
The Seat Reservation Problem

Joan Boyar∗†‡ Kim S. Larsen∗§‡¶

Odense University

Abstract

We investigate the problem of giving seat reservations on-line. We assume
that a train travels from a start station to an end station, stopping at
k stations, including the first and last. Reservations can be made for
any trip going from any station to any later station. The train has a
fixed number of seats. The seat reservation system attempts to maximize
income. We consider the case in which all tickets have the same price
and the case in which the price of a ticket is proportional to the length
of the trip. For both cases, we prove upper and lower bounds of Θ(1/k)
on the competitive ratio of any “fair” deterministic algorithm. We also
define the accommodating ratio which is similar to the competitive ratio
except that the only sequences of requests allowed are sequences for which
the optimal off-line algorithm could accommodate all requests. We prove
upper and lower bounds of Θ(1) on the accommodating ratio of any “fair”
deterministic algorithm, in the case in which all tickets have the same price,
but Θ(1/k) in the case in which the ticket price is proportional to the length
of the trip. The most surprising of these results is that all “fair” algorithms
are at least 1/2-accommodating when all tickets have the same price. We
prove similar results bounding the performance of any “fair” randomized
algorithm against an adaptive on-line adversary. We also consider concrete
algorithms; more specifically, First-Fit and Best-Fit.

Keywords: on-line algorithms, competitive ratio, accommodating ratio,
graph coloring, interval graphs, seat reservation problem.

∗Department of Mathematics and Computer Science, Odense University, Campusvej 55,
DK-5230 Odense M, Denmark

†Email: joan@imada.ou.dk.
‡Supported in part by NSF (U.S.) grant CCR-9510244 and in part by the esprit Long Term

Research Programme of the EU under project number 20244 (alcom-it).
§Email: kslarsen@imada.ou.dk.
¶Additional support from SNF (Denmark).

1

1 Introduction

With many train systems in Europe, passengers are required to buy seat reserva-
tions with their train tickets. Since the ticketing system must assign a passenger a
single seat when that passenger purchases a ticket, without knowing what future
requests there will be for seats, this is an on-line problem. Thus, a competitive
analysis is appropriate.

In this paper, we investigate the problem of giving seat reservations on-line. We
assume that a train with n seats travels from a start station to an end station,
stopping at k ≥ 2 stations, including the first and last. The seats are numbered
from 1 to n. The start station is station 1 and the end station is station k.
Reservations can be made for any trip from a station s to a station t where
1 ≤ s < t ≤ k. The passenger is given a single seat number when the ticket is
purchased, which can be any time before departure.

The algorithms (ticket agents) attempt to maximize income, i.e., the sum of the
prices of the tickets sold. Thus, the performance of an on-line algorithm will
depend on pricing policies for train tickets. We consider two different policies:
one in which all tickets have the same price, the unit price problem, and one in
which the price of a ticket is proportional to the distance traveled, the proportional
price problem.

In addition, we define the accommodating ratio which is similar to the competitive
ratio, except that the only sequences of requests allowed are sequences for which
the optimal off-line algorithm could accommodate all requests. This assumption,
that there are enough seats for the optimal fair on-line algorithm, is appropriate
whenever the management has done a reasonable job of predicting ticket demand
and has thus assigned an appropriate number of cars to the train. We show
that there is a significant difference between the competitive and accommodating
ratios for the unit price problem. This difference indicates that with that pricing
policy, underestimating how many seats are needed can have a dramatic effect
on earnings.

Since the accommodating ratio is essentially the competitive ratio, except that
only specific restricted sets of request sequences are considered, the accommo-
dating ratio is a special case of the performance ratio defined by Koutsoupias
and Papadimitriou in [1], which restricts the power of the adversary by allowing
only certain input distributions. Restricted sets of request sequences have also
been considered for problems other than seat reservations. For example, Borodin,
Irani, Raghavan and Shieber [2] restrict the inputs allowed to give more realistic
analyses of the performance of various paging algorithms, taking into considera-
tion locality of reference. In addition, on-line algorithms for bipartite matching
[3] have restricted the inputs to graphs which actually have a perfect matching.

For political reasons, the ticket agent may not refuse a passenger if it is possible

2

to accommodate him when he attempts to make his reservation. Thus, if there
is any seat which is empty for the entire duration of that passenger’s trip, the
passenger must be assigned a seat. We will call an algorithm which has this
restriction fair and will only consider fair algorithms.

The seat reservation problem is similar to the problem of optical routing with a
limited number of wavelengths, which was considered in [4] for the off-line case
for tree networks and in [5] for a number of on-line versions. In [6, 7], similar
problems for the preemptive case are considered. Interval scheduling [8] and the
one-wavelength version of the call control problem [9] are similar to trains with
one seat. However, the fairness restriction makes the seat reservation problem
different from the problems considered before. Without this restriction, the seat
reservation problem is the same as the on-line call admission and wavelength
selection problem [5] restricted to graphs which are simple paths. Their technique
is not applicable to fair algorithms.

