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Abstract This paper provides a systematic study of several proposssunes for
online algorithms in the context of a specific problem, namidle two server prob-
lem on three colinear points. Even though the problem is lgnipencapsulates a
core challenge in online algorithms which is to balance direess and adaptabil-
ity. We examine Competitive Analysis, the Max/Max Ratice fRandom Order Ra-
tio, Bijective Analysis and Relative Worst Order Analysisid determine how these
measures compare the Greedy Algorithm, Double Coveragel, @ary Double Cov-
erage, commonly studied algorithms in the context of sgoveblems. We find that
by the Max/Max Ratio and Bijective Analysis, Greedy is thestbef the three al-
gorithms. Under the other measures, Double Coverage angDaable Coverage
are better, though Relative Worst Order Analysis indictties Greedy is sometimes
better. Only Bijective Analysis and Relative Worst Orderadysis indicate that Lazy
Double Coverage is better than Double Coverage. Our realsitsprovide the first
proof of optimality of an algorithm under Relative Worst @rcdAnalysis.
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1 Introduction

Since its introduction by Sleator and Tarjan in 1985 [19]nPetitive Analysis has
been the most widely used method for evaluating online @lyos. A problem is said
to beonlineif the input to the problem is given a piece at a time, and therithm
must commit to parts of the solution over time before thereritiput is revealed to
the algorithm.Competitive Analysisvaluates an online algorithm in comparison to
the optimal offline algorithm which receives the input inétstirety in advance and
has unlimited computational power in determining a sohutimformally speaking,
one considers the worst-case input which maximizes the oathe cost of the online
algorithm for that input to the cost of the optimal offline atijhm on that same input.
The maximum ratio achieved is called tBempetitive RatioThus, one factors out
the inherent difficulty of a particular input (for which th&lme algorithm is penal-
ized along with the online algorithm) and measures whatdsifomaking decisions
with partial information and/or limited power.

Despite the popularity of Competitive Analysis, researstimave been well aware
of its deficiencies and have been seeking better alterisadiveost since the time that
it came into wide use. (See [10] for a fairly recent surveygnyl of the problems
with Competitive Analysis stem from the fact that it is a wiarase measure and fails
to examine the performance of algorithms on instances tbhatdibe expected in a
particular application. It has also been observed that @ity Analysis sometimes
fails to distinguish between algorithms which have verfeddnt performance in
practice and intuitively differ in quality.

Over the years, researchers have devised alternativesrmpelivive Analysis,
each designed to address one or all of its shortcomingseTrerexceptions, but it is
fair to say that many alternatives are application-sped@fid very often, the papersin
which they are introduced only present a direct comparisiwéen a new measure
and Competitive Analysis.

This paper is a study of several generally-applicableraditdre measures for eval-
uating online algorithms that have been suggested in theatiire. We perform this
comparison in the context of a particular problem: the 2«seproblem on the line
with three possible request points, nick-named herb#ixy server problerrinvesti-
gating simplek-server problems to shed light on new ideas has also beenmi{sie
for instance.

We focus on three algorithms, REEDY, DouBLE COVERAGE (Dc) [9], and
LAazy DouBLE COVERAGE (LDc), and four different analysis techniques (perfor-
mance measures): Bijective Analysis, the Max/Max Ratie,Random Order Ratio,
and Relative Worst Order Analysis.

In investigating the baby server problem, we find that adogrtb some quality
measures for online algorithms,REGEDY is better than [@ and Lbc, whereas for
others, Ir and LDc are better than &EeDY. In addition, for some measure®t is
better than [, while for others they are indistinguishable.

The analysis methods that conclude that &nd LDc are better than DY
are focused on a worst-case sequence for the ratio of arithlg& cost compared
to OPT. In the case of GEEDY vs. Dc and LDc, this conclusion makes use of the
fact that there exists a family of sequences for whigkEGDY's cost is unboundedly
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larger than the cost of ©r, whereas for each of ®and LDc, the cost is always at
most a factor of two larger than the cost oP©

On the other hand, the measures that conclude tR&eBY is best compare two
algorithms based on the multiset of costs stemming fromehefsall sequences of a
fixed length. In the case of &EDY and LDc, this makes use of the fact that for any
fixed n, both the maximum as well as the average costmof lover all sequences of
lengthn are greater than the corresponding values fREEDY.

Using Relative Worst Order Analysis a more nuanced resolbtained, conclud-
ing that Lbc can be at most a factor of two worse thar&EDY, while GREEDY can
be unboundedly worse tharpkc.

The analysis methods that distinguish betweendnd Lbc (Bijective Analysis
and Relative Worst Order Analysis) take advantage of thetfet LDC performs at
least as well as Don every sequence and performs better on some. The others (Co
petitive Analysis, the Max/Max Ratio, and the Random Ordatiéj cannot distin-
guish between them, due to the intermediate comparisorPt i&., algorithms are
compared to ®T and then the results of this comparison are compared. On some
sequences wheredand Lbc do worst in comparison with ©r, they perform iden-
tically, so these worst case measures conclude that thelgodtams perform iden-
tically overall. This phenomenon occurs in other probleiiss.aor example, some
analysis methods fail to distinguish between the pagingrdtgns LRU and FWF,
even though the former is clearly better and is at least ad go®very sequence.

The simplicity of the baby server problem also enables usv® tie first proof
of optimality in Relative Worst Order Analysis:Oc is an optimal algorithm for this
problem.

Though our main focus is the greediness/adaptability issaewe investigate
through the analyses of KEEDY and LDcC over a broad collection of quality mea-
sures, we also include some results about the balancetalgdii8], BaL. Because
of the interest for this server algorithm in the literatuse, find it natural to mention
the results for BL that can be obtained relatively easily within our framework

2 Preliminaries

In this section, we define the server problem used througthisippaper as the ba-
sis for our comparison. We also define the server algorithsesl,uand the quality
measures which are the subject of this study.

2.1 The Server Problem

Server problems [5] have been the objects of many studiéts fall generality, one
assumes that some numbeof servers are available in some metric space. Then a
sequence of requests must be treated. A request is simpipiEipthe metric space,
and ak-server algorithm must move servers in response to the se¢tmensure that
at least one server is placed on the request point. A cossiciged with any move
of a server (this is usually the distance moved in the givetrimspace), and the
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objective is to minimize total cost. The initial configuiati(location of servers) may
or may not be a part of the problem formulation.

In investigating the strengths and weaknesses of the \arioeasures for the
quality of online algorithms, we define the simplest possibntrivial server prob-
lem:

Definition 1 The baby server problens a 2-server problem on the line with three
possible request poins B, andC, in that order from left to right, with distance one
betweenA andB and integral distanceé > 2 betweerB andC. The cost of moving
a server is defined to be the distance it is moved. We assurhaifialy the two
servers are placed ghandC.

As a side remark, we have considered most proofs in this papiee context of a
non-integral distance betweerB andC. The main conclusions remain the same, but
many of the proofs become longer and the formulas less réadala few places, we
consider variants of c, where the right-most server moves at a spetohes faster
than the left-most server. Also in this case we assumedifets integral in order to
highlight the core findings.

All results in the paper pertain to the baby server problemenEhough the prob-
lem is simple, it requires balancing greediness and adgiptalhich is a central
problem in allk-server settings and many online problems in general. Tihiple
problem we consider is sufficient to show the non-competitdss of REEDY with
respect to Competitive Analysis [5].

