, so no evictions have to be

carried out for the first k distinct page requests.

1.1. Paging Algorithms

Many different paging algorithms have been considered in the literature,

many of which can be found in [3, 12]. Among the best known are LRU (least-

recently-used), which always evicts the least recently used page, and FIFO (first-

in-first-out), which evicts pages in the order they entered the cache. We also
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consider a known bad algorithm, FWF (flush-when-full), which is often used for

reference, since quality measures ought to be able to determine at the very least

that it is worse than the other algorithms. If FWF encounters a fault with a

full cache, it empties its cache, and brings the new page in.

Finally, we consider a more involved algorithm, FARG [4], which works with

respect to a known access graph, G. The access graph is an undirected graph

with pages as vertices, which is used to limit the input sequences that are

considered. The request sequence can start with any page, but for any point

in the request sequence, the next request, if not identical to the previous, must

be to a page connected to the current request by an edge in the access graph,

i.e., the pages are adjacent. The intention is to provide a model for locality of

reference.

The access graph is fixed before the request sequence starts and FARG uses

this graph as well as marks that it administers on the pages in cache to make

its decisions as follows: Whenever a page is requested, it is marked. On a fault,

where it is necessary to evict a page, it always evicts an unmarked page. If

all pages are marked in such a situation, FARG first unmarks all pages. The

unmarked page it chooses to evict is the one farthest from any marked page in

the access graph G. For breaking possible ties, when more than one unmarked

page in cache has the maximal distance to marked pages, we use the LRU

strategy in this paper, i.e., evicting the least recently used among these pages.

Other algorithms based on access graphs were investigated in [15, 16, 17].

1.2. Separation Results via Performance Measures

Comparing the behavior of paging algorithms under various assumptions has

been a topic for much research. The most standard measure of quality of an on-

line algorithm, competitive analysis [22, 18], cannot directly distinguish between

most of them. The competitive ratio is inspired by the approximation ratio and

is defined as follows: Letting ALG(I) denote the cost (number of faults) of run-

ning an algorithm ALG on the input sequence I, ALG is c-competitive if there

exists a constant b such that ALG(I) ≤ cOPT(I) + b for all I. Here OPT is
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an optimal offline algorithm. Thus, OPT knows the entire input sequence in

advance, and its performance is a lower bound on how well any online algorithm

can perform. The competitive ratio is the infimum over all c for which the al-

gorithm is c-competitive. Competitive analysis deems LRU, FIFO, and FWF

equivalent, with a competitive ratio of k [21, 18], where k denotes the size of

the cache.

Other measures, such as bijective/average analysis [2], relative worst order

analysis [5, 6], and relative interval analysis [13] can be used to obtain more sep-

arations. For the discussions here and later in the introduction, we briefly define

these measures without introducing extra notation. More mathematically-based

definitions, variations, and refinements of the measures can be found in the re-

spective papers.

As opposed to competitive analysis, bijective analysis is based on a direct

comparison between two algorithms, ALG and ALG′, rather than via a com-

parison to OPT. ALG is at least as good as ALG′ if for all n, when considering

all possible different input sequences of length n, there exists a bijection σ on

this set such that for all input sequences I of length n, ALG(I) ≤ ALG′(σ(I)).

Average analysis simply compares the average performance of the algorithms,

again separately for each input length.

In relative worst order analysis, comparisons are also between two algorithms

directly, but based on a partition of all possible input sequences. Using the

notation from above, ALG is at least as good as ALG′ if for all input sequences

I, ALGW (I) ≤ ALG′
W (I), where ALGW (I) denotes ALG’s performance on the

permutation of I that gives the worst result (most faults).

Relative interval analysis considers the interval spanned by the fraction

ALG(I)−ALG′(I)
n

over all input sequences I of length n. ALG dominates ALG′ if

the right-most point of the interval is at most zero.

In contrast to competitive analysis, bijective, average, relative worst, and

relative interval analysis all establish that LRU and FIFO are better than FWF,

and also that look-ahead helps. Here look-ahead means that the strict online

constraint that no information about the future is available is weakened, and
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an algorithm is allowed to see the l next requests for some constant l.

Since LRU performs better than FIFO in some practical situations [24], there

has been considerable effort to explain this. To our knowledge, no techniques

have been able to separate LRU and FIFO, without adding some modelling of

locality of reference. In [20, 25], there are proofs of optimality for LRU against

a diffuse adversary, but as far as we can determine, no proof of non-optimality

for FIFO.

One explanation of the difficulty in separating LRU and FIFO without con-

sidering locality of reference is as follows: If one considers all sequences of

length n for any n, bijective/average analysis shows that their average num-

ber of faults on these sequences is identical [2], since both are demand paging

algorithms.

1.3. Separation Results via Locality of Reference

A separation between FIFO and LRU was established quite early using access

graphs for modelling locality of reference [9], showing that under competitive

analysis, no matter which access graph one restricts to, LRU always does at least

as well as FIFO. This proved a conjecture in [4], where the access graph model

was introduced. Another way to restrict the input sequences was investigated

in [1]. Using Denning’s working set model [10, 11] as an inspiration, sequences

were limited with regards to the number of distinct pages in a sliding window

of size k. This also favors LRU, as does bijective analysis [2], using the same

locality of reference definition as [1]. There has also been work in the direction

of probabilistic models, including the diffuse adversary model [20] and Markov

chain based models [19].

The earlier successes and the generality of access graphs, together with the

possibilities the model offers with regards to investigating specific access pat-

terns, make it an interesting object for further studies. Given the abundance

of performance measure for online algorithms, with no clear acceptance of one

being better than the others for all problems, it seems natural to explore ac-

cess graphs results in the context of other performance measures. This has
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the potential of expanding our understanding of the relative strengths of var-

ious performance measures as well as concrete algorithms, a direction of work

initiated in [8].

One step in that direction was carried out in [7], where more nuanced results

were demonstrated, showing that restricting input sequences using the access

graph model, while applying relative worst order analysis, LRU is strictly better

than FIFO on paths and cycles. The question as to whether or not LRU is at

least as good as FIFO on all finite graphs was left as an open problem, but it was

shown that there exists a family of graphs which grows with the length of the

corresponding request sequence, where LRU and FIFO are incomparable. Since

LRU is optimal on paths, it is not surprising that both competitive analysis

and relative worst order analysis find that LRU is better than FIFO on paths.

Any “reasonable” analysis technique should give this result. Under competitive

analysis, LRU and FIFO are equivalent on cycles. The separation by relative

worst order analysis occurs because cycles contain paths, LRU is better on paths,

and relative worst order analysis can capture this. The fact that there exists

an infinite family of graphs which grows with the length of the sequence where

LRU and FIFO are incomparable is not particularly surprising or disturbing.

There are many sequences where FIFO is better than LRU; they just seem to

occur less often in real applications.

1.4. Previous Work on Relative Interval Analysis

In some ways relative interval analysis is between competitive analysis and

relative worst order analysis. As with relative worst order analysis, two algo-

rithms are compared directly to each other, rather than compared to OPT.

This gives the advantage that, when one algorithm dominates another, in the

sense that it is at least as good as the other on every request sequence and

better on some, the analysis will reflect this. On the other hand, it is similar to

competitive analysis in that the two algorithms are always compared on exactly

the same sequence. It is different from both competitive analysis and relative

worst order analysis, however, in that the result is not a ratio. To compare two
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algorithms, LRU and FIFO for example, one considers the difference between

LRU’s and FIFO’s performance on any sequence, divided by the length of that

sequence. The range that these ratios can take is the “interval” for that pair of

algorithms. As opposed to a worst-case measure such as competitive analysis,

relative interval analysis can convey more detailed information. For instance, it

can reflect that one algorithm ALG can be much better than another algorithm

ALG′ on some sequences, but no matter which sequences one considers, ALG

can only be slightly worse than ALG′.

For FIFO and LRU, [13] found two families of sequences In and Jn such that

limn→∞
FIFO(In)−LRU(In)

n
= −1+ 1

k
and limn→∞

FIFO(Jn)−LRU(Jn)
n

= 1
2 −

1
4k−2 .

They left it as an open problem to determine if worse sequences exist, making

the interval even larger. In their notation, they proved: [−1 + 1
k
, 1
2 − 1

4k−2 ] ⊆

I(FIFO,LRU).

1.5. Our Results and Their Relations to Previous Results

We start by resolving the open problem from [13], showing that their com-

parison between LRU and FIFO can be made tight: I(FIFO,LRU) = [−1 +

1
k
, 1
2 − 1

4k−2 ]. Following [13], these results would be interpreted as saying that

FIFO has better performance than LRU, since the absolute value of the mini-

mum value in the interval is larger than the maximum, but also that they have

different strengths, since zero is contained in the interior of the interval.

We obtain more nuanced results by considering various types of access graphs,

such as paths (PN ), stars (SN ), and cycles (CN ), splitting the interval of

[−1 + 1
k
, 1
2 − 1

4k−2 ] into subintervals for the respective graph classes. When

the access graph is complete (a clique), there are no restrictions on the input

sequences, so this is equivalent to considering the situation without an access

graph.

This paper contains a systematic treatment of all four algorithms (LRU,

FIFO, FWF, FAR) on all four classes of graphs (general, paths, stars, cycles),

comparing each pair of these algorithms to each other. At the end of the paper,

in Table 1, we give a technical overview of our results that may be a useful refer-
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ence point after and while reading the paper, past the preliminary section with

the relevant notation. Here, we discuss the main results that can be extracted

from the table.

Comparing our results with the results from competitive analysis and relative

worst order analysis, both with respect to access graphs, it becomes clear that

different measures highlight different aspects of the algorithms. All the measures

show that LRU is strictly better than FIFO on paths. This is not surprising

since LRU is in fact optimal on paths, performing as well as the optimal offline

algorithm [4], while FIFO is not.