Note that since we are trying to maximize income rather than minimize cost, a
lower bound is obtained by proving a bound on the worst case behavior of an
algorithm, and an upper bound is obtained by giving an adversary argument.
We prove upper and lower bounds of Θ(1) on the accommodating ratio of any
fair deterministic on-line algorithm for the unit price problem, but Θ(1/k) for the
proportional price problem. For both the unit price problem and the proportional
price problem, we prove upper and lower bounds of Θ(1/k) on the competitive
ratio of any fair deterministic algorithm.

The lower bound on the accommodating ratio for any fair deterministic on-line
algorithm is especially interesting because intuitively one first expects that it
must be possible to design a “stupid” fair on-line algorithm which accommodates
fewer than half the number of requests the best off-line algorithm could. Our
result, however, shows that this is not possible when there are enough seats so
that the optimal off-line algorithm can accommodate all requests.

We also consider randomized algorithms, and prove similar results bounding the
performance of any “fair” randomized algorithm. In addition, we consider con-
crete algorithms; more specifically, First-Fit and Best-Fit, proving tight bounds
on their performance for the unit price problem.

2 The unit price problem

If every ticket has the same price, regardless of how far the passenger is traveling,
the seat reservation problem is similar to the problem of coloring an interval
graph on-line. This is easy to see. The route the train travels from station 1
through station k is the section of the real line considered. The part of the route
a passenger travels is an open interval, and the seat the passenger is assigned is

3

the color the interval is given.

The problem of coloring an interval graph on-line has been well studied because
of applications to dynamic storage allocation. Let χ(G) denote the chromatic
number of a graph G and let A(G) denote the number of colors that an on-line
algorithm A uses in coloring G. Kierstead and Trotter [10] have shown that there
exists an on-line algorithm A such that A(G) ≤ 3χ(G)−2 for all interval graphsG,
and they prove a lower bound showing that this is best possible. When applying
this result to trains, it says that processing requests for reservations on-line means
that in order to accommodate all requests, the train need only have three times
as many seats as would be necessary if the requests were processed off-line and
an optimal algorithm were used. It also says that nearly this many seats can be
necessary. One must recognize, however, that the construction used for the lower
bound uses a large number of different endpoints for the intervals. In the train
application, this would mean that there would have to be an incredibly large
number of stations, so the lower bound may not be relevant for this application.

2.1 Bounds on the accommodating ratio

A more relevant measure of how well an algorithm does is the number of intervals
which get colors 1 through n, rather than the total number of colors needed,
i.e., the number of ticket requests that can be granted. We call the problem of
maximizing this number the unit price problem. However, this number might not
be too interesting if requests are such that no algorithm can grant very many,
so, as is customary for on-line algorithms, we compare to an optimal fair off-
line algorithm. This algorithm receives requests for tickets in the same arbitrary
order. It can look at all of the requests before making any seat assignments, but
it must process the requests in the given order and it must be fair.

An interesting case to consider is that in which there are enough seats so that the
optimal fair on-line algorithm could accommodate all requests. (The decision as
to how many cars the train should have is presumably based on expected ticket
demand.)

Definition 1 Let earnA(I) denote how much a fair on-line algorithm A earns
with the request sequence I, and let value(I) denote how much could be earned
if all requests in the sequence I were accommodated. A fair on-line algorithm
A is c-accommodating if, for any sequence of requests which could all have been
accommodated by the optimal fair off-line algorithm, earnA(I) ≥ c·value(I)− b,
where b is a constant which does not depend on the input sequence I. The
accommodating ratio for A is the supremum over all such c. ✷

Thus if A is c-accommodating, A will always earn at least a fraction c of the total
income possible, asymptotically. Note that in general the constant b is allowed to

4

depend on k. This is because k is a parameter to the problem, and we quantify
first over k. In most of the following proofs, this constant b is zero, so it is
omitted.

Note that in the case where there are enough seats to accommodate all requests,
the optimal fair off-line algorithm is polynomial time [11] since it is simply a
matter of coloring an interval graph with the minimum number of colors. Recall
that interval graphs are perfect [12], so the size of the largest clique is exactly
the number of colors needed. Thus, when there is no pair of stations (s, s + 1)
such that the number of people who want to be on the train between stations
s and s + 1 is greater than n, the optimal fair off-line algorithm will be able
to accommodate all requests. The contrapositive is clearly also true; if there is
a pair of stations such that the number of people who want to be on the train
between those stations is greater than n, the optimal fair off-line algorithm will
be unable to accommodate all requests. We will refer to the number of people
who want to be on the train between two stations as the density between those
stations.

First we show the somewhat surprising result that any fair on-line algorithm will
be able to accommodate at least half of the requests, if the optimal fair on-line
algorithm could have accommodated all the requests.

Since a request is also an interval, and since we use in the proofs that requests
are intervals (which have subintervals, for instance), we use the terms requests

and intervals interchangeably.

Theorem 2 Any fair on-line algorithm for the unit price problem is 1/2-accom-
modating.

Proof Consider any set of requests which the optimal fair off-line algorithm could
accommodate with only n seats. Let S denote the seating assignment found by
the fair on-line algorithm, and let U be the set of unseated intervals. It is only
necessary to show that there are at least as many intervals in S as in U , and this
can be done by assigning every interval in U to a distinct interval in S. Let S ′

be a seating assignment which is initialized to be the same as S, but which will
be altered by the following process.