2.2 Server Algorithms

First, we define some relevant properties of server algosth

Definition 2 A server algorithm is called

— noncrossingf servers never change their relative position on the line.
— lazy[18] if it never moves more than one server in response to aestcand it
does not move any servers if the requested point is alreadypéed by a server.

A server algorithm fulfilling both these properties is cdl@mmpliant

Given an algorithm4, we define the algorithdazy A, Z A, as follows:Z A will
maintain avirtual set of servers and their locations as well as the real setreéise
in the metric space. There is a one-to-one correspondeneede real servers and
virtual servers. The virtual set will simulate the behavadrA. The initial server
positions of the virtual and real servers are the same.

When a request arrives, the virtual servers are moved in danoe with algo-
rithm A. After this happens, there will always be at least one virsgaver on the
requested point. Then the real servers move to satisfy theest: If there is already
areal server on the requested point, nothing more happdmsn@se, the real server
corresponding to the virtual server on the requested poouesito the requested
point. If there is more than one virtual server on the reqeepbint, tie-braking rules
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may be applied. In our case, we will pick the closest servendoe to the requested
point.

Generak-server problems that are more complicated than the bakbgrsprob-
lem may need more involved tie-breaking rules to be detastigally defined. Note
that as a special case of the above, a virtual move can betahdeszero, while still
leading to a real move of non-zero distance.

In [9], it was observed that for any 2-server algorithm, ¢hexists a noncrossing
algorithm with the same cost on all sequences. In [18], it alaserved that for an
algorithmA and its lazy versiotZ A, for any sequenckeof requestsA (1) > . ZA(l)
(we refer to this as thiaziness observatignNote that the laziness observation ap-
plies to the generdd-server problem, so the results that depend only on thisredse
tion can also be generalized beyond the baby server problem.

We define a number of algorithms by specifying their behasiothe next request
point, p. For all algorithms considered here, no moves are made ifvesalready
occupies the request point (though internal state chamgesoaetimes made in such
a situation).

GREEDY moves the closest serverpoNote that due to the problem formulation,
ties cannot occur (and the server@is never moved).

If pisin between the two servers, Double Coverage)(Pnoves both servers at
the same speed in the directioniintil at least one server reaches the poinp i$
on the same side of both servers, the nearest server mopes to

We definea-Dc to work in the same way as® except that the right-most server
moves at a speed < d times faster than the left-most server. We refer to the lazy
version of Ot as Lbc and the lazy version @-Dc asa-LDcC.

The balance algorithm [18], 8., makes its decisions based on the total distance
travelled by each server. For each sergelet ds denote the total distance travelled
by s from the initiation of the algorithm up to the current pointtime. On a request,
BAL moves a server, aiming to obtain the smallest possible;hasalue after the
move. In case of a tie, B moves the server which must move the furthest.

As an example, showing that some care must be taken whenndefime lazy
algorithms, consider the following server problem whicklightly more complicated
than the one we consider in the rest of the paper. We illusthat example in Figure 1.
There are four pointé\ = 0, B=2,C = 6, andD = 11 in use, and three servers,
initially on A, B, andD. We consider the request seque@ieC, served by Ibc.
After the first request t€, we have the configuratio (A), C (C), D (7), where the
server positions are listed from left to right with theirtuial positions in parentheses.
At the request td, it becomesB (B), C (4), D (7). Now, when requestin@ again,
note that virtually, the right-most server is closest, g iniddle server is actually
onC.

2.3 Quality Measures

In analyzing algorithms for the baby server problem, we mersnput sequencds
of request points. An algorithi, which treats such a sequence has some cost, which
is the total distance moved by the two servers. This costristeel byA(1). Sincel
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Fig. 1 lllustration of the 3-server example. The server positioegyiven in black and the virtual positions
in gray.

is of finite length, it is clear that there exists an offlinealthm with minimal cost.
By OPT, we refer to such an algorithm and@) denotes the unique minimal cost
of processing.

Two of the measures below use permutations of input seqeetdeis an input
sequence of lengthando is a permutation on elements, then we let(1) denotel
permuted byo.

All of the measures described below can lead to a conclusida which one of
two algorithms is better. In contrast to the others, BijgefAnalysis does not quantify
how much better one algorithm is than another.

2.3.1 Competitive Analysis

In Competitive Analysis [13,19, 15], we define an algorithnto bec-competitive if
there exists a constantsuch that for all input sequencesA(l) < cOPT(l) +a.

2.3.2 The Max/Max Ratio

The Max/Max Ratio [4] compares an algorithm’s worst cost doy sequence of
lengthnto OPT's worst cost for any sequence of lengthThe Max/Max Ratio of an
algorithmA, wy (A), isM(A)/M(OPT), where

M(A) = limsupmaxA(l)/t.

t—oo |l]=t
2.3.3 The Random Order Ratio

Kenyon [16] defines the Random Order Ratio to be the worsb i@tained over
all sequences, comparing the expected value of an algorithimwith respect to a
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uniform distribution of all permutations of to the value of ®Tonl:

Eq [A(a(1))]

limsup =2
OPT(l)—00 OPT(I)

The original context for this definition is Bin Packing for igh the optimal packing

is the same, regardless of the order in which the items amepted. Therefore, it
does not make sense to take an average over all permutatio@pf. For server
problems, however, the order of requests in the sequencevemgyvell change the
cost of CPT, so we compare to Br's performance, also on a random permutation of
the input sequence. In addition, taking the limit aBTQ) — o, causes a problem
with analyzing GREEDY on the baby server problem (and presumably other algo-
rithms for other problems), since there is an infinite fanufysequenced;,, where
OPT's cost only is the same constant for all but GREEDY’s cost grows withn.
Thus, we consider the limit as the length of the sequence foiedinity, as in an-
other alternative definition of the Random Order Ratio in|[T4e obvious possible
modifications to the Random Order Ratio to include the exgiggt over QT are the
following two:

limsupEg

. E [ Aa(1)) ]
Ij—e Eo[OPT(a(1))] [

OopT1(o(l))

We prefer the one to the left. In general, these two defirstioould give different
results. However, due to the concrete nature of our probésrésults in this paper
hold independently of which definition is chosen.

2.3.4 Bijective Analysis and Average Analysis

In [1], Bijective and Average Analysis are defined, as meshoticomparing two
online algorithms directly. We adapt those definitions te tiotation used here. As
with the Max/Max Ratio and Relative Worst Order Analysis tivo algorithms are
not necessarily compared on the same sequence.

In Bijective Analysis, the sequences of a given length arpped, using a bi-
jection, onto the same set of sequences. The performanbe @if$t algorithm on a
sequencd,, is compared to the performance of the second algorithmesdguence
| is mapped to. If, denotes the set of all input sequences of lemgthen an online
algorithmA is no worse than an online algorithiEnaccording to Bijective Analysis if
there exists an integep > 1 such that for each > ng, there is a bijectiorf : 1, — I,
satisfyingA (1) <B(f(l)) for eachl € I,. A is strictly better tham if A is no worse
thanB, and there is no bijection showing tHais no worse tham.