In contrast to the relative worst order results that also favored LRU, on

cycles and complete graphs, relative interval analysis gives results which can be

interpreted as incomparability, but leaning towards deeming FIFO the better

algorithm. More precisely, if one considers Table 1, for large cache sizes k, the

interval representing the comparison between FIFO and LRU on star graphs

tend to [− 1
2 ,

1
4 ], and to [−1, 1

2 ] on cycles, i.e., in both cases, FIFO sometimes

has a more significant advantage over LRU than LRU ever has over FIFO.

This difference between relative interval analysis and relative worst order

analysis seems to be due to the fact that relative interval analysis uses the

absolute difference in the fault rate (number of faults divided by the length

of the sequence). Thus, there is a normalization relative to the lengths of the

sequences. In order for LRU to perform differently from FIFO on a sequence,

there must be requests to pages which are currently in cache, adding to the

length of the sequence. For some access graphs, a longer sequence is necessary

for LRU to perform significantly better than FIFO than is necessary for FIFO

to perform better than LRU.

Since LRU is generally better than FIFO in practice, this indicates that rela-

tive interval analysis lacks some of the predictive power the other two measures

have with respect to the paging problem, even when the access graph technique

is added. However, relative interval analysis has the advantage over competi-

tive analysis that it correctly predicts that FWF is worse than LRU on general

graphs and that look-ahead helps.
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Finally, it turns out to be quite cumbersome and notationally heavy to an-

alyze FAR on cycles. Also here, we get results which can be interpreted as

incomparability, but leaning very slightly towards deeming FAR the better al-

gorithm when comparing it to LRU and FIFO. It would be interesting to know if

the difference could be more pronounced on more complicated graph structures,

but we fear that analyses will become too complicated.

2. Preliminaries

We have defined the paging algorithms in the introduction. If more detail is

desired, the algorithms are described in [3].

An access graph for paging models the access patterns, i.e., which pages can

be requested after a given page. Thus, the vertices are pages, and after a page

p has been requested, the next request is to p or one of its neighbors in the

access graph. We let N denote the number of vertices of the access graph under

consideration at a given time and this is the same as the number of different

pages we consider. We assume that pages are numbered from 1 through N .

We will always assume that N > k, where k is the cache size, since otherwise

essentially all algorithms are equivalent. A request sequence is a sequence of

pages and the sequence respects a given access graph if any two consecutive

requests are either identical or neighbors in the access graph. We let L(G)

denote the set of all request sequences respecting G.

We use the definition of k-phases from [3]:

Definition 1. A request sequence can be divided recursively into a number of

k-phases as follows: Phase 0 is the empty sequence. For every i ≥ 1, Phase i is a

maximal sequence following Phase i− 1 containing at most k distinct requests.

✷

In other words, Phase i begins on the (k + 1)st distinct page requested since

the start of Phase i− 1, and the last phase may contain fewer than k different

pages. We generally want to ignore Phase 0, and refer to Phase 1 as the first

phase.
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Similarly, we can define x-blocks, for some integer x, as maximal sequences

for which a given algorithm A has faulted x times:

Definition 2. A request sequence can be divided recursively into a number of

x-blocks with respect to an algorithm A as follows: The 0th x-block is the empty

sequence. For every i ≥ 1, the ith x-block is a maximal sequence following the

(i− 1)st x-block for which A faults at most x times.

The complete blocks are defined to be the ones with x faults, i.e., excluding

the 0th block and possibly the last. ✷

There are some well-known and important classifications of paging algo-

rithms, which are used here and in many other papers on paging [3]: A paging

algorithm is called conservative [24] if it incurs at most k page faults on any

consecutive subsequence of the input containing k or fewer distinct page ref-

erences. LRU and FIFO belong to this class. Similarly, a paging algorithm is

called a marking [4] algorithm if for any k-phase, once a page has been requested

in that phase, it is not evicted for the duration of that phase. LRU, FARG, and

FWF are marking algorithms. All conservative and marking algorithms are

k-competitive [4, 23].

If A is a paging algorithm, we let A(I) denote A’s cost (number of faults)

on the input (request) sequence I. We now adapt relative interval analysis

from [13] to access graphs. Let A and B be two algorithms. We define the

following notation:

MinGA,B(n) = min
|I|=n,I∈L(G)

{A(I)− B(I)}

MaxGA,B(n) = max
|I|=n,I∈L(G)

{A(I)− B(I)}

MinG(A,B) = lim
n→∞

inf
MinGA,B(n)

n

MaxG(A,B) = lim
n→∞

sup
MaxGA,B(n)

n
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Definition 3. The relative interval of two algorithms A and B with respect to

the access graph, G, is

IG(A,B) = [MinG(A,B),MaxG(A,B)]

B is said to have better performance than A if MaxG(A,B) > |MinG(A,B)|.

B is said to dominate A if IG(A,B) = [0, β] for some β > 0. ✷

Note that in the above, MaxG(A,B) = −MinG(B,A).

This definition generalizes the one from [13] in that the original definition is

the special case where G is the complete graph, which is the same as saying that

there are no restrictions on the sequences. We omit G in the notation when G

is complete, since this corresponds to the normal case without an access graph.

Note that if B dominates A, this means that A does not outperform B on any

sequence (asymptotically), while there are sequences on which B outperforms

A. Also, when MaxG(A,B) is close to 0, this indicates that A’s performance is

not much worse than that of B’s.

As a remark, all the cost functions in this paper behave nicely, so taking the

infimum or supremum is not necessary for the limits to exist. Thus, in all cases,

one can just think about the limit.

One can debate whether or not it is intuitive that the algorithms sometimes

appear as subscripts and sometimes as arguments (in parenthesis) in the above,

but we have decided to stay as close as possible to the notation and terms

introduced in [13], so that their notation is as above when the superscript G

is removed. We have also kept their term “better performance than”, but the

reader should be aware that this is now a formal term, expressing the result

of comparing algorithms using relative interval analysis, rather than a term

referring to some real-life benchmark results. And of course there will be results

where the measure states that “A has better performance than B”, but one

could have another view on this in practice. This is also the situation for any

other measure, including competitive analysis; see [14] for numerous examples

of this.
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The following general lemmas will prove helpful later. The first observation

is well known for k-phases [3]:

Lemma 1. If a request sequence I contains either

• b complete k-phases, or

• b complete k-blocks defined with respect to any conservative or marking

algorithm, B,

then any algorithm, A, has at least b+ k − 1 faults on I.

Proof Let p be the page requested first in Phase i of I and let I ′ be the

subsequence starting with the second request in Phase i and ending right after

the first request in Phase i+ 1. Since there are k different pages in I ′ different

from p, and p is in cache right after it has been processed, any algorithm, A,

must fault at least once in I ′. Thus, A must fault at least k + 1 times on

Phase 1 and the first request in Phase 2, and then at least once for the next

b− 2 k-phases, summing to b+ k − 1.

The only properties used in the above are the following: First, there are

at least k distinct requests in a k-phase, and, second, for any phase, the first

request is different from any request in the previous phase; specifically, the first

requests in two subsequent k-phases are different. Any conservative or marking

algorithm, B, gives rise to such k-blocks. ✷

Lemma 2. Assume that for two algorithms A and B and an access graph G,

there exist functions f and g such that

• for all I ∈ L(G), A(I) − B(I) ≤ f(bI) and |I| ≥ g(bI), where bI denotes

either the number of complete k-phases in I or the number of k-blocks in

I defined with respect to a conservative or marking algorithm, and

• the limit limb→∞
f(b)
g(b) exists.

Then MaxG(A,B) ≤ limb→∞
f(b)
g(b) .
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Proof In this proof, we will take the word “phase” to mean either a k-phase

or a k-block.

We define a sequence of request sequences as follows. For n ≥ 1, let In be a

sequence of length n such that In maximizes A(I) − B(I) over all sequences I

of length n.

By construction,

MaxGA,B(n) = max
|I|=n,I∈L(G)

{A(I)− B(I)} = A(In)− B(In) ≤ f(bIn),

and by assumption, |In| ≥ g(bIn). Thus
MaxG

A,B(n)

|In|
≤

f(bIn )
g(bIn ) . Now,

MaxG(A,B) ≤ lim sup
n→∞

f(bIn)

g(bIn)
≤ lim sup

b→∞

f(b)

g(b)
= lim

b→∞

f(b)

g(b)
.

The final equality holds since we have assumed that the limit exists. ✷

The proof of the following is analogous to the lemma just proven. Note,

however, that the function f now has image in R−.

Lemma 3. Assume that for two algorithms A and B and an access graph G,

there exist functions f and g such that

• for all I ∈ L(G), A(I) − B(I) ≥ f(bI) and |I| ≥ g(bI), where bI denotes

either the number of complete k-phases in I or the number of k-blocks in

I defined with respect to a conservative or marking algorithm, and

• the limit limb→∞
f(b)
g(b) exists.

Then MinG(A,B) ≥ limb→∞
f(b)
g(b) .

3. Complete Graphs

Having the complete graph as an access graph is equivalent to having no

restrictions on the input. Thus, LRU and FIFO are equivalent on complete

graphs under both competitive analysis and relative worst order analysis, since

they are equivalent under these measures without considering access graphs. It

also means that the results of this section hold in the original model for relative
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interval analysis [13]. In [13], it is shown that [−k−1
k

, k−1
2k−1 ] ⊆ I(FIFO,LRU).

Below, we answer an open question from [13], proving that this is tight.

The argument for the Min value uses the following lemma, which is a gen-

eralization of [13, Theorem 3].

Lemma 4. Let A be a k-competitive algorithm and B be any paging algorithm,

then for any access graph G,

MinG(B,A) ≥ −1 +
1

k
and MaxG(A,B) ≤ 1−

1

k
.

Proof For each positive integer n, let In be a sequence of length n, respecting

the access graph G, which maximizes A(I)− B(I).

MaxGA,B(n) = max
|I|=n,I∈L(G)

{A(I)− B(I)} = A(In)− B(In) ≤ A(In)−OPT(In).