First order the intervals in U by increasing left endpoint (starting station), break-
ing ties arbitrarily. Now process these intervals, one by one, in increasing order.
As an interval is processed, it will be removed from U , assigned to an interval in
S, and used to alter an interval in S ′. The following invariant will hold through-
out: None of the intervals in U can be seated in S ′, and all of the intervals in U
and S ′ could be seated by an optimal off-line algorithm.

The first part of the invariant holds initially since the algorithm is fair, and the
second part holds initially by the definitions of U and S ′.

5

For the induction part, we proceed as follows. For a given interval I, find a seat
which is empty in S ′ from the point where the passenger wants to get on until
at least the next station. Some such seat must exist because the entire set of
intervals could be accommodated by the optimal algorithm. By the invariant,
the interval I cannot be placed on that seat, so there must be a first interval J
assigned to that seat in S ′ which overlaps the interval I. Assign the interval I
to the interval J . Now remove I from U and replace J on this seat in S ′ by an
interval K, which is as much of I ∪ J as will currently fit on that seat. Clearly,
all of the intervals which are now seated in S ′ and all of the unseated intervals
currently in U could be seated by the optimal algorithm, since this operation
cannot increase the density anywhere. Furthermore, S ′ has been expanded, so
none of the remaining intervals in U will fit. This process can be repeated. The
order of processing ensures that each interval I ∈ U gets assigned to a distinct
interval in S. Thus, the on-line algorithm is 1/2-accommodating. ✷

Before continuing, we introduce the notation [s, t] to mean the interval from
station s to station t, where 1 ≤ s < t ≤ k.

As an example of a specific on-line algorithm, one might consider First-Fit, which
always processes a new request by placing it on the first seat which is unoccupied
for the length of that journey. Since this is a fair algorithm, the lower bound
of 1/2 on the accommodating ratio for any fair deterministic algorithm applies,
so First-Fit is at least 1/2-accommodating. In fact, however, it is at most k

2k−6
-

accommodating, so it is essentially as bad as any fair deterministic algorithm can
be, in the worst case. The same applies to Best-Fit, which always processes a
new request by placing it on a seat so it leaves as little total free space as possible
on that seat immediately before and after that passenger’s trip.

Theorem 3 The accommodating ratios for First-Fit and Best-Fit are no better
than k

2k−6
, for the unit price problem, assuming that k ≥ 4 and k ≡ 4 (mod 6).

Proof Throughout this proof, we call the algorithm First-Fit, but Best-Fit
would make exactly the same seat assignments on this sequence of requests as
First-Fit would, so one obtains the same result for Best-Fit. Assume that n
is divisible by 3. To produce a “difficult” sequence of requests, the adversary
starts with n/3 requests for the interval [1, 2]. Then, for s = 0, 1, ..., (k − 10)/6,
it gives n/3 requests for intervals [6s + 4, 6s + 8], and First-Fit places them on
the first n/3 seats. Now, it gives n/3 requests for the interval [1, 4], and for
s = 1, 2, ..., (k − 4)/6, it gives n/3 requests for intervals [6s, 6s + 4]. First-Fit
places them on the next n/3 seats. Next, for s = 0, 1, ..., (k − 10)/6, it gives n/3
requests for intervals [6s + 2, 6s + 6], and First-Fit places them on the last n/3
seats. The last set of requests are, for s = 0, 1, ..., (k − 8)/2, n/3 requests for
intervals [2s + 1, 2s + 3]. Since none of the seats has a gap of more than 2 and

6

none of these gaps begins at an odd-numbered station, First-Fit will be unable
to place them anywhere. Note that the density is no greater than n anywhere, so
the optimal fair off-line algorithm would be able to accommodate all the requests.
Thus First-Fit accommodates n

3
(3(k−4)

6
+ 2) requests and the optimal algorithm

accommodates n
3
(3(k−4)

6
+ 2 + (k−6)

2
) requests, so the accommodating ratio is no

better than k
2k−6

. ✷

For other k, not congruent to 4 modulo 6, similar results hold. Using the same
sequence of requests (and thus not using the last stations) gives upper bounds of
the form k−c1

2k−c2
for constants c1 and c2 which depend only on k (mod 6).

It is unknown if any algorithm has a better accommodating ratio than First-Fit,
but no fair on-line algorithm has an accommodating ratio much better than 4/5.

Theorem 4 No deterministic fair on-line algorithm for the unit price problem
is more than 8k−9

10k−15
-accommodating, when k is divisible by 3.

Proof The following is an adversary argument. Assume that n is divisible by
2. The adversary begins with n/2 requests for the intervals [3s + 1, 3s + 3],
for s = 0, 1, ..., (k − 3)/3. Suppose the fair on-line algorithm places these kn/6
intervals such that after these requests there are exactly qi seats which contain
both an interval [3i+1, 3i+3] and an interval [3i+4, 3i+6], i ∈ {0, 1, ...(k−6)/3}.
Then there are exactly qi seats which are empty from station 3i + 2 to station
3i+ 5. For each i, the adversary determines which of two cases hold:

• Case 1: qi ≤ 3n/10, or

• Case 2: qi > 3n/10.