Average Analysis can be viewed as a relaxation of Bijectimalfsis. An online
algorithmA is no worse than an online algorithEnaccording to Average Analysis if
there exists an integep > 1 such that for each > ng, 2j¢, A1) < 21, B(1). A is
strictly better thamB if this inequality is strict.
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Measure Value
Competitive Ratio CRy = max Al)
P —oeT(l)
max;—n A(l
Max/Max Ratio MR, = M
ma>q|/‘:n OPT(| )
) _ Eg [A(a(l ))}
Random Order Ratio RR, = mlaxm
. ) B maxg A(o(l))
Relative Worst Order Ratiq WRy p = mlaximaxg/ﬁ(a’(l))

Table 1 Comparison of those measures which give a ratio.

2.3.5 Relative Worst Order Analysis

Relative Worst Order Analysis was introduced in [6] and eded in [7]. It com-
pares two online algorithms directly. As with the Max/MaxtiRait compares two
algorithms on their worst sequence in the same part of atipartiThe partition is
based on the Random Order Ratio, so that the algorithms arpared on sequences
having the same content, but possibly in different orders.

Definition 3 For any pair of algorithm4. andB, we define

¢ (A,B) = sup{c|3b: VI: Aw(l) > cBw(l)—b} and
cu(A,B) = inf{c|3b: VI: Aw(l) < cBw(l)+b}.

whereAw (1) = max; A(o(l)).

If q(A,B) > 1 orcy(A,B) < 1, the algorithms are said to lmemparableand
the Relative Worst Order RatidVR,  of algorithm A to algorithmB is defined.
Otherwise, WR 3 is undefined.

If ¢(A,B) > 1, then WRy g = cy(A,B), and
if cy(A,B) <1, then WR, g =¢(A,B).

IfWRy g < 1, algorithmsA andB are said to beomparable inA’s favor. Similarly,
if WR 4 g > 1, the algorithms are said to bemparable inB’s favor.

If at least one of the ratios,(A,B) andcy(B, A) is finite, then the algorithma.
andB are called cy(A,B),cy(B, A))-related

Algorithms A and B are weakly comparable im\’s favor, 1) if A andB are
comparable inA’s favor, 2) if cy(A,B) is finite andcy(B,A) is infinite, or 3) if
cu(A,B) € o(cy(B, A)).

An informal summary, comparing these measures is given lileTa. Note that
some details are missing, including the additive constamtasymptotic analysis.
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Measure Favored Algorithm | Dcvs. Lbc
Competitive Ratio Lbc identical
Max/Max Ratio GREEDY identical
Random Order Ratio Lbc identical
Bijective Analysis GREEDY LDc best
Average Analysis GREEDY LDc best
Relative Worst Order Ratiq LDcC weakly favored | LDcC best

Table 2 The second column summarizes the results comparing &nd GREEDY on the baby server
problem using each of the measures defined. In addition tonfoemation in the column, 8EEDY is
uniquely optimal according to Bijective and Average Anadysind IDC and GREEDY are (2, »)-related
according to Relative Worst Order Analysis. The third coluists which measures distinguish between
Dc and its lazy variant, bc.

Table 2 is a summary of the results comparingcdLand GREEDY on the baby
server problem using each of the measures defined. Addiijoitdists the effect of
laziness applied to B.

3 Competitive Analysis

Thek-server problem has been studied using Competitive Argbtsirting in [17].
In [9], it is shown that on the real line, the Competitive Ratof Dc and LDcC arek,
which is optimal, and that SEeDY is not competitive. The result in [17], showing
that the Competitive Ratio of B isn— 1 on a metric space withpoints ifk=n—1,
shows that BL has the same Competitive Ratio of 2 as Bnd Lbc on the baby
server problem.

4 The Max/Max Ratio

In [4], a concrete example is given with two servers and timee-colinear points.
It is observed that the Max/Max Ratio favors the greedy atlgor over the balance
algorithm, BaL.

BAL behaves similarly to bc and identically on IDC’s worst case sequences.
The following theorem shows that the same conclusion ishe@davhen the three
points are on the line.

Theorem 1 GREEDY is better thanDc and Lbc on the baby server problem with
. apawm(De) wy(Lbc) d-1
respect to the Max/Max Ratio, with7¢-==r0 = oo = 14 7.

M ( ) — wwm(GREEDY)
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Proof Given a sequence of length GREEDY's maximum cost i, implying that
M(GREEDY) = 1.

Since OpTis at least as good asREEDY, its cost is at most. Thus,M(OPT) < 1.
To obtain a lower bound fok(OPT), we consider request sequences consisting of
repetitions of the sequen¢eBA)IC)X. In each such repetition, & must incur a cost
of at least &. Thus, we can bounill(OPT) by M(OPT) > %-

We now determind(LDc), and the same argument holds fé(Dc).

For any positive integem, we define the sequentg= ((BA)YBC)PX of length
n, where the length of the alternatigy'B-sequence before th@is 2d + 1, X is a
possibly empty alternating sequenceésfandBs starting with 8, | X| =nmod(2d +

2), andp = gak(z‘

First, we claim that,, is a sequence of lengtiwhere Lbc has the largest average
cost per move. Each move that the right-most server, ofligioa C, makes costs
d > 1 and the left-most server's moves cost only one. For evenerttee right-most
server makes fror@ to B, there ared moves by the left-most server frofto B and
thusd moves back fronB to A. The subsequend®A)Y does this with cost one for
LDc for every move. Since the move after ev€hhas cost one, it is impossible to
define another sequence with a larger average cost per move.

If X| < 2d+1, then the server 0@ does not move again, andt(l,) = p(2d+
2d) + |X| = n+ @=HO-XD,

Otherwise|X| = 2d + 1, the server o€ is moved toB, and we obtain bc(lp) =
p(2d+2d) + [X|+d—1=n+ @=DXD 4 g9

d+1
Since we are taking the supremum, we restrict our attenti@etjuences where
(d=1)n

_ _Ma d—1
IX| =0. ThusM(LDC) = — = = 1+ G-

Finally,

M(GREEDY 1
wym (GREEDY) = ( ) _

M(OPT)  M(OPT)’

while o1
M(Lbc) 1+ g7

I_ = = .

W(LDC) = 4 5pr) = M(oPT)

SinceM(OPT) is boundedv% =1+ %=1, which is greater than one for
d>1.

It follows from the proof of this theorem that®&EDY is close to optimal with
respect to the Max/Max Ratio, since the cost ®fE&DY divided by the cost of ©T
tends toward one for largé

Since Lbc and Dc perform identically on their worst sequences of any given
length, they also have the same Max/Max Ratio.

5 The Random Order Ratio

The Random Order Ratio categorizes Bnd LDC as being equally good. The proof
is structured into several lemmas below.
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In the following, we use the termun to mean a sequence of the same item in a
longer sequence, and itisaximalif it cannot be made longer by including a possible
neighboring item. For example, the three maximal runssah AAABAAAABBAave
lengths 3, 4, and 1, respectively.