Since A is k-competitive, there exists a constant c such that for all sequences,

I, A(I) ≤ kOPT(I)+ c. In particular, for In, OPT(In) ≥
A(In)−c

k
. In addition,

A cannot fault on more than n requests on In, so

MaxG(A,B) ≤ lim sup
n→∞

A(In)−OPT(In)

n
≤ lim sup

n→∞

A(In)−
A(In)−c

k

n

= lim sup
n→∞

A(In)−
A(In)

k

n
≤ lim sup

n→∞

A(In)−
A(In)

k

A(In)

= 1−
1

k

Since MinG(B,A) = −MaxG(A,B), MinG(B,A) ≥ −1 + 1
k
. ✷

Lemma 5. For any access graph G,

−1 +
1

k
≤ MinG(FIFO,LRU) and MaxG(FIFO,LRU) ≤

1

2
−

1

4k − 2
.

Proof Since LRU has competitive ratio k, by Lemma 4, MinG(FIFO,LRU) ≥

−1 + 1
k
.

We now consider the Max value. Given a request sequence I, we let Bi

denote the ith k-block for FIFO. Assume that there are b complete k-blocks.
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FIFO faults k times per complete k-block and up to k− 1 times for the possible

final k-block. Thus, FIFO(I) ≤ bk+(k−1). Assume that LRU faults αi times in

Bi. By Lemma 1, LRU faults at least b+k−1 times. Thus, Σb
i=1αi ≥ b+k−1.

We now compute a lower bound on the length of the request sequence I based

on the number of complete k-blocks in it and the behavior of the algorithms on

it.

As a first step, with every request on which FIFO faults and LRU has a hit,

we associate a unique request on which FIFO has a hit. Let r be such a request

to a page p in Bi. Since it is a hit for LRU, p must have been requested in the

maximal subsequence of requests I ′ consisting of k distinct pages and ending

just before r. Consider the first such request, r′, in I ′. If it were a fault for

FIFO, FIFO could not have faulted again on r. Thus, r′ was a hit for FIFO

and we associate r′ with r.

To establish that the association is one-to-one, assume that r′ also gets

associated with a request r′′. Without loss of generality, assume that r′′ is later

than r. For FIFO to fault on both r and r′′, there must be at least k distinct

pages different from p in between r and r′′. However, since we are assuming

that LRU has a hit on r′′, by the property of LRU, the page requested by

r′′ must have been requested during the same k distinct pages. Thus, by the

construction above, the request that gets associated with r′′ (and r) will be later

than r, which is a contradiction.

Thus, for each of the at least k − αi requests in Bi where FIFO faults and

LRU has hit, by the procedure above, we have identified an additional request

where FIFO has a hit. In total, there are at least Σb
i=1(k − αi) = bk − Σb

i=1αi

hits for FIFO on distinct requests in I. Since there are b complete k-blocks,

there are also at least bk faults. Thus, the length of I is at least 2bk − Σb
i=1αi,

and
FIFO(I)− LRU(I)

|I|
≤

bk + k − 1− Σb
i=1αi

2bk − Σb
i=1αi

.

By the lower bound on Σb
i=1αi above, and the arithmetic observation that u−y

v−y
<
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u−x
v−x

, if u < v and x < y < v, we have that

bk + k − 1− Σb
i=1αi

2bk − Σb
i=1αi

≤
bk + k − 1− (b+ k − 1)

2bk − (b+ k − 1)
=

b(k − 1)

b(2k − 1)− k + 1
.

By Lemma 2, since limb→∞
b(k−1)

b(2k−1)−k+1 = k−1
2k−1 ,

MaxG(FIFO,LRU) ≤
k − 1

2k − 1
=

1

2
−

1

4k − 2
.

✷

From [13] and Lemma 5, we have the following:

Theorem 1. I(FIFO,LRU) = [−1 + 1
k
, 1
2 − 1

4k−2 ].

3.1. FWF

FWF performs very poorly compared to the other algorithms considered

here. The following is folklore:

Lemma 6. For any sequence I and any conservative or marking algorithm A,

we have A(I) ≤ FWF(I).

This implies that for any access graph G and any request sequence I respecting

G, A(I) ≤ FWF(I) and so

MinG(FWF,LRU) = MinG(FWF,FIFO) = MinG(FWF,FARG) = 0.

Thus, LRU, FIFO, and FARG all dominate FWF.

The upper bound of 1− 1
k
from Lemma 4 is tight for FWF versus LRU for

any access graph containing a path on k + 1 vertices, and it is tight for FWF

versus FARPN on a path containing at least k + 1 ≤ N vertices. Note that

a cycle on k + 1 vertices contains a path on k + 1 vertices, but FARCN does

not behave identically to FARPN . The following theorem regards path graphs,

which are the topic of the next section, but it has implications already in this

section.
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Theorem 2. For the path access graph PN , where N ≥ k + 1, and A ∈

{LRU,FARPN },

IPN [FWF,A] =

[

0, 1−
1

k

]

.

For LRU, the results hold more generally for any graph containing Pk+1.

Proof Consider the sequence In = 〈1, 2, . . . , k, k+1, k, . . . , 2〉n, respecting PN .

Since LRU and FAR behave identically when the access graph is a path, we

have

LRU(In) = FARPN (In) = 2n+ k − 1 and FWF(In) = 2kn.

Therefore,

lim
n→∞

FWF(In)− LRU(In)

|In|
= lim

n→∞

FWF(In)− FARPN (In)

|In|
=

k − 1

k
.

By Lemma 4, this gives

MaxPN (FWF,LRU) = MaxPN (FWF,FARPN ) = 1−
1

k
.

Lemma 6 shows that LRU and FARPN dominate FWF. ✷

As defined in the introduction, FARG operates relative to some access graph

G and first uses distances in the access graph in order to decide which pages

to evict, and in cases of ties, uses LRU as its tie-breaking strategy. Since the

distance between any two vertices in a complete graph is one, FARG and LRU

behave identically when G is complete. Thus, the above result also holds for

both LRU and FAR for complete graphs containing at least k + 1 vertices.

Recall that we omit the superscript to FARG and write FAR exactly when G is

complete.

This gives as a corollary the following, which also follows from [13, Theorem

2]:

Corollary 1. For A ∈ {LRU,FAR}, we have I[FWF,A] =
[
0, 1− 1

k

]
.

Except for a tiny discrepancy when k is even, this result also holds for FWF

versus FIFO:
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Theorem 3. For any graph G containing a path with k+1 vertices, if k is odd,

then

IG[FWF,FIFO] =

[

0, 1−
1

k

]

,

and if k is even, then
[

0, 1−
1

k
+

1

k2

]

⊆ IG[FWF,FIFO] ⊆

[

0, 1−
1

k

]

.

Proof Let h = ⌊(k + 1)/2⌋. Define the subsequence

Si = 〈h+ i, h+ i− 1, ..., h, ..., h− i, h− i+ 1, ..., h, ..., h+ i〉

and define the subsequence R which starts with page h and continues with the

requests S1, S2, ..., Sh−1. This initial part of every sequence in our family of

sequences ensures that the order in which FIFO faults on requests is always

〈h, h+ 1, h− 1, h+ 2, h− 2, ..., 2h− 1, 1〉. The value 2h− 1 is k if k is odd and

k − 1 if k is even.

Suppose k is odd. Let In = 〈R,Kn〉, where J = 〈k + 1, k, ..., 1, 2, ...k〉h and

Kn = Jn. FWF and FIFO both fault 2h − 1 times on R. FWF faults 2khn

times on Kn. On the first request to page k+1 in In, FIFO evicts page h. Thus,

after the fault on the request to k+1, its only fault while going “left” (towards

lower page numbers) for the first time in subsequence J is on page h, and its

only fault going “right” is on page h + 1. On the ith iteration (i ≤ h − 1) of

subsequence J , it faults on the request to h− i+1 going left and on the request

to h + i going right. On iteration h, it only faults on the request to page 1,

so FIFO has the same cache configuration immediately after having processed

subsequence J as it had immediately before. Thus, FIFO has k + 1 faults on

subsequence J , giving (k + 1)n in all. The number of requests in Kn is 2khn.

Thus, limn→∞
FWF(In)−FIFO(In)

|In|
= 2khn−(k+1)n

2khn = 1− 1
k
, using that 2h− 1 = k.

Suppose k is even. We define similar sequences, but let In = 〈R, k,Kn〉, since

page k is not requested yet. FIFO will still fault k+ 1 times on subsequence J ,

but now 2h− 1 = k − 1, so

lim
n→∞

FWF(In)− FIFO(In)

|In|
=

2khn− (k + 1)n

2khn
= 1−

k + 1

k2
.

Lemma 6 shows that FIFO dominates FWF. ✷
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4. Path Graphs

In this section, we analyze path access graphs, PN , with N vertices. As in

the other sections, we assume that N ≥ k + 1.

By Theorem 1, for any access graph G, MaxG(FIFO,LRU) ≤ 1
2 −

1
4k−2 . For

paths, the value is slightly smaller. We obtain a tight result, establishing that

MaxPN (FIFO,LRU) = 1
2 − 1

2k , where the upper bound is the harder result.

Lemma 7. For the path access graph PN ,

MaxPN (FIFO,LRU) ≤
1

2
−

1

2k
.

Proof Consider any request sequence I. We divide the sequence up into phases

as follows (these are not k-phases). Initially, define a direction by where LRU

makes its kth fault compared with its cache content. To be precise, note that

LRU’s cache content forms a connected subpath. When it faults, it is on a page

immediately next to one of the ends of this subpath. Without loss of generality,

we assume that the path is horizontal and that the fault happens going to the

right on the path. Left and right are now well defined, and we will use the

term “fault to the right” (similar for left) to mean that LRU faults on the page

immediately next to the rightmost page on the path which is currently in LRU’s

cache.

We start the first phase with the first request and later explain how subse-

quent phases are started. In all the phases, we start to the left. As usual, the

first phase is different from the rest. In the first phase, we get, by definition,

k − 1 faults, after which we get the kth fault going to the right.