For those values of i where case 1 occurs, there will now be n/2 requests for the
interval [3i+2, 3i+5]. The algorithm will accommodate qi of these requests, but
the optimal off-line algorithm would be able to accommodate all of them.

For those values of i where case 2 occurs, there will now be n/2 requests for the
interval [3i + 2, 3i + 4] and n/2 requests for the interval [3i + 3, 3i + 5]. The
algorithm will accommodate n − qi of these requests, but the optimal off-line
algorithm would be able to accommodate all of them.

Let S denote the set of indices for which case 1 is appropriate and S̄ denote the
set of indices for which case 2 is appropriate. The accommodating ratio is

kn
6
+
∑

i∈S
qi+

∑

i∈S̄
(n−qi)

kn
6
+
∑

i∈S
n
2
+
∑

i∈S̄
n

≤
k
6
+
∑

i∈S
3

10
+
∑

i∈S̄
7

10

k
6
+
∑

i∈S
1

2
+
∑

i∈S̄
1

=
1

2
+
∑

i∈S
(1
2
+ 3

10
)+
∑

i∈S̄
(1
2
+ 7

10
)

1

2
+
∑

i∈S
1+

∑

i∈S̄
3

2

≤
1

2
+(k−3

3
)(4

5
)

1

2
+(k−3

3
)

= 8k−9
10k−15

.

7

The second inequality holds because in general a
c
= b

d
< 1 and c < d implies that

e+xa+yb
e+xc+yd

≤ e+(x+y)a
e+(x+y)c

. ✷

For other k, not divisible by 3, similar results hold.

2.2 Bounds on the competitive ratio

Note that the accommodating ratio which is calculated in the above theorems is
not the same as the competitive ratio which is commonly used in evaluating on-
line algorithms. Karlin, Manasse, Rudolph, and Sleator [13] defined an algorithm
to be c-competitive if its cost on any sequence is within a factor of c of the cost of
the optimal off-line algorithm, plus a constant, on that sequence. This value c is
commonly referred to as the competitive ratio. In the case of seat reservations,
where the goal is maximizing income instead of minimizing costs, the competitive
ratio is still the ratio of how well the on-line algorithm does compared to how
well the optimal off-line algorithm does on a worst case sequence of requests, but
this ratio is no greater than one, instead of being at least one.

Definition 5 Let earnA(I) denote how much a fair on-line algorithm A earns
with the request sequence I, and let earnopt(I) denote how much an optimal
off-line algorithm could earn with the sequence I. A fair on-line algorithm A is
c-competitive if, for any sequence of requests earnA(I) ≥ c·earnopt(I) − b, where
b is a constant which does not depend on the input sequence I. The competitive

ratio for A is the supremum over all such c. ✷

Proving an upper bound on the accommodating ratio, automatically gives the
same bound for the competitive ratio, since the sets of sequences considered in
the accommodating case is a subset of the ones considered in the competitive
case. Thus, the competitive ratio can never be larger than the accommodating
ratio. On the other hand, theorem 2 is false if, in the statement of the theorem,
one substitutes “competitive” for “accommodating”. Fair on-line algorithms can
do very poorly compared to the optimal fair off-line algorithm.

Theorem 6 First-Fit and Best-Fit have competitive ratios which are no better

than
2− 1

k−1

k−1
for the unit price problem.

Proof Again, we will state everything in terms of the First-Fit algorithm, but
Best-Fit would behave exactly the same. We will assume that n is divisible by
k − 1. The request sequence will start with n/(k − 1) requests for each of the
intervals [1, 2], [2, 3], [3, 4], ..., [k−1, k] which First-Fit will put in the first n/(k−1)
seats. Then there will be n−n/(k−1) requests for [1, k] intervals, which First-Fit

8

will put in the remaining seats. At this point, the train will be full, but there will
now be n−n/(k−1) requests for each of the intervals [1, 2], [2, 3], [3, 4], ..., [k−1, k],
all of which First-Fit will be unable to accommodate. It will accommodate a total
of 2n − n/(k − 1) requests. The optimal off-line algorithm will put each of the
original first intervals on a different seat, thus arranging that it can reject the
longest intervals. Then, it will be able to accommodate all of the additional
short intervals. Thus, it will accommodate n of the original short intervals, plus

(n − n/(k − 1))(k − 1) of the later short intervals. This gives a ratio of
2− 1

k−1

k−1
.

This argument assumes that k ≥ 3, but the result trivially holds for k = 2 too.

✷

As was the case with the accommodating ratio, we can show a fairly tight result
for First-Fit and Best-Fit by proving that any fair algorithm does essentially as
well as these algorithms do in the worst case.

Theorem 7 Any fair on-line algorithm for the unit price problem is 2
k
-competi-

tive.

Proof Consider any fair on-line algorithm A and any request sequence I. Sup-
pose A accepts m requests, while the optimal off-line algorithm OPT accepts m′

requests, so the ratio r = m/m′. We will show that r ≥ 2/k. Call the set of
intervals which both A and the optimal off-line algorithm OPT accept, X; the set
of intervals which A accepts, but OPT rejects, Y ; and set of intervals which OPT

accepts, but A rejects Z. Let |S| denote the number of intervals in a set S of
intervals, and let ln(x) denote the length of an interval x. Let B denote the sum
over all n seats of the number of unit intervals for which the on-line algorithm A
does not seat any passengers.