The Random Order Ratio is the worst ratio obtained over glisaces, compar-
ing the expected value of an algorithm over all permutatming given sequence to
the expected value of & over all permutations of the given sequence. The intuition
in establishing the following result is that if one chooseardom permutation of a
sequence with many mors andBs thanCs, then, with high probability, there will
be sufficiently many switches between requestétandBs in between each two
successive occurrences@d that both [@ and Lbc will experience the full penalty
compared to OPT, i.e., after each requesCiahey will use one server to serve re-
guests to botth andB before eventually moving the server fr@ro B, where it will
stay until the next request @

The two main components in the proof are the following: Fiesen though we
choose a sequence with many mégeandBs thanCs, we must prove that with high
probability, there are enough requests between anyasvdf there are just a small
constant fraction of pairs of successiZs that do not have enoughs andBs in
between them, we will not get the Random Order Ratio of two Weare trying to
obtain. Second, even though there are many requegts emdBs in between two
consecutiveCs, if the As or Bs, respectively, appear as runs too frequently (many
As in a row, followed by mans in a row), then there will not be sufficiently many
switches between requestsAs andBs to pull a server fror€ to B. Again, we cannot
afford to have this problem occur a constant fraction of times if we want a ratio
of two.

In the proof, we choose to usarequests td\s as well aBs and|logn| requests
to Cs. In addition, we limit the successive request&\soandBs separately td./n]
with high probability. The choice of the functionslogn, and/n is mostly to work
with familiar functions in the lemmas below. Many other aes of functions would
work, as long as their rates of growth are similar. It is ndteysufficient that they are
different, since we also need to use, for instance, {fr@bg®n € o(n).

We use the notatiom|,, wherer < n, for the expression(n—1)(n—2)---(n—
r+1).

The following result is from [8], using the index for the lastm of the summation
from [2, page 56]. We have substituted in our variable names:

Proposition 1 In a random permutation of n As and n Bs, the probability thnms t
longest run of As (or Bs) is shorter than r is

P(r) = 1— (”Jrl)ﬂ_i_ (ngrl) o (ngl) e +.

1) ) 2 2N
n + 1Y\ [Mn
epl?] (” ) (20
GO ) B

We first derive a simple lower bound on this probability.

Lemma 1 Ifr >logn, then in a random permutation of n As and n Bs, the probabilit
P(r) that the longest run of Bs is shorter than r is at least %t
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Proof We first prove that the absolute value of the terms in the egiwa forP(r)
from Proposition 1 are non-increasing. LeKli < L?J — 1. We consider two suc-
cessive terms and show that the absolute value of the firstiéast as large as the
absolute value of the second, provided thatlogn.

ir [N i1y
(n-_s-l) [n] > (n+1)[ (i+1)

i/ [2n] i+1/ [2n]i 9y
n+1y n(n—1)--(n—ir+1) n+1y n(n—1)--(n—(i+1)r+1)
( i )2n(2n—1)---(2n—ir+1) = (i+l) 2n(2n—1)--(2n—(i+1)r+1)

(n-:—l) > (n+1) ( (n—ir)(n—ir=1)--(n—(i+1)r+1)

i+1/ (2n—ir)(2n—ir—1)--(2n—(i+1)r+1)
(n+1)! (n+1)! n—ir_\ir

il(n+1—-i)! = (i+1)!(n—i)! (2n7ir)

m |
i ir

12 %51 (3)

oir > ni—_Hl
T

r >logn

where the first implication follows from considering thedtians of corresponding
factors from the numerator and denominator and choosintatgest.
Since we have now shown that the terms are non-increasiodjoits thatP(r) >

1- (”Jlrl) [[Zr;lir , i.e., dropping all but the first two terms. Since, for cop@3ding fac-

tors in[n]; and[2n];, we have thatz"n%jj < 3, we can conclude tha(r) > 1— %L,

We can use this lemma to show that switches betwiassandBs occur quite often.

Lemma 2 Let I, = A"B". For anye > 0, there exists angisuch that for all n> ng,
the probability when selecting a random permutationyathiat all maximal runs of
As (or Bs) have lengths at mdsyn| is at leastl — €.

Proof By Lemma 1, for any given, the probability is at least-% 2”@,% . Sincen+1¢

o(2v™), this probability approaches one for increasing values of

Now we show that when having so fé&®¢ compared té\s andBs, we can be al-
most certain to find a large number/Ad andBs between two successive occurrences
of Cs.

Lemma 3 For any € > 0, there exists angisuch that for all "> ng, the probability
when selecting a random permutation gf A"B"Cl°9" that all maximal runs of
As and Bs (looking at As and Bs as the same item) have lengthsit2d + 2) | \/n]
is at leastl — €.

Proof We do not distinguish betweeks andBs here, so we just use that there are a
total of 2n of them, and refer to all of them ass.
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To compute the probability, we consider the number of wag€#can be placed
as dividers into a sequence af Xs, creating logn| +1 groups. The standard method

is to consider 8+ |logn| positions and place th@s in |logn| of these, which can
be done in(znffoléongjnj) ways. Similarly, if we wan{2d + 2) | /n| Xs in each group,
we may reserve thes@d +2) |/n] (|logn| +1) Xs and just consider the division of
the remainingXs. Thus, this can be done in

<2n —(2d+2) [yn] (|logn| +1) + [logn] >
|logn]
ways.

We now find a lower bound on the probability of there being thaayAs andBs
betweerCs using the above counting argument:

<2n —(2d+2) [y/n] (|logn] +1) + [logn] )
[logn]

2n+ |logn|

( [logn] )
2) [v/n] ([logn] + 1) + [logn|)]|iogn|
[(2]’] |_|09nj)hlognj

—(2d+2) [y ([logn] +1) + 1) "
( 2n+1 )

[(2n— (2d+2)

>

_ (1_ (2d+2) [ /A (UOgnJ+1>>Uognj

2n+1

where the inequality follows from considering correspogdiactors in the numerator
and denominator, and using the smallest fraction of these.
Using the binomial theorem, this last expression can baemrit

e (Uognj> (—<2d+2> [V ([logn] +1>>‘

i 2n+1

(2d+2) [vn] ([logn| +1)
=1—logn T
ltogn] ( n+1 +
whereT contains the additional terms of the binomial expansion.
We now argue that the absolute values of successive terindétrease for large

enoughn:

(Uoignj) ((2d+2)b§]j+(£|ognj+l))i - (Lllczgfj) ((2d+2)%2ﬂ|ognj+1)>‘+l

[Llognj]. > [Uognﬂwl((Zdv;Z()szlJ)(UOQHJH)
n+

~ ([logn|-i)(2d+2)|/n|([logn] +1)
(i+1)(2n+1)
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Sincey/nlog?n € o(n), this holds whem is sufficiently large.
For n large enough, this means theat> 0 and the probability we are computing

will be bounded from below by & |logn] (22 ljeanlL)),

Again, since,/nlog?n € o(n), the probability approaches onemmcreases.

With the use of the lemmas above, we can establish the theorem

Theorem 2 Dc andLDc both have the Random Order Ratio two.

Proof The upper bounds follow directly from the fact that their Guatitive Ratios
are two. Thus, if that is the factor on worst case sequentess|gthe expected ratio
cannot be worse, since the averages for these algorithm®amds over the same
set of sequences.

For the lower bound, lef, = A"B"Cl°9"). We show below that for ang > 0,
there exists amg so that forn > ng, the probability of Or and LDcC incurring a
cost of a factor two more thanr@ is at least 1- €. Given this, if we letA denote
either Dc or Lbc, for any g, we can choose an such thatE, [A(o(ln))] > (1—
€)2E4 [OPT(0(In))], implying that% > 2(1—¢€). Thus, any claim of a
ratio smaller than two can be disproven by choosing a smalligime, and this will
give us the result.

By Lemma 3, there exists anf so that for alln > ', the probability that all
maximal runs ofAs andBs have length at leaé2d +2) | \/n] is at least 1- §.