In all phases, except the first, LRU has the first k − 1 distinct pages that

will be requested during that phase in cache. In all phases, the first fault by

LRU in the phase, after having processed the first k− 1 distinct pages, is to the

right. We maintain this as an invariant that holds at the start of any phase.

The exception in the first phase, adding an extra k − 1 faults to the cost of

LRU as compared with the analysis below of all other phases, will not influence
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the result in the limit for the length of the request sequence going towards

infinity.

We want to analyze a phase where LRU faults to the right before it faults

to the left again. These faults to the right may not appear consecutively.

There may be some faults in a row, but then there may be hits and then

faults again, etc. Thus, assume that there are m maximal subsequences of

requests to the right where LRU faults—all of this before LRU faults going to

the left again. Assume further that these maximal subsequences of requests give

rise to s1, s2, . . . , sm faults, respectively, where, by definition, m ≥ 1, and let

s = Σm
i=1si.

Eleft Eright

k+t
︷ ︸︸ ︷

s
︷ ︸︸ ︷

s1 s1s2 sm

For now, we assume that for all i, si < k. Thus, LRU moves left and right at

least m times; maybe more times where it does not give rise to faults. Since it

does not fault going to the left during these turns, the faults are to pages further

and further to the right. Let Eright denote the extreme rightmost position it

reaches during these faults to the right.

When LRU faults again to the left after having processed Eright, we consider

the leftmost node Eleft, where LRU faults after the s faults described above,

but before it faults to the right again. We end the phase with the first request

to Eleft after the s faults. We define subsequent phases inductively in the same

way, starting with the first request not included in the previous phase, possibly

leaving an incomplete phase at the end.

We now consider the costs of the algorithms and the length of the sequence

per phase. LRU faults s times going to the right during the m turns in the

phase. Additionally, LRU must fault at least t times going from Eright to Eleft,
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where t is defined by there being k+ t nodes between Eleft and Eright, including

both endpoints. This sums up to at least s+ t faults.

For FIFO, we postpone the discussion of the first s1 distinct pages seen in

a phase. Just to avoid any confusion, note that these pages are immediately to

the right of Eleft (the endpoint of the previous phase) and thus not the pages

that LRU faults on. After that, consider the maximal subsequence of at most k

distinct pages. This subsequence starts with the (s1+1)th distinct request (the

last request to it before the s2 faults) and continues up to, but not including

the first request that LRU has one of its s2 faults on. We know that there are

at most k pages there, because LRU only faults s1 times there. Assume that

FIFO faults f1 times on this subsequence. Since FIFO is conservative, f1 ≤ k.

We define more such subsequences repeatedly, the (m− 1)st of these ending

just before LRU’s first fault of the sm faults, and the mth including the sm

faults and k of the k + t nodes before we reach Eleft. Finally, we return to the

question of the first s1 distinct pages seen in the phase. These overlap with

the “t pages” from the previous phase; otherwise we would not have started the

phase where we did. If FIFO faults on one of these pages when going through

the t pages in the previous phase, it will not fault on them again in this phase.

Thus, we only have to count them in one phase, and choose to do this in the

previous phase. In total, FIFO faults at most (Σm
i=1fi) + t times, and for all i,

fi ≤ k.

The difference between the cost of FIFO and LRU is then at most (Σm
i=1fi)+

t− (s+ t) = (Σm
i=1fi)− s = (Σm

i=1(fi − 1))− (s−m).

From the analysis of FIFO above, knowing that on a subsequence of length

at most k, FIFO can fault at most once on any given page, if it faults fi times,

the subsequence has at least fi distinct pages. Given that the subsequence starts

at the left end of the “si pages” and ends at the right end of the “si pages”, all

pages that FIFO faults on, except possibly the leftmost, must be requested at

least twice, giving at least 2fi − 1 requests. So, the length of the sequence is at

least (Σm
i=1(2fi − 1)) + t.

We now equip each variable with a superscript denoting the phase number,
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letting mj denote the number of maximal subsequences of requests to the right

where LRU faults in the jth phase, letting f j
i denote the number of faults for

the ith of these maximal sequences in the jth phase, and letting tj denote the

number of pages from Eleft to Eright in the jth phase minus k, i.e., Eright −

Eleft +1− k. We now sum up over all phases to establish a lower bound on the

length of the request sequence.

First, the total length, L, is at least

L ≥ Σj(Σ
mj

i=1(2f
j
i − 1)) + tj = Σj(Σ

mj

i=12f
j
i )−mj + tj .

Since s expresses how far we move to the right and t how far we move to the

left, and the whole path has a bounded number of nodes N , we have that

Σjt
j ≥ Σjs

j −N . Thus, L ≥ (Σj(Σ
mj

i=12f
j
i )−mj + sj)−N .

I has a number of complete phases and then some extra requests in addition

to that. There must exist a fixed constant c independent of I such that the cost

of FIFO on the extra part of any sequence is bounded by c. This follows since

there is a limit of N on how far requests can move to the right. So if requests

never again come so far to the left that LRU faults, all requests thereafter are

to only k pages. This added constant can also take care of the initial extra cost

of k − 1. Since we are just using a lower bound on the sequence length, we can

ignore the length of a possibly incomplete phase at the end. Thus,

FIFO(I)− LRU(I)

|I|
≤

c+ΣjΣ
mj

i=1(f
j
i − 1)− (sj −mj)

−N +Σj(Σmj

i=12f
j
i )−mj + sj

≤
c+ΣjΣ

mj

i=1(f
j
i − 1)

−N +ΣjΣmj

i=12f
j
i

≤
c+Σjm

j(k − 1)

−N +Σjmj2k

=
c+ (k − 1)Σjm

j

−N + 2kΣjmj

The second inequality follows since sj ≥ mj , and the third inequality follows

because
f
j
i
−1

2fj
i

≤ 1
2 and k ≥ fi implies that

f
j
i
−1

2fj
i

≤ k−1
2k .
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For sequences where the number of phases does not approach infinity, as ar-

gued above, FIFO’s cost will be bounded. For the number of phases approaching

infinity, limj→∞
c+(k−1)Σjm

j

−N+2kΣjmj = k−1
2k = 1

2 − 1
2k , which implies the result.

Now, for this proof, we assumed that si < k. If si ≥ k, we simply terminate

the phase after the processing of the si requests that LRU faults on, and continue

to define phases inductively from there. All the bounds from above hold with

t = 0 and the observation that FIFO will not fault on the first s1 requests in the

next phase. The direction of the construction is now reversed. In this process,

whenever we reverse the direction as above, we also rename the variable s to t

and t to s, such that s continues to keep track of movement to the right and t

of movement to the left, and the inequality Σjt
j ≥ Σjs

j −N still holds. ✷

Lemma 8. For the path access graph PN ,

MaxPN (FIFO,LRU) =
1

2
−

1

2k
.

Proof The upper bound was shown in Lemma 7. Consider the family of

sequences In = 〈1, 2, . . . , k, k + 1, k, k − 1, . . . , 2〉n. In each iteration, except the

first, LRU faults twice (on pages 1 and k + 1), whereas FIFO faults on pages 1

through k+1 in every iteration. So on this family, limn→∞
FIFO(In)−LRU(In)

|In|
=

k−1
2k = 1

2 − 1
2k , and the maximum must be at least that large. ✷

Since LRU is optimal on paths, this gives :

Theorem 4. IPN [FIFO,LRU] = [0, 1
2 − 1

2k ], and LRU dominates FIFO on

paths.

Note that FARPN and LRU perform identically on paths, PN , so FARPN

also dominates FIFO with the same interval.

5. Star Graphs

We let SN denote a star graph with N vertices. A star graph is a tree, with

a central vertex, s, which is adjacent to N − 1 leaves. We again assume that

N ≥ k + 1.
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Lemma 9. If a request sequence I respecting the star access graph SN contains

b complete k-phases, then FIFO incurs at least b +
⌊
b−3
k

⌋
+ k faults on I. For

k > 1, FIFO(I) ≥ b+ b
k
+ k − 2.

Proof This proof is similar to the one presented for Lemma 1. The main

difference is that with FIFO’s eviction strategy, the central vertex of SN , denoted

by s, will sometimes be evicted and, thus, give rise to more faults during the

course of FIFO serving I. We lower bound the number of times this happens as

follows.

Since I respects SN , every alternate request in I is for the central vertex s.

Thus, one of the first two requests in I is for s. These two possibilities give rise

to two cases, which we will analyze separately. As explained earlier, the first

phase and the first request of the second phase together give rise to k+1 faults.

If s is the first page requested in I, then FIFO will evict s when serving the

first request in Phase 2. Since the next page requested is s, FIFO will incur

fault number k + 2 at that request. After that fault, s is the most recent page

to be added to FIFO’s cache and, thus, will be evicted after k faults. Since

FIFO must fault at least once in each phase, it must fault on s in phase k + 2

at the latest. There are b − 2 complete phases after the second one, and this

pattern will repeat itself for the rest of the sequence. Thus, the number of faults

incurred by FIFO is at least k + 2 + b− 2 +
⌊
b−2
k

⌋
= b+ k +

⌊
b−2
k

⌋
.

If s was the second page to be requested in I, then fault number k + 2 will

lead to the eviction of s by FIFO. This will occur no later than the start of the

third phase of I. Thus, FIFO’s fault number k+3 will be due to s, and, counting

as above, FIFO must fault at least k+ 3+ b− 3 +
⌊
b−3
k

⌋
= b+ k+

⌊
b−3
k

⌋
times

on I. Therefore, for either case, we have shown that FIFO(I) ≥ b+
⌊
b−3
k

⌋
+ k.