Those intervals in Z which have length one can each be associated with a distinct
unit length subinterval of an interval in Y . To see this, consider all intervals in
Z of the form [i, i+ 1], for some fixed station i. Call this set of intervals Zi. Let
Xi ⊂ X be those intervals in X which include the subinterval [i, i+1], and Yi ⊂ Y
be those intervals in Y which include it. Since the on-line algorithm A rejected
every interval in Zi, that subinterval must be occupied on every seat, either by
an interval in Xi or by an interval in Yi. Since OPT is able to accommodate
all intervals in Xi ∪ Zi, each interval in Zi can be associated with a distinct
subinterval [i, i+ 1] of an interval in Y .

After this association is done, assume that u unit subintervals of intervals in
Y have a unit interval from Z associated with them. Since OPT is able to
accommodate all intervals in X ∪ Z, the remaining intervals in Z must fit in
the space B +

∑

y∈Y ln(y) − u. Since these intervals have length at least two,

|Z| ≤ u+
B+

∑

y∈Y
ln(y)−u

2
≤ B

2
+

∑

y∈Y ln(y).

9

Thus, the ratio

r = |X|+|Y |
|X|+|Z|

≥ |X|+|Y |
|X|+B

2
+
∑

y∈Y
ln(y)

= |X|+|Y |
|X|+ 1

2

(

∑

y∈Y
ln(y)+n(k−1)−

∑

x∈X
ln(x)

) .

Any interval has length at least one and at most k − 1, so

r ≥ |X|+ |Y |
1
2
(|X|+ |Y |(k − 1) + n(k − 1))

.

In addition, any fair algorithm must accept at least the first n requests from any
request sequence, so |X| ≥ n. Thus,

r ≥ 2(|X|+ |Y |)
|X|+ (|X|+ |Y |)(k − 1)

=
2

|X|
|X|+|Y | + (k − 1)

≥ 2

k
.

This shows that the competitive ratio for any fair on-line algorithm is at least
2/k. ✷

One can combine the ideas from theorems 4 and 6 to prove that no fair on-line
algorithm could have a competitive ratio better than 8/(k + 5).

Theorem 8 No deterministic fair on-line algorithm for the unit price problem
is more than 8/(k + 5)-competitive.

Proof The following is an adversary argument, so the request sequence depends
on the algorithm’s behavior. Assume that n is divisible by 2. The adversary
begins with n/2 pairs of requests for [1, 2] and [k − 1, k] intervals. Suppose the
fair on-line algorithm places them such that after these requests there are exactly
q seats which contain two intervals. Then n − 2q of the seats have exactly one
short interval scheduled. Next there will be q requests for [1, k] intervals, followed
by (n−2q)/2 requests for [1, k − 1] intervals, (n−2q)/2 requests for [2, k] intervals,
and q requests for [2, k − 1] intervals, all of which can be accommodated. Now
the train is full. One of two cases will occur:

• Case 1: q ≥ n/4, or

• Case 2: q < n/4.

If case 1 occurs, there will now be q requests for each of the intervals [1, 2],
[2, 3], [3, 4],..., [k − 1, k], none of which can be accommodated by the fair on-
line algorithm. On the other hand, the optimal fair off-line algorithm could put

10

each of the short intervals on a separate seat, so that it would be unable to
accommodate the q [1, k] intervals, but all of the other intervals would fit. The
on-line algorithm is able to accommodate 2n requests, while the off-line algorithm
can accommodate 2n − q + q(k − 1) requests. Since q ≥ n/4, this ratio is less
than 2n

2n+(n/4)(k−2)
= 8/(k + 6).

If case 2 occurs, there will now be (n − 2q)/2 requests for each of the intervals
[2, 3], [3, 4],..., [k − 1, k], none of which can be accommodated by the fair on-line
algorithm. On the other hand, the optimal fair off-line algorithm could pair up the
short intervals, putting two per seat, so that it would be unable to accommodate
the (n− 2q)/2 [2, k] intervals, but all of the other intervals would fit. The on-line
algorithm is able to accommodate 2n requests, while the off-line algorithm can
accommodate 2n− (n− 2q)/2+ ((n− 2q)/2)(k− 2) requests. Since q < n/4, this
ratio is less than 2n

2n+(n/4)(k−3)
= 8/(k + 5). This argument assumes that k ≥ 4,

but the result clearly holds for k = 2 and k = 3, too. ✷

3 The proportional price problem

Another common situation is the one in which the price of the ticket is propor-
tional to the length of the trip. In this section, we assume that the price of a
ticket from station s to station t is proportional to t− s. Maximizing income in
this case is solving the proportional price problem. Now if there are many sta-
tions, no fair on-line algorithm can ensure that revenues from ticket sales will be
as much as a constant factor of the revenues which could theoretically be earned
by the optimal fair off-line algorithm, even if one assumes that the optimal fair
off-line algorithm could have accommodated all of the requests. We have, how-
ever, obtained upper and lower bounds on the accommodating and competitive
ratios of any fair on-line algorithm, and these upper and lower bounds are within
a constant factor of each other.