Considering only théds andBs, by Lemma 2, there exists aff so that for all
n>n", the probability that all maximal runs éfs andBs, respectively, have lengths
at most|/n] is at least 1- §.

Thus, for alln > max{rn/,n"}, the probability of having both properties is at least
1-— ¢, and we argue that in this case, the cost afdhd Lbc are a factor two larger
than the cost of OT.

Since the number o&s andBs between twcs is at least2d + 2) | \/n] and the
length of maximal runs oAs andBs, respectively, is at mo$t/n|, there must at least
2d+ 2 runs in between two success@g, and at leastd®+ 1 runs if we want to count
from the first run ofBs.

For both algorithms, this is sufficient for the algorithm t@we the server from
C to B. Dc will have both servers oB after thedth run of Bs has been processed,
whereas for IDc, the right-most server will only virtually be & at that point, but
will be moved there at théd + 1)st run of Bs.

For eachC, OPT incurs the cost @ of moving a server fronC to B and back
again, and it incurs cost after the lasC. The online algorithms have the same cost,
plus the additional cost of moving a server back and fortiwveehA andB until the
server fromC is moved taB. This additional cost consists oflZomplete moves from
Ato B and back.

Asymptotically, the requests after the I&tan be ignored, so this gives the ratio
4d/2d = 2.

We return briefly to the discussion from the end of Section32 ®here we pre-
sented the definition of Random Order Ratio that we are usimbam alternative
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version, and argue that the result above holds for the altemversion as well. The
upper bound comes from Competitive Analysis, which is a saqe-based compar-

ison, so clearlyW < 2 for any sequence and any permutation. For the lower
bound, the proof above establishes that with probabilifyra@ching one for large

enoughn, on a permutatiow chosen uniformly at random, the costse(@(l,)) and

Loc(a(lp)) are twice that of ®@T(a(ly)). This means the, {%} must ap-

proach two forn — c. Thus, this result holds for the alternative definition of th
Random Order Ratio as well. A similar argument can be madth&next and final
theorem of this section.

On another point, the theorem above, saying that land Dc are equivalent
according the Random Order Ratio, is an example of where @tesintuitive result
is partially due to the intermediate comparison tet@nd partially due to the worst-
case element of the measure. This is because on some of thenseg (or rather
multisets, since it considers the expected value on all petions) where bc and
Dc do worst compared to €, their comparison to ©r gives the same ratio. Since
the measure is worst-case over all multisets, the algositara deemed equivalent.
We illustrate the problem with the intermediate compariso@pP T by showing below
how avoiding this comparison could give the result thatlis better than .

If the definition was modified in the most straightforward mento allow direct
comparison of algorithms, one would first note that for amyusmcel, by the lazi-
ness observatiorss[Dc(o(l))] > Eg[LDc(a(l))]. Then, one would consider some
families of sequences with relatively large numberEsfand show that bc's cost
is some constant fraction better thaw’®on random permutations of that sequence.

For example, let = (CABQ)". Whenever the subsequer@ABCoccurs ino(l),

Dc moves a server fror@ towardsB and back again, while moving the other server
from A to B. In contrast, IDC lets the server o stay there, and has cost two less
than Dc.

One can show that the expected number of occurrenc€ABCin o(l) is at
least i (any constant fraction of would illustrate the point) by considering any
of the possible starting locations for this pattern<1 < 4n— 3, and noting that
the probability that the patter@ABC begins there is} - ;- - 7 - 21=1 By the

4n—2 " 4n-3:
linearity of expectations, the expected number of occuesfCABCIs (2 i
n_ 2n-1 n? n
g ans) (4n=3)=3 3 45 > {5

The expected costs of bothrP® and Lbc on g(l) are also bounded above and
below by some constants timasThus, LbcC’s “modified random order ratio” will be
less than [@’s.

It is easier to compare REEDY and LDc using the (original) Random Order
Ratio, getting a result very similar to that of Competitivaalysis: LDC is strictly
better than ®EEDY.

Theorem 3 Dc andLDc are better thanGREEDY on the baby server problem with
regards to the Random Order Ratio.

Proof As noted in the proof of Theorem 2, since the Competitive d®abif both O
and Lbc are two, their Random Order Ratios are also at most two.
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Consider all permutations of the sequenge= (BA)% We consider positions
from 1 throughnin these sequences. We again refer to a maximal consecubges
guence consisting entirely of eithAs orBs as anaximal run

Given a sequence containihgAs andt Bs, one can see from well known results
that the expected number of maximal runs is r%m In [12, Problem 28, Chapter 9,

Page 240], itis stated that the expected number of ruAs oY 5o the expected

h+t 7
number of runs oBs is (h”) . One can see that this holds f&s by considering the

probability that a run oAs starts at some indéxn the sequence. The probability that
it starts at the beginning of the sequence, at irdeX, is the probability that the first
elementis am, h+t The probability that it starts at some index 1is the probability

that there is @ at indexi — 1 and anA at indexi, hH hH i- By the linearity of

expectations, the expected number of run#sfis thush+t + Z W =
h(t+1)

it Addlng the expectations foks andBs gives the result 3+ ﬁﬂtt Thus, with
h=t =13, we get that} + 1 is the expected number of runs.

The cost of REEDY is equal to the number of runs if the first run is a rurBsf
Otherwise, the cost is one smaller. ThuREEDY'S expected cost on a permutation
of Inis § + 3.

The cost of @T for any permutation of, is d, since it simply moves the server
from C to B on the first request tB and has no other cost after that.

n, 1
Thus, the Random Order Ratio?%, which, astends to infinity, is unbounded.

The same argument shows thatiBis better than GEEDY with respect to the
Random Order Ratio.

6 Bijective Analysis

Bijective analysis correctly distinguishes betweea &nd LDc, indicating that the
latter is the better algorithm. This follows from the follmg general theorem about
lazy algorithms, and the fact that there are some sequerteagwne of @'s servers
repeatedly moves fror@ towardsB, but moves back t€ before ever reaching,
while LDC's server stays o@.

Theorem 4 The lazy version of any algorithm for the baby server probkeat least
as good as the original algorithm according to both Bijeetiknalysis and Average
Analysis.

Proof By the laziness observation, the identity functiah, is a bijection such that
ZA(1) <A(id(1)) for all sequences. If an algorithm is better than another algo-
rithm with regards to Bijective Analysis, then it is alsoteetwith regards to Average
Analysis [1].

We first show that @EEDY is at least as good as any other lazy algorithm; in-
cluding Lbc and BaL.

Theorem 5 GREEDY is at least as good as any other lazy algorithmzy for the
baby server problem according to Bijective Analysis.
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Proof Since GREEDY has cost zero for the sequences consisting of only the point
or only the pointC and cost one for the poifg, it is easy to define a bijectiofi for
sequences of length one, such tha&e&py(l) < LAzy (f(l)). Suppose that for all
sequences of lengthwe have a bijectionf, from GREEDY'S sequences toAzY'’s
sequences, such that for each sequémafdengthk, GREEDY(l) < LAazy (f(l)). To
extend this to lengtk+ 1, consider the three sequences formed from a sequieice
lengthk by adding one of the three requestsB, or C to the end ofl, and the three
sequences formed froifi(I) by adding each of these points to the end @f). At the
end of sequenck GREEDY has its two servers on different points, so two of these
new sequences have the same cost fREEDY as onl and one has cost exactly 1
more. Similarly, Lazy has its two servers on different points at the end @), so
two of these new sequences have the same costfpr las onf (I) and one has cost
either 1 ord more. This immediately defines a bijectidhfor sequences of length
k+1 where REeDY(I) < Lazy(f(1)) for all | of lengthk+ 1.