✷

Lemma 10. For the star access graph SN ,

MinSN (FIFO,LRU) = −
1

2
+

1

2(k − 1)
+

1

2k(k − 1)
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Proof Consider an arbitrary sequence I respecting the star access graph, and

consider its division into k-phases. Since the central vertex occurs after each

request to a leaf, each k-phase, except the last, must contain requests to k − 1

different leaves, and must be of length at least 2(k − 1). Suppose a sequence

I has b k-phases, not counting the first empty phase. Then, there are at least

b − 1 complete phases, so |I| ≥ 2(k − 1)(b − 1) + 1, and, by Lemma 9, since

k ≥ 2, FIFO(I) ≥ b + b
k
+ k − 3. LRU faults only on the leaves and at most

once in each phase, so LRU(I) ≤ (k−1)(b−1)+k. Thus, FIFO(I)−LRU(I) ≥

b + b
k
− 3 − (k − 1)(b − 1) = −b(k − 1) + b + b

k
+ (k − 4). By Lemma 3,

MinSN (FIFO,LRU) ≥ − 1
2 + 1

2(k−1) +
1

2k(k−1) .

We show that this bound is tight by analyzing the following sequence.

In = 〈P, Jn〉, J = B1, . . . , Bk−1

P = 〈1, s, 2, s, . . . s, k − 2, s, k − 1, s, k − 2, s, . . . s, 2, s, 1, s〉

Bi = 〈k, s, k − 1, s, . . . , s, 1, s〉, for 1 ≤ i ≤ k − 1

We note that page k does not appear in subsequence P and that all the Bi

subsequences are identical (we use the index for reference). Since |Bi| = 2k, the

sequence length is |In| = 2(2k − 3) + 2k(k − 1)n. LRU starts sequence B1 with

a fault on the request to page k, thereby evicting page k − 1. LRU then faults

on the request to page k− 1 and evicts page k− 2. This repeats and ends with

the eviction of page k at the request to page 1 such that page k− 1 is the least

recently used page. Thus, LRU faults everywhere except on the central vertex

s, which is never evicted by LRU. Since LRU’s cache configuration—content as

well as the relative ordering of the recency of pages—is the same at the end of

subsequence B1 as it was at the end of subsequence P , the same pattern must

be repeated in each subsequence Bi. Thus, LRU(In) = k + (k − 1)kn.

FIFO has three faults in subsequence B1: On the request to page k, where

page 1 is evicted, and at the last two requests of subsequence B1. So FIFO

ends subsequence B1 with page 2 being outside its cache. From there onwards,

FIFO faults exactly once in each of the subsequences Bi, 2 ≤ i ≤ k − 1, at the

request to page i, on which it evicts page i + 1. Therefore, FIFO ends each
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subsequence J with page k outside its cache and, hence, the above described

fault and eviction pattern is repeated in every subsequence J . This gives the

cost FIFO(In) = k + (k + 1)n, and limn→∞
FIFO(In)−LRU(In)

|In|
equals

lim
n→∞

k + (k + 1)n− (k + (k − 1)kn)

2(2k − 3) + 2k(k − 1)n
= −

1

2
+

k + 1

2k(k − 1)

Thus, MinSN (FIFO,LRU) ≤ − 1
2+

k+1
2k(k−1) = − 1

2+
1

2(k−1)+
1

2k(k−1) , and equality

holds. ✷

Lemma 11. For the star access graph SN ,

MaxSN (FIFO,LRU) =
1

4
+

1

8k − 12
.

Proof We give a sequence respecting SN for N ≥ k+1 giving rise to the stated

ratio. Let

In = 〈P,Bn〉, where P = 〈1, s, 2, s, . . . , s, k − 2, s, k − 1, s〉 and B is

















k − 2, s, . . . s, 2, s, 1, s, k, s, 1, s, 2, s, . . . s, k − 2, s

k − 3, s, . . . s, 1, s, k, s, k− 1, s, k, s, 1, s, . . . s, k − 3, s

k − 4, s, . . . s, k, s, k − 1, s, k− 2, s, k − 1, s k, s, . . . s, k − 4, s
...

... . . .
...

...
...

...
...

...
...

...
...

...
... . . .

...
...

...

k, s, . . . s, 4, s, 3, s, 2, s, 3, s, 4, s, . . . s, k, s

k − 1, s, . . . s, 3, s, 2, s, 1, s, 2, s, 3, s, . . . s, k − 1, s

















Writing the sequence B like this is just to give an overview. The sequence is

the concatenation of all the rows from top to bottom.

The column in bold indicates the requests that are faults for LRU. LRU

faults on exactly one request in every row and so we have LRU(In) = k + kn.

FIFO faults on k distinct pages in each row, starting with the request at which

LRU faults. Thus, FIFO(In) = k + k2n. Furthermore, |In| = 2(k − 1) + (4k −

6)kn. Since

lim
n→∞

FIFO(In)− LRU(In)

|In|
= lim

n→∞

k + k2n− (k + kn)

2(k − 1) + (4k − 6)kn
=

k − 1

4k − 6
,

we have that MaxSN (FIFO,LRU) ≥ k−1
4k−6 = 1

4 + 1
8k−12 .
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To prove a tight upper bound on MaxSN (FIFO,LRU), we consider an ar-

bitrary sequence I. We can assume without loss of generality that I does not

contain any consecutive requests to the same page. This is because they give

rise to hits for both algorithms and they do not change the future behavior of

any of the algorithms. Thus, their difference in cost is unaffected. At the same

time, repeated requests can only increase the length of the sequence, making

the ratio lower.

We view sequence I as a partition of k-blocks with respect to FIFO, denoted

by B1, . . . , Bn, ignoring the first empty block. Since both FIFO are LRU are

conservative, each block, excluding perhaps the last one, must have requests to

at least k distinct pages. The access graph is a star, so each request must be

followed by a request to page s. The number of faults incurred by LRU in block

Bi is denoted by αi, where α1 = k. From the maximality of the blocks Bi, each

block must have at least one fault for LRU. Since page s is never evicted from

the cache by LRU, we have 1 ≤ αi ≤ k − 1, for i > 1.

We now find a lower bound on the length of the sequence Bi, first establishing

a certain number of hits by FIFO. Consider a leaf request r that is a fault for

FIFO, but a hit for LRU. Since it is not a fault for LRU, there must have been

a request r′ to the same page in the last k− 1 distinct page requests. If r′ were

a fault for FIFO, then r would have to be a hit. Since it is not, r′ must be a

hit for FIFO. By definition, LRU incurs αi faults on the sequence Bi. Recall

that there are at least k − 1 leaf requests where FIFO faults. Since it cannot

fault twice on the same page in a k-block, these k − 1 faults are on distinct

pages. Thus, there are at least k − 1 − αi distinct leaf requests where LRU

has a hit while FIFO faults. As just argued, for each such request r, we can

identify a request r′ where FIFO has a hit, ensuring at least k − 1− αi unique

hits for FIFO. The uniqueness follows from the fact that even though the hit we

establish for FIFO could be in the previous block, Bi−1, it cannot be counted

twice, since there are no more faults on that page after r′ in Bi−1. Thus, if a hit

r′ for FIFO in Bi−1 was identified from a request r in Bi, where FIFO faulted,

then there is no such fault for FIFO in Bi−1 from which we identify r′ as a hit
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we can count.

The faults and the hits, together with the requests to s following each of

them, gives us at least 2(k − 1) + 2(k − 1 − αi) requests. Since the terms not

involving n disappear in the limit, the costs as well as the length of the first

block, as well as a possibly incomplete final block, will not affect the result, and

we leave them out in the fraction below.

MaxSN (FIFO,LRU) ≤ max
α2,...,αn

αi≥1

{ ∑n

i=2 k − αi
∑n−1

i=2 (4k − 4− 2αi)

}

This is maximized for αi = 1 for 2 ≤ i ≤ n. Hence, MaxSN (FIFO,LRU) ≤ k−1
4k−6 .

✷

The algorithms FARSN and LRU behave identically on star graphs, SN .

Neither of them ever evicts the central vertex. We state the result for both LRU

and FARSN in the main theorem, though FARSN is not directly mentioned in

the lemmas and proofs.

Theorem 5. For the star access graph SN and A ∈ {LRU,FARSN },

ISN [FIFO,A] =

[

−
1

2
+

1

2(k − 1)
+

1

2k(k − 1)
,
1

4
+

1

8k − 12

]

Proof This follows directly from Lemmas 10 and 11. ✷

In [13], it was shown that Max(FIFO,LRU) ≥ k−1
2k−1 = 1

2 −
1

4k−2 . The above

result shows that for star access graphs, that bound can be decreased by a factor

of approximately two.

Since LRU and FARSN perform identically on stars, SN ,

MinSN (FARSN ,LRU) = MaxSN (FARSN ,LRU) = 0.

The star access graph is another example of where FWF performs poorly

compared with the other algorithms.

Lemma 12. For the star access graph SN , and any algorithm B,

MaxSN (FWF,B) ≤
1

2
.

Furthermore, MaxSN (FWF,FIFO) ≤ 1
2 − 1

2k(k−1) .

28



Proof Given any sequence I in SN , it can be viewed as a partition of k-phases.

Since it is a star, each complete phase must be of length at least 2(k − 1), and,

by Lemma 1, B must incur at least one fault for each phase. Since FWF can

incur at most k faults in each phase, if there are n complete phases in I, then

by Lemma 2, FWF(I)−B(I)
|I| ≤ n(k−1)

2n(k−1) =
1
2 . Hence, MaxSN (FWF,B) ≤ 1

2 .

For FIFO, by Lemma 9, FIFO(I) ≥ n + n
k
+ k − 2. From the upper

bound on FWF, we get that FWF(I) ≤ nk + k − 1, we have FWF(I)−FIFO(I)
|I| ≤

n(k−1)−(n
k
+1)

2n(k−1) . By Lemma 2, MaxSN (FWF,FIFO) ≤ 1
2 − 1

2k(k−1) . ✷

Theorem 6. For the star access graph SN , and A ∈ {LRU,FARSN },

ISN [FWF,A] =

[

0,
1

2

]

and ISN [FWF,FIFO] =

[

0,
1

2
−

1

2k(k − 1)

]

.

Proof By Lemma 6,

MinSN (FWF,LRU) = MinSN (FWF,FIFO) = MinSN (FWF,FARSN ) = 0.