Theorem 9 Any fair on-line algorithm for the proportional price problem is
1

k−1
-competitive and 1

k−1
-accommodating.

Proof Consider any sequence of requests. If the on-line algorithm assigns seats in
such a way that it collects less in revenues than the optimal fair off-line algorithm,
then it must reject at least one request, so it must assign at least one interval to
each of the n seats. The optimal fair off-line algorithm can do no better than to
fill every seat at all times, so its income is no more than n(k − 1). This gives a
ratio of at least 1

k−1
. ✷

Although this lower bound is trivial, it is tight if k−1 = n. In that case, consider a
fair on-line algorithm which puts the first n requests on different seats, no matter

11

what they are. Then, a request sequence consisting of [1, 2], [2, 3]...[k − 1, k],
followed by n− 1 requests for the interval [1, k] gives the ratio k−1

(k−1)+(n−1)(k−1)
=

1
k−1

.

Theorem 10 First-Fit and Best-Fit have accommodating ratios which are no
better than 4

k+2
for the proportional price problem.

Proof Again, we state everything in terms of the First-Fit algorithm, but Best-
Fit would behave exactly the same. We assume that n is divisible by 2. The
request sequence will start with n/2 requests for [1, 2] intervals and n/2 requests
for [3, 4] intervals, all of which First-Fit will put in the first n/2 seats. Then
there will be n/2 requests for [1, 3] intervals, which First-Fit will put in the last
n/2 seats. Finally, there will be n/2 requests for [2, k] intervals, which First-
Fit will be unable to accommodate. The total length it accommodates is 2n
units. The optimal off-line algorithm will put the [1, 2] intervals in the first n/2
seats, but the [3, 4] and [1, 3] intervals in the last n/2 seats. Then it will also be
able to accommodate the [2, k] intervals. The total length the optimal algorithm
accommodates is thus 2n+(k−2)(n/2). This gives a ratio of 2n

2n+(k−2)(n/2)
= 4

k+2
.

✷

One can prove that no fair on-line algorithm has an accommodating ratio better
than 4+2

√
13

3+2
√
13+k

≈ 11.211/(10.211 + k).

Theorem 11 No deterministic fair on-line algorithm for the proportional price
problem is more than 4+2

√
13

3+2
√
13+k

-accommodating, when k ≥ 4.

Proof The following is an adversary argument and is fairly similar to the proof
of theorem 4. We will refer to [1, k] intervals as long intervals. The request
sequence I, begins with m = ⌊(4 −

√
13)n⌋ pairs of [1, 2] and [3, 4] intervals.

Suppose the fair on-line algorithm A places them such that after these requests
there are exactly q seats which contain two intervals. One of two cases will occur:

• Case 1: q ≥ n− 2m = 2⌈(
√
13− 7/2)n⌉, or

• Case 2: q < n− 2m.

If case 1 occurs, the remainder of the request sequence I will consist of (n− q)/2
pairs of [1, 3] and [2, 4] intervals, followed by q requests for long intervals. The
on-line algorithm will be unable to accommodate any of the requests for long
intervals, so the total length it accommodates is 2m + 2(n − q). On the other
hand, the optimal fair off-line algorithm could match each interval of length two

12

with an interval of length one (since n− q ≤ n− (n− 2m) = 2m) and place any
extra intervals of length one in pairs, two per seat. This fills up

(n− q) + (2m− (n− q))/2 = m+ (n− q)/2

seats, so there are (n + q)/2 − m empty seats when the requests for the long
intervals arrive. Thus, (n + q)/2 −m ≥ n − 2m = 2⌈(

√
13 − 7/2)n⌉ of the long

intervals will fit, and the accommodating ratio is

2(m+n−q)
2(m+n−q)+(n−2m)(k−1)

≤ 6m
6m+(n−2m)(k−1)

≤ 6(4−
√
13)n

6(4−
√
13)n+(2

√
13−7)n(k−1)

= 4+2
√
13

3+2
√
13+k

.

If case 2 occurs, then the remainder of the request sequence I will consist of
n−2m+q requests for [1, 4] intervals, followed bym−q requests for long intervals.
The on-line algorithm will be unable to accommodate any of the requests for long
intervals, so the total length it accommodates is 2m+3(n−2m+q) = 3n+3q−4m.
The optimal fair off-line algorithm would seat each [1, 2] interval request on the
same seat as some [3, 4] interval request, so the optimal algorithm would satisfy
all of the requests. Thus,

earnA(I) = earnA(I)

value(I)
· value(I)

= 3n+3q−4m
3n+3q−4m+(m−q)(k−1)

value(I)

= 3n+3q−4m−10−3(k−1)
3n+3q−4m+(m−q)(k−1)

value(I) + (10 + 3(k − 1))

≤ 6n−10m−10−3(k−1)
6n−10m+(3m−n)(k−1)

value(I) + (10 + 3(k − 1))

≤ 6n−10(4−
√
13)n+10−10−3(k−1)

6n−10(4−
√
13)n+(3(4−

√
13)n−n)(k−1)−3(k−1)

value(I) + (10 + 3(k − 1))

≤ 6n−10(4−
√
13)n

6n−10(4−
√
13)n+(3(4−

√
13)n−n)(k−1)

value(I) + (10 + 3(k − 1))

= 4+2
√
13

3+2
√
13+k

value(I) + (10 + 3(k − 1)).