Corollary 1 GREEDY is the unique optimal algorithm with regards to Bijectivedan
Average Analysis.

Proof Note that the proof of Theorem 5 shows thakE&EDY is strictly better than
any lazy algorithm which ever moves the server away f@@reo it is better than any
other lazy algorithm with regards to Bijective Analysis. Biieorem 4, it is better
than any algorithm. Again, since separations with respe8tjective Analysis also
hold for Average Analysis, the result also holds for Averagealysis.

According to Bijective Analysis, there is also a unique vi@igorithm among
compliant server algorithms for the baby server problenp i in between the two
servers, the algorithm moves the server that is furthesy awéhe request point. If
p is on the same side of both servers, the nearest server nmye#\gain, due to
the problem formulation, ties cannot occur (and the serueX is never moved). The
proof that this algorithm is unique worst is similar to thegfof Theorem 5, but now
with costd for every actual move.

Lemma 4 If a < b, then there exists a bijection
on: {A,B,C}" — {AB,C}"
such that aLbc(l) < b-Lbc(ay(l)) for all sequences &€ {A,B,C}".

Proof We use the bijection from the proof of Theorem 5, showing @REEDY is the
unique best algorithm, but specify the bijection compigtes opposed to allowing
some freedom in deciding the mapping in the cases where wexéeading by a
request where the algorithms already have a server. Supipaistine bijectiono, is
already defined. Consider a sequehgcef lengthn and the three possible waygA,
InB andl,C, of extending it to lengtim+ 1. Suppose that-LDC has servers on points
Xa,Ya € {A,B,C} after handling the sequengg andb-LDC has servers on points
Xp, Yb € {A B,C} after handlingo,(l,). Let Z; be the point wher@-Lbc does not
have a server andy, the point wheréb-LDcC does not. Thery,1(InZa) is defined
to beon(In)Zp. In addition, since the algorithms are lazy, both algorghmave their
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servers on two different points of the three possible, scetineust be at least one
point P where both algorithms have a server. Litbe the point in{Xa,Ya} \ {P}
andUy be the point in{Xp, Yp} \ {P}. Then,on1(1nP) is defined to bes,(I,,)P and
On+1(1nUa) to beon(In)Up.

Consider runnin@-LDC on a sequenck, andb-Lbc on gy(ln) simultaneously.
The sequences are clearly constructed so that, at any peingdhis simultaneous
execution, both algorithms have servers moving or neitbesd

The result follows if we can show thatL Dc moves away from and back @at
least as often as-L DC does. By construction, the two sequendgsindon(ln), will
be identical up to the point wheteLDc (and possiblya-L bc) moves away fronC
for the first time. In the remaining part of the proof, we arglat if a-LDC moves
away from and back t€, thenb-Lbc will also do so befor@-LDc can do it again.
Thus, the total cost df-LDc will be at least that o&-LDcC.

Consider a request causing the slower algoritarhpcC, to move a server away
from C.

If b-LDC also moves a server away frothat this point, both algorithms have
their servers o\ andB, and the two sequences continue identically until the faste
algorithm again moves a server away fr@nfbefore or at the same time as the slower
algorithm does).

If b-Lbc does not move a server away fr@nat this point, since, by construc-
tion, it does make a move, it moves a server frArto B. Thus, the next time both
algorithms move a servea; L bc moves fromB to C andb-L bc moves fromB to A.
Then both algorithms have serversdandC. Sincea-LDcC has just moved a server
to C, whereas-L Dc must have made at least one move frarto B since it placed
a server aC, b-Lbc must, as the faster algorithm, make its next move away ffom
strictly beforea-L Dc does so. In conclusion, the sequences will be identicall tineti
faster algorithmbp-LDc, moves a server away fro@

Theorem 6 According to Bijective Analysis and Average Analysis, slovariants
of LDc are better than faster variants for the baby server problem.

Proof Follows immediately from Lemma 4 and the definition of the meas.

Thus, the closer a variant offic is to GREEDY, the better Bijective and Average
Analysis predict that it is.

7 Relative Worst Order Analysis

Similarly to the Random Order Ratio and Bijective Analysglative Worst Order
Analysis correctly distinguishes betweerc@nd LDc, indicating that the latter is
the better algorithm. This follows from the following geaktheorem about lazy
algorithms, and the fact that there are some sequences wheref DC's servers
repeatedly moves fror@ towardsB, but moves back t&€ before ever reaching,
while LDC's server stays o@.

Let I, denote a worst ordering of the sequehder the algorithmA.
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Theorem 7 The lazy version of any algorithm for the baby server probkeat least
as good as the original algorithm according to Relative Wa@eder Analysis.

Proof This follows from the laziness observation, since for aryuest sequende
we have thatZA(l »4) < A(lgp) < A(la).

Theorem 8 Dc (LDc) and GREEDY are (2,«)-related and are thus weakly compa-
rable inDcC's (LDC's) favor for the baby server problem according to Relativar st/
Order Analysis.

Proof We write this proof for I, but exactly the same holds fordlc. First we
show thatc,(GREEDY, Dc) is unbounded. Consider the sequet®8) 2. As ntends
to infinity, GREEDY's cost is unbounded, whereascB cost is at most @ for any
permutation.

Next we turn tacy (Dc, GREEDY). Since the Competitive Ratio of®s 2, for any
sequencé and some constabt DC(Ipc) < 20PT(Ipc) +b < 2GREEDY(Ipc) +b <
2GREEDY(lgreepy) + b. Thus,cy(Dc, GREEDY) < 2.

For the lower bound, consider a family of sequences

I, = ((BA)YBC)P.

DC(lp) = p(4d).

A worst ordering for REEDY alternatesds andBs. Since there is no cost for the
Cs and theA/B sequences start and end wih, GREEDY(0(lp)) < p(2d) + 1 for
any permutatiorwo.

Then,c,(Dc, GREEDY) > pfz(g;jll. As p goes to infinity, this approaches 2.

Thus, Dc and GREEDY are weakly comparable in®s favor.

For clarity in the exposition, we assume t@is integral. By the definition of
a-LDc, a request foB is served by the right-most server if it is within a virtual
distance of no more thaamfrom B and the other server is & Thus, when the left-
most server moves and its virtual move is over a distande thien the right-most
server virtually moves a distanek When the right-most server moves and its virtual
move is over a distance al, then the left-most server virtually moves a distance of
[

In the results that follow, we frequently look at the worsti@ring of an arbitrary
sequence.

Definition 4 The canonical worst orderingf a sequencd,, for an algorithmA is

the sequence produced by allowing the cruel adversary (thabich always lets the
next request be the unique point whéreloes not currently have a server) to choose
requests from the multiset defined frdmThis process continues until there are no
requests remaining in the multiset for the point whérdoes not have a server. The
remaining points from the multiset are concatenated to tlikad this new request
sequence in any order.