Consider the sequence In = 〈P, (B1, B2)
n〉, where P = 〈1, s, 2, s, . . . , s, k −

2, s, k − 1, s〉,

B1 = 〈k, s, k − 1, s, . . . , s, 2, s〉, and B2 = 〈1, s, 2, s, . . . , s, k − 1, s〉

Subsequences B1 and B2 have requests to k distinct pages, excluding the pages

1 and k, respectively.

LRU faults on the first request in each subsequence Bi. FWF flushes its

cache at the start of each subsequence Bi. So |In| = 4(k − 1)n + 2(k − 1),

LRU(In) = 2n+ k, and FWF(In) = 2kn+ k. So limn→∞
FWFSN (In)−LRU(In)

|In|
=

2(k−1)
4(k−1) =

1
2 and MaxSN (FWF,LRU) ≥ 1

2 .

Let In = 〈P,Bn〉, where P = 〈1, s, 2, s, . . . , s, k − 2, s, k − 1, s〉 and

B =

















k s k − 1 · · · · · · 2 s

1 s k · · · · · · 3 s

2 s 1 · · · · · · 4 s
...

...
...

...
...

...
...

k − 2 s k − 3 · · · · · · k s

k − 1 s k − 2 · · · · · · 1 s
















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The ith row is i-free. Hence, each row is of length 2(k−1) and |In| = 2(k−1)+

2(k − 1)kn. Since FIFO only faults on the first request in each row, except

the second row where it faults twice (on 1 and s), FIFO(B) = k + 1 and

FIFO(In) = (k+1)n+k. Since FWF flushes its cache at the start of each row, it

incurs k faults in each row. Therefore, FWF(B) = k2 and FWF(In) = k2n+ k.

Thus, limn→∞
FWF(In)−FIFO(In)

|In|
= k(k−1)−1

2(k−1)k = 1
2 − 1

2k(k−1) .

Since FARSN and LRU behave identically on SN , by Lemma 12, we have

proven all three identities. ✷

6. Cycle Graphs

We consider graphs consisting of exactly one cycle, containing N > k ver-

tices. We assume that N > k, since otherwise all pages of the cycle fit in cache.

Thus, none of the algorithms will have to ever evict a page, and results become

trivial.

For this section, it is convenient to work modulo N when indexing pages on

the cycle. Thus, if p < 1 or p > N , we let p denote the page ((p−1) mod N)+1.

We will not mention this again later in the proofs to follow.

It is easy to see that, according to relative interval analysis, FWF performs

as poorly compared to LRU on cycles as it does on complete graphs.

Theorem 7. For the cycle access graph CN ,

ICN [FWF,LRU] =

[

0, 1−
1

k

]

Proof The sequence, In = 〈1, 2, . . . , k, k + 1, k, . . . , 2〉n, respecting CN , gives

the right endpoint in conjunction with Lemma 4. The left endpoint is given by

Lemma 6. ✷

In addition, these exist sequences respecting the cycle graph, where FIFO

can perform as poorly compared to LRU as it can on complete graphs. Recall

that for finite paths, though LRU is optimal, it cannot gain quite this significant

an advantage over FIFO.
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Lemma 13. For the cycle access graph CN ,

MaxCN (FIFO,LRU) ≥
1

2
−

1

4k − 2

Proof Let In = 〈S0, S1, ..., Sn〉, where

Si = 〈i+ k, i+ k − 1, . . . , i+ 2, i+ 1, i+ 2, . . . , i+ k − 1, i+ k〉.

Clearly, FIFO(S0) = LRU(S0) = k.

In processing S1, LRU only faults on the request to 1 + k, where it evicts

page 1, which is not requested in S1. In general, LRU faults only on the first

request in each sequence Si, evicting page i, which is not requested in Si. Hence,

LRU(In) = k + n.

FIFO faults on the first request in S1, evicting k, which is requested next.

At that request page k−1 is evicted, leading to a fault on the following request,

etc. In total, FIFO faults k times on S1 and pages are brought into cache in

the ordering i+ k through i+ 1. Thus, in general, when the processing of Si+1

starts, the situation repeats. Hence, we have FIFO(In) = k + kn. The length

of the sequence is |In| = (2k − 1)(n+ 1). So,

MaxCN (FIFO,LRU) ≥ lim
n→∞

FIFO(In)− LRU(In)

|In|

= lim
n→∞

k + kn− (k + n)

(2k − 1)(n+ 1)

=
k − 1

2k − 1
=

1

2
−

1

4k − 2

✷

The following sequences were used in [13, Theorem 7] to show that [−1 +

1
k
, 1
2 − 1

4k−2 ] ⊆ I[FIFO,LRU].

Im = 〈P,Bm〉, where P = 〈1, 2, . . . , k − 1, k〉, and B is














k − 1 k − 2 · · · 2 1 k+ 1 1 2 · · · k − 1

k − 2 k − 3 · · · 1 k + 1 k k + 1 1 · · · k − 2

k − 3 k − 4 · · · k + 1 k k− 1 k k + 1 · · · k − 3
...

...
...

...
...

...
...

...
...

...

k k − 1 · · · 3 2 1 2 3 · · · k













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IM = 〈P,BM 〉, where P = 〈1, 2, . . . , k − 1, k, k − 1, . . . , 1〉, and

B =

















k+ 1 k k − 1 · · · 3 2

1 k + 1 k · · · 4 3

2 1 k + 1 · · · 5 4
...

...
...

...
...

...

k− 1 k − 2 k − 3 · · · k k + 1

k k − 1 k − 2 · · · 2 1

















These sequences respect Ck+1, the cycle access graph on k + 1 vertices.

Hence, that bound is applicable to cycles of length k + 1 as well.

Proposition 1. For the cycle access graph Ck+1,

ICk+1 [FIFO,LRU] = [−1 +
1

k
,
1

2
−

1

4k − 2
].

Proof This follows from the results in [13], using the sequences above which

respect the cycle, and Lemma 5. ✷

We now generalize these results to values of N = k+ r, where 1 ≤ r ≤ k−1.

Note that these results become uninteresting if r ≥ k, since the bound then

does not imply that there are sequences where FIFO does better than the other

algorithm.

Lemma 14. For the cycle access graph CN , where N = k + r, 1 ≤ r < k,

MinCN (FIFO,LRU) ≤ −1 + r
k
and MinCN (FIFO,FWF) ≤ −1 + r

k

Proof We define Jn = 〈P,Bn〉, where P = 〈1, 2, . . . , k, . . . N, 1, 2, . . . , r − 1〉

and B is defined by

B =














r r − 1 · · · 1 N N − 1 · · · 2r + 2 2r + 1

2r 2r − 1 · · · r + 1 r r − 1 · · · 3r + 2 3r + 1

3r 3r − 1 · · · 2r + 1 2r 2r − 1 · · · 4r + 2 4r + 1
...

...
...

...
...

...
...

...
...

N N − 1 · · · k + 1 k k − 1 · · · r + 2 r + 1













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The vertical line is merely for reference in the proof.

Let R denote the number of rows in B. Note that R is LCM(N,r)
r

, where

LCM(N, r) denotes the least common multiple of N and r. There are r columns

before and k− r columns after the vertical line. Thus, |Jn| = N + r− 1+ kRn.

Observe that the sequence “turns” exactly once, namely at the first request

after P . There are k hits following P for LRU. After that, the sequence moves

around the cycle, so LRU faults on all of these requests, giving a total cost

of LRU(Jn) = N + r − 1 + kRn − k. Note that FWF faults on the same

requests as LRU, except that it could have fewer hits immediately following P ,

so FWF(Jn) ≥ LRU(Jn).

For FIFO, when processing 〈k+1, . . . , N〉 in P , it evicts the pages {1, . . . , r},

and then when processing 〈1, 2, . . . , r−1〉, it evicts the pages {r+1, . . . , 2r−1}.

Then, at the very first request of B, it incurs the next fault and evicts page 2r.

After that, the set of pages outside its cache is {r + 1, . . . , 2r}, and FIFO does

not fault again in the first row of B. FIFO then faults on the first r requests in

the second row, evicting {2r+1, . . . , 3r}. This pattern continues, so FIFO only

faults on the first r entries in each row of B. Therefore, FIFO(Jn) = N + rRn.

For A ∈ {LRU,FWF}, this gives

MinCN (FIFO,A) ≤ lim
n→∞

FIFO(Jn)− LRU(Jn)

|Jn|

= lim
n→∞

N + rRn− (N + r − 1 + kRn− k)

N + r − 1 + kRn

=−
k − r

k
= −1 +

r

k
.

✷

Theorem 8. For the cycle access graph CN , where N = k + r, 1 ≤ r < k,
[

−1 +
r

k
,
1

2
−

1

4k − 2

]

⊆ ICN [FIFO,LRU] ⊆

[

−1 +
1

k
,
1

2
−

1

4k − 2

]

Proof The left-most containment follows from Lemmas 14 and 13, and the

right-most from Lemma 5. ✷

We define r = N−k and use this definition in the following results involving

FAR on cycles. For r ≥ k, we have a cycle of length at least 2k, so the cache
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page that is farthest from the current fault is at least k pages away, in either

direction. This is why LRU and FARCN evict the exact same page at every

fault, making them identical when N ≥ 2k, so only the range 1 ≤ r < k is

interesting. Thus, we assume that 1 ≤ r < k in the following.

The exact results to be presented sometimes depend on the relationship

between k and N , e.g., whether or not r divides N (denoted r | N). To express

many of the results, we need the following term that, for brevity, we will simply

denote Xr:

Xr = r(x− 1) +

⌈
N

2x

⌉

, where x =

⌊

log
N

r

⌋

In the following lemma, we analyze the behavior of FARCN on the simplest

sequence exploiting the cycle structure.

Lemma 15. For FARCN and the sequence In = 〈1, 2, . . . , k, . . . , N〉n in CN ,

each k-phase, except the first and possibly the last, has Xr faults, and

⌊
nN

k

⌋

Xr + k −Xr ≤ FARCN (In) ≤

⌊
nN

k

⌋

Xr + k − 1.