Thus no fair on-line algorithm has an accommodating ratio which is better than
4+2

√
13

3+2
√
13+k

.

✷

Corollary 12 No deterministic fair on-line algorithm has a competitive ratio
better than 4+2

√
13

3+2
√
13+k

.

13

4 Upper bounds for randomized algorithms

After proving upper bounds on how well deterministic algorithms can do, one
is tempted to look for a good randomized algorithm. When analyzing a ran-
domized on-line algorithm, one must compare it to some adversary, an oblivious

adversary, an adaptive on-line adversary, or an adaptive off-line adversary. Ben-
David, Borodin, Karp, Tardos, and Wigderson [14] have shown that it is not very
interesting to consider adaptive off-line adversaries since if there is a randomized
algorithm which is c-competitive against an adaptive off-line adversary, there is
also a deterministic algorithm which is c-competitive. It can easily be seen that
the techniques in their proof give the same result for the accommodating ratio
as for the competitive ratio. The only significant difference is that the adversary
is restricted in which request sequences it is allowed to produce (of course the
direction of the inequality must also be switched).

For the same reason, the following two results in [14] also hold if one substitutes
“accommodating” for “competitive”. Their theorem 2.2 states

Suppose G is α-competitive against any on-line adaptive adversary
and there is a β-competitive randomized algorithm against any obliv-
ious adversary. Then G is α◦β-competitive against any off-line adap-
tive adversary.

and corollary 2.2 states

If an α-competitive randomized strategy against any adaptive on-line
adversary exists, then it is α ◦ α-competitive against any adaptive
off-line adversary and thus there is a deterministic α ◦ α-competitive
strategy.

In [14], a notation slightly different from ours is used. We would say that an algo-
rithm has competitive ratio c and is c-competitive if earnA(I) ≥ c·earnopt(I)− b,
for all request sequences I. In [14], they are concerned with minimizing costs,
rather than optimizing earnings. They would say that an algorithm has compet-
itive ratio c if costA(I) ≤ c·costopt(I)+ b, for all request sequences I, and such an
algorithm is called α-competitive, where α is the linear function α(x) = c · x+ b.
Since we are dealing with linear functions, the function composition in the state-
ments above corresponds to multiplication of the ratios.

Thus, our theorems 4, 8, 11 and corollary 12, together with their corollary 2.2,
automatically give some bounds on how well a randomized algorithm can do
against an adaptive on-line adversary—simply take the square roots of the values
from those results. However, one can do better.

14

The bounds from theorems 4 and 8 also hold for randomized algorithms against
adaptive on-line adversaries. In the proofs of both theorems, the adversary gives
the algorithm some sets of pairs of unit length intervals, checks how many seats
have pairs of these intervals at the end of this, and performs differently depending
on how these numbers qi (in theorem 8 just q) compare to some specified value v.
The adaptive on-line adversary A behaves differently depending on the expected
number of seats on which the randomized algorithm R will place pairs of these
intervals; call these numbers E[qi]. Before presenting R with any requests, A
decides on case 1 or case 2 for each set of pairs by comparing this value E[qi] to
v. Now A will present the initial pairs of requests, placing each interval from a
pair on a different seat if case 1 was chosen, or placing both requests from a pair
on the same seat if case 2 was chosen. Meanwhile, the randomized algorithm R
will place some number q′i as pairs. The adversary A will continue acting as the
adversary from the proof, in the case it has chosen, using q′i in place of qi. Since
the amounts earned in each case by the on-line algorithm and by the adversary are
linear functions of the qi, by the linearity of expectations, the expected amounts
earned are these same amounts with E[qi] substituted for qi. Thus the ratios are
unchanged.

This argument almost works for theorem 11. The only problem with this is in
case 1. If q′ < n−2m, then the off-line algorithm will only be able to accommodate
q′ of the long intervals. If, however, we let m have the value n/3 (assume n is
divisible by three), then we will always have q′ ≤ m = n − 2m, so the off-line
algorithm always accommodates exactly q′ of the long intervals. If one divides into

the two cases depending on whether E[q] is at least or no more than (
√
257−15)n

6
,

then in case 1, the ratio will be 2(m+n−E[q])
2(m+n−E[q])+E[q](k−1)

≤ 11+
√
257

9+
√
257+2k

, and in case 2,

the ratio will be 3n+3E[q]−4m
3n+3E[q]−4m+(m−E[q])(k−1)

≤ 11+
√
257

9+
√
257+2k

. Thus no fair randomized
algorithm for the proportional price problem has an accommodating ratio which
is better than 11+

√
257

9+
√
257+2k

≈ 13.516
12.516+k

against an adaptive on-line adversary.