The canonical worst ordering of a sequencegdrDc is as follows.
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Proposition 2 Consider an arbitrary sequence | containing As, s Bs, and g Cs.
A canonical worst ordering of | ford.DC is

la = ((BA)2BC)PX,

where we assume th%tis integral. Here, X is a possibly empty sequence. The first
part of X is an alternating sequence of As and Bs, starting wiB, until there are
not both As and Bs left. Then we continue with all remaining”ABs, followed by

all remaining Cs. Finally,

o5 51] =)

Lemma5 Assume thag is integral, and let} be the canonical worst ordering of |
for a-LDC. I is a worst permutation of | ford.Dc, and the cost ford.Dc on I is
Ca, Where p(22 +2d) < ca < pa(2d +2d) +2¢ +d.

Proof Consider a request sequenteBetween any two moves fro to C, there
must have been a move fro@ to B. Consider one such move. Between the last
request taC and this move, the other server must move friato B exactlyg1 times,
which requires some first request Boin this subsequence, followed by at Ie%st
occurrences of requests £9 each followed by a request ® the last one causing
the move fromC to B. (Clearly, extra requests t& or B could also occur, either
causing moves or not.) Thus, for every move fr&mo C, there must be at least
%Jr 1Bs, g As and onéC. Thus, the number of moves froBito C is bounded from
above byp,. There can be at most one more move frErto B than fromB to C. If
such a move occurs, there are no m@seafter that in the sequence. Therefore, the
sequences defined above give the maximal number of movestahded possible.
More As or Bs in any alternatingd/B-sequence would not cause additional moves
(of either distance one at), since each extra point requested would already have a
server. FeweAs orBs between tw&s would eliminate the move away fra@hbefore
it was requested again. Thus, the canonical worst ordesiagnorst ordering off.
Within each of thep, repetitions of(BABA..BC), each of the requests férand
all but the last request fd cause a move of distance one, and the last two requests
each cause a move of distantegiving the lower bound oie,. Within X, each of
the first % requests could possibly cause a move of distance one, andahid be
followed by a move of distancd. After that, no more moves occur. Thus, adding
costs to the lower bound gives the upper boundon

Theorem 9 Ifa < b, andg1 and% are integral, then aLbc and b-Lbc are

1+1 bt1
i‘,i -related
1+5 a+1

for the baby server problem according to Relative Worst ©OAdealysis.
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Proof By Lemma 5, in considering-LDC’s performance in comparison with the
performance ob-L Dc, the asymptotic ratio depends only on the valpgandp, de-
fined for the canonical worst orderingsandly, for a-Lbc andb-LDc, respectively.
Sincea < b, the largest value oft occurs whem, = nc, since moreCs would allow
more moves of distanatby b- L'Bc. Since the contribution of to a-LDC’s cost can
be considered to be a constant, we may assummAhamcg andng = nc (a + 1)

When considerindp-L DC’s canonical worst ordering of this sequence, all@se
will be used in the initial part. By Lemma 5, we obtain the éa¥ing ratio, for some
constant:

(eg+2dnc _ (G+1nc
(28 +2d)nc+c (F+Dnc+ 5

Similarly, a sequence giving the largest valueggfwill have p, = ”dAJ since
b

moreAs would allowa-LDc to have a largep,. Since the contribution of tob-LDcC
can be considered to be a constant, we may assumaplhanc%, Ng = Nc (% + 1),
andp, =nc

Now, when considering-L DC’s worst permutation of this sequence, the number
of periods,p,, is restricted by the number @fs. Since each period h%sAs, Pa =

{%J = {%5 . After this, there are a constant numberAsfremaining, giving rise

a a
to a constant additional cost
Thus, the ratio is the following:

(24 +2d)nc _ (Gthe  (1+4brnc
@d+2d)[ncd]+c E+1)[ncd|+g  (L+anc+c”

for some constartt’. Considering the two ratios relatitigL DC’s anda-L DC’s worst
permutations asymptotically ag goes to infinity, we obtain tha-LDc andb-LDcC

141
are ( b gﬁ) -related.

Although with the original definition of relatedness in Rela Worst Order Anal-
ysis, the values are not interpreted further, one could is&dncept obetter per-
formance(see [11]) from Relative Interval Analysis to compare twgaalithms using
Relative Worst Order Analysis. Using the previous resuét,sliow that Ibc has bet-
ter performance thab-LDc for b # 1. Again, for clarity, we consider integral cases
in the following result.

Theorem 10 The following holds for the baby server problem evaluatecbading
to Relative Worst Order Analysis:

For b > 1 such that% is integral,Lbc and bLDcC are (r,rp)-related for some r
and r, wherel <r < rp.

For a < 1such thatg is integral, aLDc andLDc are (ra, r)-related for somey
andrwherel <r <rj.
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1
Proof By Theorem 9a-Lpc andb-Lpc are | =72, 21 ) related.
1+5 a+1l

at+l

1)(a+1) =4 < (14 £)(b+1), which clearly holds fob > 1. Hence, if Lbc and
b-Lbc are(cy, cy)-related, there; < c;.

1
To see thatﬁr—f’ll > b1 whena < b= 1, note that this holds if and only {fL +
b

1
To see thatii—? < 21 when 1= a < b, note that this holds if and only ifL +
b

at+l

%)(a+ 1)>4=(1+ %)(b+ 1). This clearly holds foa < 1. Thus,a-Lbc and Lbc
are(cy,cp)-related, where; > c;.

The algorithmsa-LDC and%-LDc are in some sense of equal quality:

Corollary 2 If g and% are integral and b= 511 then aLbc and bLbc are (b, b)-
related

Theorem 10 shows thatdc is in some sense optimal among tad.DcC algo-
rithms. We now set out to prove thabkc is an optimal algorithm in the following
sense: there is no other algorithinsuch that IDc and A are comparable andl is
strictly better or such thatthc andA are weakly comparable i&’s favor.

We emphasize that comparisons using Relative Worst Ordaty8is does not
give rise to a total ordering so there could be more than otiemapalgorithm, and
two different optimal algorithms could be incomparablearibther algorithm should
be strictly better than bc, then it must be strictly better on some infinite family of
sequences and at least as good (up to an additive constaat)) @ather sequences.
The proof below is based on showing that no algorithm carlifoifith of these two
conditions.

Theorem 11 LDc is optimal for the baby server problem according to Relathast
Order Analysis.

Proof In order for Lbc andA to be comparable iA’s favor, A has to be comparable
to Lbc and perform more than an additive constant better on sommetenfamily of
sequences.

Assume that there exists a family of sequer§e$y, . .. such that for any positive
c there exists ansuch that Ibcw(S) > Aw(S) + ¢. Then we prove that there exists
another family of sequencé},S,, ... such that for any positive’ there exists am
such that\w(S) > Locw(S) +¢.

This establishes thatif performs more than a constant better on its worst permu-
tations of some family of sequences thand does on its worst permutations, then
there exists a family wheredc has a similar advantage ov&r which implies that
the algorithms are not comparable.

Now assume that we are given a constarsince we must find a value greater
than any constant to establish the result, we may assumeuwtitbss of generality
thatc is large enough thatd® > % (3d) +3d.

Consider a sequen&from the familyS;, S, ... such that Ibcy (S) > Aw(S) +
3dc. From S we create a membe8 of the family S|,S,,... such thatAw(S) >
Lbcw(S) +c.
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The idea behind the construction is to have the cruel adweegminstA choose
requests from the multiset defined frognas in the definition of canonical worst
orderings. This process continues until the cruel adverisas used all of either the
As,Bs, orCs in the multiset, resulting in a sequergelf the remaining requests from
the multiset are concatenatedSoin any order, this creates a permutatiorSofrhe
performance of\ on this permutation must be at least as good as its perforenamc
its worst ordering ofs.