Proof In the given sequence, as in any other sequence, the first k-phase con-

tributes k faults. The first phase change in In occurs on page k + 1, at which

all the other N − 1 pages are unmarked. Given that the sequence goes around

the cycle n times, without turning, the properties discussed about faults in the

second phase holds for all subsequent ones, with the possible exception of the

last which may contain just one fault. Consider the fault incurred at the phase

change at page k + 1. The page evicted lies in the middle of the unmarked

segment of pages [k + 2, . . . , N, 1, . . . , k]. Following this, there are r − 1 more

faults before the next hit. Each fault leads to the eviction of the page adjacent

to the most recently evicted page, the evictions moving in the same direction in

which the faults are encountered.

In each phase, we refer to the first r faults as the first batch, faults numbered

r+1 through 2r as the second batch, and so on. If there are i batches of faults

in one k-phase, then the first i − 1 batches will contribute r faults each, and

the last batch will have at least one and at most r faults. For the ith batch, we
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denote the length of the unmarked segment after marking the first page in the

batch by di, and the distance to the page evicted at the first fault in the ith

batch by Di. These distances are measured in the direction in which the faulting

page was approached. Therefore, d1 = N − 1 and for i ≥ 1, di+1 = di − Di.

Since LRU is used to break ties, if for some i, di is even, then the closer of the

two midpoints is evicted at the first fault of the ith batch. Thus, we have the

following dependencies:

For i ≥ 1, Di = ⌈di/2⌉ and di+1 = di −Di = ⌊di/2⌋

From the recurrence di = ⌊di−1/2⌋, we obtain the following relation:

For i ≥ 1, di =

⌊
di−1

2

⌋

=

⌊
1

2

⌊
di−2

2

⌋⌋

=

⌊
di−2

22

⌋

=

⌊
d1
2i−1

⌋

=

⌊
N − 1

2i−1

⌋

A k-phase ends when all the pages in the cache are marked and the next request

will be a fault. At any given instant, the marked segment is a path in CN . This

implies that a phase ends when the r pages outside the cache constitute the

unmarked segment, and one of those unmarked pages is requested. Therefore,

if there are i batches in a k-phase, then di + 1 ≤ 2r. Stated differently, the

smallest value of i for which di+1 ≤ 2r gives the number of batches in a phase.

If there is an i such that di+1 = 2r, then the phase has i batches contributing

r faults each. Otherwise, if di + 1 < 2r, then the first i − 1 batches contribute

r faults each and the last batch contributes fewer than r.

It follows from the above that di + 1 =
⌈

N
2i−1

⌉
. Solving

⌈
N

2i−1

⌉
≤ 2r gives

i − 1 =
⌊
log N

r

⌋
batches with r faults each and the last with y =

⌈
N

2i−1

⌉
− r

faults. Therefore, each phase in In, excluding the first and perhaps the last,

contains r(i − 1) + y faults. There are
⌊
nN
k

⌋
complete phases in sequence In

and if the last phase is not complete, that is, k ∤ nN , then the last phase can

contain at most r(i − 1) + y − 1 faults. Thus, we obtain the following relation

for FARCN serving In:

⌊
nN

k

⌋

(rx+ y) + c ≤ FARCN (In) ≤

⌊
nN

k

⌋

(rx+ y) + rx+ y − 1 + c,

where x =
⌊
log N

r

⌋
, y =

⌈
N
2x

⌉
− r and c = k − (rx+ y). ✷
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The following lemma analyzes the behavior of FARCN when the cycle struc-

ture is not used in the request sequence. Thus, the cycle access graph is used

as a path access graph. However, FARCN is oblivious to this and uses distances

involving the non-utilized edge in the graph, leading to non-optimal results.

From now on, whenever needed , we use N̂ to denote N , if N is even, and

N − 1, otherwise.

Lemma 16. For FARCN and the sequence In = 〈1, 2, . . . , k, . . . , N − 1, N,N −

1, . . . , 2〉n in CN , each k-phase, except the first (which has k) and the last (which

has r), has rx+ y faults, where x =
⌊

log N̂
r

⌋

and y =
⌊

N̂
2x

⌋

− r.

Proof The first k-phase in sequence In has k faults. In any k-phase of In,

excluding the first, the first set of r faults is called the first batch, faults numbered

r+ 1 through 2r is called the second batch, and so on. If there are i batches of

faults in one k-phase, then the first i − 1 batches will contribute r faults each,

and the last batch will have at least one and at most r faults.

As before, the length of the unmarked segment after marking the first page

of the ith batch is denoted by di and the page located Di pages away is evicted

at that fault. All these distances are measured in the direction in which the

first fault of the batch was encountered. Note that within each iteration within

In, there are two phase changes, occurring first at k + 1 and then at r. In the

following discussion, we explain the behavior of FARCN in one iteration within

In. Since the same properties hold for others, that will lead to a bound for

FARCN (In).

At the end of a phase and right before the start of the next, FARCN ’s

cache is connected. Hence, the r pages outside the cache also form a connected

component, implying that the sets of pages outside FARCN ’s cache immediately

before the phase changes at page k + 1 and page r are {k + 1, . . . , N} and

{r, r − 1, . . . , 1}, respectively.

For the phase changes at page k + 1 and page r, the faulting request is

approached from page k and page r + 1 in the access graph, respectively. For

either case, we have d1 = N − 1 and as in Lemma 15, the page located D1 =
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⌈d1/2⌉ vertices away is evicted at the first fault in the phase. The next r − 1

faults lead to eviction of pages in the same direction in which the faults are

encountered. Unlike in the previous lemma, the sequence considered here turns

back at the end of the first batch and so the second batch of faults start at the

most recently evicted page.

Phase change at page k+1: The first fault in the second batch occurs when

the sequence reaches D1, which is also the first page marked in the batch. The

unmarked segment at that instant is {D1 − 1, D1 − 2, . . . , 1}.

Phase change at page r: Analogously to the previous case, the second batch

of faults starts when the sequence reaches N −D1 + 1. The unmarked segment

at that instant is
[

N −D1 + 2, N −D1 + 3, . . . , N −D1 + r, . . . , k, k + 1, . . . , N − 1, N
]

.

In either case, the length of the unmarked segment is d2 = D1 − 1. Note

that for both locations of phase change, the change in direction of the sequence

right after the first batch affects the resolution of ties in subsequent batches. In

fact, if d2 is even, then the farther of the two midpoints, measured in the same

direction as the fault, is less recently requested than the other. Therefore, for

each phase, we have the following correspondence:

D2 =







d2/2 + 1, if d2 is even

⌈d2/2⌉ , if d2 is odd

Since, in either case, from the second batch onwards, the sequence does not

change direction for the rest of the phase, all subsequent ties within the phase

are resolved in the manner of the second batch. Therefore, in any given phase,

from the second batch onwards, if the unmarked segment is even, the farther

of the two midpoints, measured in the same direction in which the fault was

approached is evicted in favor of the other. This yields the following set of

relations: d1 = N − 1, D1 = ⌈d1/2⌉, d2 = D1 − 1, and for i ≥ 2,

Di =







di/2 + 1, if di is even

⌈di/2⌉ , if di is odd
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and

di+1 = di −Di =







di/2− 1, if di is even

⌊di/2⌋ , if di is odd

This implies that for all i ≥ 2, di+1 =
⌊
di−1
2

⌋
.

We now establish the following claim. Recall that N̂ denotes N , if N is even,

and N − 1, otherwise.

Claim: For i ≥ 3, we have di + 1 =
⌊

D1

2i−2

⌋
=
⌊

N̂
2i−1

⌋

.

Since D1 =
⌈
N−1
2

⌉
, using the new notation, D1 = N̂

2 .

We proceed to show by induction that for i ≥ 3, di + 1 =
⌊

D1

2i−2

⌋
.

For the base case, i = 3, we have

d3 =

⌊
d2 − 1

2

⌋

=

⌊
(D1 − 1)− 1

2

⌋

=

⌊
D1

2

⌋

− 1.

Hence, d3 + 1 =
⌊

D1

23−2

⌋
.

Now, we assume that the induction hypothesis holds up to some i ≥ 3.

For the induction step, we prove the relation dt+1 =
⌊
dt−1
2

⌋
, by applying the

hypothesis for dt in the last equality below.

dt+1 =

⌊
dt − 1

2

⌋

=

⌊
1

2
(dt + 1)− 1

⌋

=

⌊
1

2

⌊
D1

2t−2

⌋⌋

− 1

Therefore, dt+1 + 1 =
⌊

D1

2t−1

⌋
, and the claim is proved.

As was the case in the previous lemma, the last batch starts when, for

the first time in the current phase, the length of the unmarked segment is no

greater than 2r, i.e., the smallest value i for which di+1 ≤ 2r gives the number

of batches in the phase. Solving
⌊

N̂
2i−1

⌋

≤ 2r gives i− 1 =
⌊

log N̂
r

⌋

. Therefore,

the first i−1 batches in a k-phase have r faults each. In the last batch, though,

there are exactly
⌊

N̂
2i−1

⌋

− r faults.

Right before the start of the ith batch, the length of the unmarked segment

is di+1. The phase must end when the length of the unmarked segment becomes

r. Therefore, di + 1− r is an upper bound on the number of faults incurred in

the ith batch. ✷
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Note that in the above proof, making the sequence go only up to some other

value between k+1 and N−1, instead of up to N , would never give more faults.

Lemma 17. For 1 ≤ r ≤ k − 1, in any sequence respecting the cycle access

graph CN , the maximum number of faults incurred by FARCN in a k-phase,

excluding the first, is at most Xr. In particular, FARCN incurs the maximum

number of faults in a k-phase if the sequence takes the shortest path between

any two faults in that phase. Consequently, in Ck+1, each k-phase can generate

at most ⌈log(k + 1)⌉ faults for FARCN .

Proof Given the eviction rule of FARCN in CN , which is that it evicts the

midpoint of the current unmarked segment, it follows that when a sequence

does not turn inside a phase, it is taking the shortest path to the next fault.