The result from theorem 4 also holds for randomized algorithms against oblivious
adversaries. Since the requests the adversary makes only depend on the case
chosen and not on q in any other way, the adaptive on-line adversary described
above for proving a bound on the accommodating ratio for the unit price problem
is actually an oblivious adversary. Unfortunately, it does not seem to be quite
so simple to prove results corresponding to theorems 8 and 11 for randomized
algorithms against oblivious adversaries. This leaves open the possibility that
there are randomized algorithms for these problems which can be proven to do
well against an oblivious adversary. We leave this as an open problem: Do there
exist good randomized algorithms for these two problems?

15

5 Summary of results

We list a brief schematic summary of the results obtained in this paper, leaving
out some details which can be found in the theorems in the previous sections.
The table shows upper and lower bounds on the competitive and accommodating
ratios obtained for the unit price and the proportional price seat reservation prob-
lems. It shows results for deterministic algorithms and for randomized algorithms
against adaptive on-line adversaries and against oblivious adversaries.

Ratio \ Algorithm Deterministic
Randomized
– vs. adaptive

Randomized
– vs. oblivious

Accommodating
– unit price

1
2
≤ r≤ 8k−9

10k−15
r ≤ 8k−9

10k−15
r ≤ 8k−9

10k−15

Competitive
– unit price

2
k
≤ r≤ 8

k+5
r ≤ 8

k+5
r ≤ 1

Accommodating/
Competitive
– proportional price

1
k−1

≤ r≤ 4+2
√
13

3+2
√
13+k

r ≤ 11+
√
257

9+
√
257+2k

r ≤ 1

Of course, the lower bounds on the ratio r for the deterministic algorithms also
hold for the randomized algorithms. The upper bounds of 1 indicate a lack of
nontrivial results.

In addition, we have shown some upper bounds for the specific algorithms, First-
Fit and Best-Fit, which are better than the general ones listed above.

First-Fit / Best-Fit Unit price Proportional price

Accommodating ratio 1
2
≤ r≤ k

2k−6
1

k−1
≤ r≤ 4

k+2

Competitive ratio 2
k
≤ r≤ 2− 1

k−1

k−1
1

k−1
≤ r≤ 4

k+2

It is unknown if any algorithms perform better than First-Fit or Best-Fit. We
leave this as an interesting open problem.

Acknowledgments

We would like to thank Susanne Albers for pointing out that our results for
the First-Fit algorithm also apply to Best-Fit. We would also like to thank an
anonymous referee for motivating us to prove some stronger results.

16

References

[1] Elias Koutsoupias and Christos H. Papadimitriou. Beyond Competitive
Analysis. In Proc. 35th IEEE Symp. on Foundations of Computer Science,
pages 394–400, 1994.

[2] Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber.
Competitive Paging with Locality of Reference. J. Comp. Sys. Sci., 50:244–
258, 1995.

[3] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An Optimal
Algorithm for On-Line Bipartite Matching. In Proc. 22nd Annual ACM

Symp. on Theory of Computing, pages 352–358, 1990.

[4] Prabhakar Raghavan and Eli Upfal. Efficient Routing in All-Optical Net-
works. In Proc. 26th Annual ACM Symp. on Theory of Computing, pages
134–143, 1994.

[5] Baruch Awerbuch, Yossi Azar, Amos Fiat, Stefano Leonardi, and Adi Rosén.
On-Line Competitive Algorithms for Call Admission in Optical Networks. In
Proc. Fourth Annual European Symp. on Algorithms, volume 1136 of Lecture
Notes in Computer Science, pages 431–444. Springer-Verlag, 1996.

[6] Juan A. Garay, Inder S. Gopal, Shay Kutten, Yishay Mansour, and Moti
Yung. Efficient On-Line Call Control Algorithms. J. Algorithms, 23:180–
194, 1997.

[7] Amotz Bar-Noy, Ran Canetti, Shay Kutten, Yishay Mansour, and Baruch
Schieber. Bandwidth Allocation with Preemption. In Proc. 27th Annual

ACM Symp. on Theory of Computing, pages 616–625, 1995.

[8] Richard J. Lipton and Andrew Tomkins. Online Interval Scheduling. In
Proc. Fifth Annual ACM-SIAM Symp. on Discrete Algorithms, pages 302–
311, 1994.

[9] Baruch Awerbuch, Yair Bartal, Amos Fiat, and Adi Rosén. Competitive
Non-Preemptive Call Control. In Proc. Fifth Annual ACM-SIAM Symp. on

Discrete Algorithms, pages 312–320, 1994.

[10] Henry A. Kierstead and Jr. William T. Trotter. An Extremal Problem in
Recursive Combinatorics. Congressus Numerantium, 33:143–153, 1981.

[11] Fănică Gavril. Algorithms for Minimum Coloring, Maximum Clique, Min-
imum Covering by Cliques, and Maximum Independent Set of a Chordal
Graph. SIAM J. Comput., 1(2):180–187, 1972.

17

[12] Tommy R. Jensen and Bjarne Toft. Graph Coloring Problems. John Wiley
& Sons, 1995.

[13] Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and Daniel D. Sleator.
Competitive Snoopy Caching. Algorithmica, 3:79–119, 1988.

[14] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. On the
Power of Randomization in On-Line Algorithms. Algorithmica, 11(1):2–14,
1994.

18