We now consider the performance obt and A on S and show that bc is
strictly better.

Letmy, ng, andn; denote the number @fs, Bs, andCs in S, respectively.

Letp= min{ HAJ , {%J ,n’c}

By Lemma 5, the cost of hc on its canonical worst ordering & is at most
p(4d) + 3d.

The cost ofA is 2dr, +nj, 4+ ng — g, since every time there is a request @r
this is because a server in the step before moved away @omhese two moves
combined have a cost ofi2Every request to aA or aB has cost one, except for the
request td immediately followed by a request @ which has already been counted
in the g term. A similar argument shows thabk’s cost is bounded from above
by the same term.

g _

Assume first tha{% = g1 = Nc- ThenS can be permuted so that it is a prefix of
LDC’s canonical worst ordering o8 (see Lemma 5 witla = 1). Since, by construc-
tion, we have run out of eitheks, Bs, orCs (that is, one type is missing froBminus

S as multisets), bc’s cost on its worst ordering @ is at most its cost on its worst
ordering onS plus 3. Thus, bcw(S) > Aw(S) + ¢ does not hold in this case, so
we may assume that these values are not all equal.

We compare bc’s canonical worst orderings & andS. For both sequences,
the form is as in Lemma 5, with = 1. Thus, forS the form is((BA)YBC)PX, and
for S it is ((BA)YBC)PH'Y for some nonnegative integér The sequenc& must
contain all of theAs, all of theBs or all of theCs contained in((BA)YBC)', since
after this the cruel adversary has run out of something. Tihosust contain at least
Id As,I(d+1) Bs orl Cs. The extra cost thatic has overA on Sis at most its
cost on((BA)YBC)'Y minus costd for the As, Bs orCs contained irX, so at most
[(2d+2d) +3d — Id = 3dI +3d. Thus, Lbcw(S) — Aw(S) < 3dI +3d.

Since we could assume that not allng&f, %Bl andn; were equal, we have the
following cases:

Casen, > dp: LDC’s cost onS is at most the cost of minus(n,, —dp) plus 3.

Caseng > (d+1)p: LDC's cost onS is at most the cost oft minus(ng — (d +
1)p) plus 3.

Casen; > p: LDC’s cost onS is at most the cost oft minus(2d — 1)(n — p)
plus 1.

ThUS,Aw(S/) — LDCW(S/) >dl —3d.

From the choice o€, the definition of the5g family, and the bound on the differ-
ence between the two algorithms §nwe find that

%(3@) +3d < 3dc< Locw(S) — Aw(S) < 3dI +3d
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Thus,| > 3L which implies the following:

530+ Ll 3d>141 e 1d_3d> M+

= d-1 3d

Now,
3dl+3d < 3dc

3 —ad

Finally, to show that bc and A are not weakly comparable iA’s favor, we
show thatc,(LDC,A) is bounded. Since the Competitive Ratio obd is 2, for
any algorithmA and any sequendg there is a constari such that IDC(l pc) <
20PT(ILpc) +b < 2A(ILpc) + b < 2A(14) +b. Thus,cy(LDC,A) < 2.

Aw(sl) — LDCw(g) >1d—3d>

Considering the request sequence as constructed by theacersary against
some algorithm), it consists of a first part, where the cruel adversary keegsest-
ing unoccupied points, and a second part which are all rangaiequests. The proof
of optimality depends on hc performing as well as any algorithm on the first part,
and having constant cost on the second part. Since the fitst@asists of subse-
guences wheré at some point has a server pulled away frérand then right back
again, it is easy to see that if the distributionAs, Bs, andCs in those subsequences
is different from the distribution in a canonical worst oridg for LDc, Lbc will sim-
ply do better. On the second part, if there are only requestsd points, LDC will
have its two servers on those two points permanently afteseaf at most 8. Thus,
similar proofs will show that-Lbc and BaL are also optimal algorithms, whereas
GREEDY is not.

In the definitions of IDC and BaL given in Section 2, different decisions are
made as to which server to use in cases of ties. bic the server which is really
closer is moved in the case of a tie (with regard to virtuatatises from the point
requested). The rationale behind this is that the servectwivould have the least
cost is moved. In BL the server which is further away is moved to the point. The
rationale behind this is that, sinde> 1, when there is a tie, the total cost for the closer
server is already significantly higher than the total costlie other, so moving the
server which is further away evens out how much total cost tave. With these
tie-breaking decisions, the two algorithms behave veryiariy.

Theorem 12 Lbc andBAL are equivalent for the baby server problem according to
Relative Worst Order Analysis.

Proof Consider any request sequermcé&DC's canonical worst ordering has a prefix
of the form ((BA)YBC), while BAL’s canonical worst ordering has a prefix of the
form

BA) L2 BC((BA)IBO)K,

such that the remaining parts have constant costs. Thefseegref LDC's and BAL's
canonical worst orderings dfare identical, except for the constant cost sequence
that BAL starts with. This also leads to a small constant cost diffezeat the end.
Thus, their performance on their respective worst ordsrimij be identical up to an
additive constant.
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8 Concluding Remarks

The purpose of quality measures is to give information fer ingpractice, to choose
the best algorithm for a particular application. What prdipsrshould such quality
measures have?

First, it may be desirable that if one algorithm does at leastvell as another
on every sequence, then the measure decides in favor of tteg bigorithm. This
is especially desirable if the better algorithm does sigaiftly better on important
sequences. Bijective Analysis and Relative Worst Orderysishave this property,
but Competitive Analysis, the Max/Max Ratio, and the Randorder Ratio do not.
This was seen here in the lazy vs. non-lazy version of Doubleefage for the baby
server problem (and the more general métrgerver problem). Similar results have
been presented previously for the paging problem—LRU vs. FildH@ok-ahead vs.
no look-ahead. See [7] for these results under Relative M@nder Analysis and [1]
for Bijective Analysis. It appears that analysis techngjtiet avoid a comparison to
OPT have an advantage in this respect.

Secondly, it may be desirable that, if one algorithm doesundedly worse than
another on some important families of sequences, the guakiasure reflects this.
For the baby server problemR&EDY is unboundedly worse thardc on all families
of sequences which consist mainly of alternating requestisée closest two points.
This is reflected in Competitive Analysis, the Random Ordatid&? and Relative
Worst Order Analysis, but not by the Max/Max Ratio or BijgetAnalysis. Similarly,
according to Bijective Analysis, LIFO and LRU are equivdlar paging, but LRU is
often significantly better than LIFO, which keeps the first1 pages it sees in cache
forever. In both of these cases, Relative Worst Order AmaBes/s that the algorithms
are weakly comparable in favor of the “better” algorithm.

Another desirable property would be ease of computationnfany different
problems, as with Competitive Analysis and Relative Wonsteéd Analysis. It is not
clear that the Random Order Ratio or Bijective Analysis hg property.

In this paper, we have initiated a systematic comparisoruafity measures for
online algorithms. We hope this will inspire researchersituilarly investigate a
range of online problems to enable the community to drawngto conclusions on
the relative strengths of the different measures.
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