This situation is analyzed in Lemma 15. When a sequence turns such that at

least one page is marked before the next turn, then all those pages become

unavailable for eviction for the remainder of the phase. A phase ends when all

the pages in the cache are marked and a new phase starts at the next fault.

Therefore, if a sequence keeps moving along the shortest path which takes it to

the next fault, then it is also marking the fewest number of pages in order to get

to the next fault, thereby, maximizing the number of faults FARCN incurs in the

current phase. Hence, the maximum number of faults incurred by FARCN in

each phase, excluding the first, is upper bounded by Xr, as proved in Lemma 15.

The special case of Ck+1 is given by r = 1 and so the lemma is proved. ✷

Lemma 18. For the cycle access graph CN , and A ∈ {LRU,FIFO,FWF},

MinCN (A,FARCN ) ≥ −
Xr − 1

k
.

Proof Consider an arbitrary sequence In in CN , where n denotes the number

of k-phases in the sequence. The last phase of a sequence may contain fewer

than k distinct pages, and in that case we can ignore the last phase in In. Note

that each phase contains requests to k distinct pages. It follows that each phase

in a sequence is of length at least k. By Lemma 17, we know that FARCN can
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incur at most Xr faults for each phase, excluding the first. By Lemma 1, A

faults at least once in each phase. In the first phase both algorithms incur k

faults. Thus, in each phase, the absolute value of the maximum difference in

faults is at most Xr − 1. Thus, limn→∞
A(In)−FARCN (In)

|In|
≥ −Xr−1

k
. ✷

Lemma 19. For the cycle access graph CN ,

MinCN (FIFO,FARCN ) ≤ −
Xr − r

k
.

Proof Recall the sequence Jn from the proof of Lemma 14.

Jn = 〈P,Bn〉, where P = 〈1, 2, . . . , k, k + 1, . . . , N, 1, 2, . . . , r − 1〉

and

B =














r r − 1 · · · 1 N N − 1 · · · 2r + 2 2r + 1

2r 2r − 1 · · · r + 1 r r − 1 · · · 3r + 2 3r + 1

3r 3r − 1 · · · 2r + 1 2r 2r − 1 · · · 4r + 2 4r + 1
...

...
...

...
...

...
...

...
...

N N − 1 · · · k + 1 k
... · · · r + 2 r + 1














|Jn| = kRn+N + r − 1 and FIFO(Jn) = N + rRn.

There is exactly one turn in Jn, which occurs at the first request after P . For

the rest of the sequence, it moves around the cycle without turning. Hence, the

number of faults incurred by FARCN in each phase of B, excluding the first two,

is given by Lemma 15, to beXr = r
(
x−1

)
+
⌈
N
2x

⌉
, where x =

⌊
log N

r

⌋
. Therefore,

FARCN (Jn) =
⌊
nkR
k

⌋
Xr + c, where c is a constant. The constant bounds the

number of faults in the first two and last phases. Now, MinCN (FIFO,FARCN )

is at most

lim
n→∞

FIFO(Jn)− FARCN (Jn)

|Jn|
= lim

n→∞

nR(r −Xr)

nRk + N + r − 1
= −

Xr − r

k

✷

Lemma 20. For the cycle access graph CN , and A ∈ {LRU,FIFO,FWF},

MaxCN (A,FARCN ) ≥ 1−
Xr

k
.
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Proof Consider the sequences In = 〈1, 2, . . . , N〉n in CN such that k divides

nN . It is easy to see that A(In) = |In| = Nn. By Lemma 15, we have

FARCN (In) ≤
Nn
k
Xr + k − 1. Thus, MaxCN (A,FARCN ) is at least

lim
n→∞

A(In)− FARCN (In)

|In|
≥ lim

n→∞

nN − nN
k
Xr − (k − 1)

nN
= 1−

Xr

k

✷

Lemma 21. For the cycle access graph CN ,

MinCN (LRU,FARCN ) ≤ −
r
(⌊

log N̂
r

⌋

− 1
)

N − 1

where N̂ is N and N − 1 if N is even and odd, respectively.

Proof Consider the sequence In = 〈1, 2, . . . , N − 1, N,N − 1, . . . , 2〉n used in

the proof of Lemma 16. Clearly, LRU(In) = 2nr + k − 1 and |In| = 2(N − 1)n.

There are two phase changes in each iteration of In, so by Lemma 16,

k + 2n

(

r

⌊

log
N̂

r

⌋

+

⌊

N̂

2x

⌋

− r

)

≤ FARCN (In),

where x =
⌊

log N̂
r

⌋

.

Now, since r ≤
⌊

N̂
2x

⌋

,

lim
n→∞

LRU(In)− FARCN (In)

|In|
≤ −

r
(⌊

log N̂
r

⌋

− 1
)

N − 1

✷

When r = 1, we get the bound MinCk+1(LRU,FARCk+1) ≤ − ⌊log k⌋−1
k

.

Theorem 9. For the cycle access graph CN ,
[

−
Xr − r

k
, 1−

Xr

k

]

⊆ ICN [FIFO,FARCN ] ⊆

[

−
Xr − 1

k
, 1−

1

k

]

,



−
r
(⌊

log N̂
r

⌋

− 1
)

N − 1
, 1−

Xr

k



 ⊆ ICN [LRU,FARCN ] ⊆

[

−
Xr − 1

k
, 1−

1

k

]

and
[

0, 1−
Xr

k

]

⊆ ICN [FWF,FARCN ] ⊆

[

0, 1−
1

k

]

.
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Proof The first relation follows from Lemma 4 and Lemmas 18, 19, and 20,

and the second from Lemma 4 and Lemmas 18, 21, and 20. The third result

follows from Lemma 4 and Lemmas 6 and 20. ✷

Having established all the results, we list a technical overview in Table 1,

in the form of a condensation of our results. In our theorems, we have given

bounds as exact as possible. In the table, however, we have used asymptotic

notation in a few places where we believe that it improves readability. This has

enabled us to present results for the general case, paths, and stars in a very

readable manner, whereas the inherent nature of the problem for cycles makes

it difficult to improve readability without sacrificing too much with regards to

precision.

7. Concluding Remarks

Relative interval analysis has the advantage that it can separate algorithms

properly when one algorithm is at least as good as another on every sequence

and is better on some. This was reflected in the results concerning FWF which is

dominated by the other algorithms considered for all access graphs. It was also

reflected by the result showing that LRU and FARPN have better performance

than FIFO on paths, PN . The analysis also found the expected result that

FARG, which is designed to perform well on access graphs, performs better

than both LRU and FIFO on cycles, i.e., when G is CN .

However, it is disappointing that the relative interval analysis of LRU and

FIFO on stars and cycles found that FIFO had the better performance, con-

firming the original results by [13] on complete graphs. The use of the absolute

value of the difference in fault rate allows the length of the sequences to play

a critical role in relative interval analysis. As shown in our results, when LRU

outperforms FIFO (in terms of the total number of faults across the whole se-

quence), the length of the sequence is asymptotically longer than the sequences

in which FIFO outperforms LRU. Consequently, the fault rate measure is fa-

vorable towards FIFO. The conclusion that relative interval analysis favours
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FIFO to LRU is attributable to this.

Nevertheless, we believe that the access graph technique is one of the impor-

tant techniques for defining input sequences with locality of reference. Possibly,

seeing how well a performance measure works in combination with access graphs

is one reasonable test of the general applicability of a performance measure. It

has been proven to work well in combination with competitive analysis as well

as relative worst order analysis, but, as we have seen, less well with relative

interval analysis. To try to understand other quality measures for online algo-

rithms better, it would be interesting to determine which measures work well

in combination with access graphs by considering the separation results such

analyses would give rise to.
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Table 1: Summary of Results

Lower Bound Relative Interval Upper Bound

I[FIFO,LRU] =
[

−1 + 1
k
, 1

2 − 1
4k−2

]

(T1)

I[FWF,A] =
[
0, 1− 1

k

]
(C1)

I[FWF,FIFO] =
[
0, 1− 1

k
−O( 1

k2 )
]

(T3)

IPN [FIFO,A] =
[
0, 1

2 − 1
2k

]
(T4)

IPN [FWF,A] =
[
0, 1− 1

k

]
(T2)

IPN [FWF,FIFO] =
[
0, 1− 1

k
−O( 1

k2 )
]

(T3)

ISN [FIFO,A] =
[

− 1
2 + 1

2(k−1) +
1

2k(k−1) ,
1
4 + 1

8k−12

]

(T5)

ISN [FWF,A] =
[
0, 1

2

]
(T6)

ISN [FWF,FIFO] =
[

0, 1
2 − 1

2k(k−1)

]

(T6)

[

−1 + r
k
, 1

2 − 1
4k−2

]

⊆ ICN [FIFO,LRU] ⊆
[

−1 + 1
k
, 1

2 − 1
4k−2

]

(T8)

[
−Xr−r

k
, 1− Xr

k

]
⊆ ICN [FIFO,FAR] ⊆

[
−Xr−1

k
, 1− 1

k

]
(T9)

[

−
r
(⌊

log N̂
r

⌋

−1
)

N−1 , 1− Xr

k

]

⊆ ICN [LRU,FAR] ⊆
[
−Xr−1

k
, 1− 1

k

]
(T9)

ICN [FWF,LRU] =
[
0, 1− 1

k

]
(T7)

[
0, 1− Xr

k

]
⊆ ICN [FWF,FAR] ⊆

[
0, 1− 1

k

]
(T9)

ICN [FWF,FIFO]=
[
0, 1− 1

k
−O( 1

k2 )
]

(T3)

The last column refers to the theorem or corollary establishing the result.

A ∈ {FAR,LRU} and B ∈ {FAR,FIFO,LRU}.

FAR is with respect to the access graph given as superscript to I.

For results involving r, r = N − k, 1 ≤ r ≤ k − 1, Xr = r(x− 1) +
⌈
N
2x

⌉
with

x =
⌊
log N

r

⌋
.

N̂ denotes N if N is even, and N − 1 otherwise.

46


