
Advice Complexity of Adaptive Priority Algorithms

Joan Boyara, Kim S. Larsena,1, Denis Pankratovb

aDepartment of Mathematics and Computer Science, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark

bDepartment of Computer Science and Software Engineering, Concordia University,
2155 Guy St., Montreal, Quebec H3H 2L9, Canada

Abstract

The priority model was introduced to capture “greedy-like” algorithms. Mo-
tivated by the success of advice complexity in the area of online algorithms,
the fixed priority model was extended to include advice, and a reduction-
based framework was developed for proving lower bounds on the amount of
advice required to achieve certain approximation ratios in this rather power-
ful model. To capture most of the algorithms that are considered greedy-like,
the even stronger model of adaptive priority algorithms is needed. We extend
the adaptive priority model to include advice. We modify the reduction-
based framework from the fixed priority case to work with the more pow-
erful adaptive priority algorithms, simplifying the proof of correctness and
strengthening all previous lower bounds by a factor of two in the process.

As evidence that adding advice to adaptive priority algorithms extends
both adaptive priority algorithms and online algorithms with advice, we
present a purely combinatorial adaptive priority algorithm with advice for
Minimum Vertex Cover on triangle-free graphs of maximum degree three.
Our algorithm achieves optimality and uses at most 7n/22 bits of advice. No
adaptive priority algorithm without advice can achieve optimality without
advice, and we prove that an online algorithm with advice needs more than
7n/22 bits of advice to reach optimality.

We show connections between exact algorithms and priority algorithms
with advice. The branching in branch-and-reduce algorithms can be seen
as trying all possible advice strings, and all priority algorithms with advice

Email addresses: joan@imada.sdu.dk (Joan Boyar), kslarsen@imada.sdu.dk (Kim
S. Larsen), denis.pankratov@concordia.ca (Denis Pankratov)

1Corresponding author.

Preprint submitted to Theoretical Computer Science June 19, 2023



that achieve optimality define corresponding exact algorithms, priority exact
algorithms. Lower bounds on advice-based adaptive algorithms imply lower
bounds on running times of exact algorithms designed in this way.

Keywords: greedy algorithms, priority algorithms, adaptive priority
algorithms, exact algorithms, online algorithms, advice complexity

1. Introduction

Everybody who has studied algorithms has an intuitive notion of a greedy
algorithm. In many discrete optimization problems, input can be represented
as a sequence of items coming from some infinite universe, and the output
of an algorithm can be represented as a sequence of decisions – one decision
per item. A decision could, for example, be to accept or reject an item. The
quality of such a sequence of decisions is often measured using an objective
function that must be maximized (or minimized). Greediness refers to mak-
ing the decision that maximizes the objective function at the current point
in time. This often means that the algorithm pretends that each input item
is the last it is going to receive.2

One of the earliest formalizations of a greedy-like notion was in the form
of matroids by Whitney [2], more recently extended to greedoids by Korte
and Lovász [3, 4, 5, 6]. In spite of the profound connection between greedoids
and optimization problems admitting optimal greedy algorithms, greedoids
do not give a complete characterization of what people usually characterize
as greedy algorithms, and there is no consensus in the research community
as to a formal definition of greedy algorithms.

Priority algorithms were introduced by Borodin, Nielsen, and Rackoff [7]
in an attempt to formalize “greedy-like” or “myopic” algorithms, trying to
encompass the algorithm designers’ notion of greedy-like that goes beyond
the matroid-based framework (earlier works such as [8, 9] have discussed the
basic idea of using priority functions for scheduling problems as an informal
but fairly well understood concept). One of the purposes of this formalization
is to prove results giving lower bounds on how well any priority algorithm can
approximate an optimal solution, without requiring any assumptions such as

2For some problems, in particular many graph problems, the input items received so
far may require a certain number of further input items to be given before a well-defined
final input is formed; see [1] for a detailed discussion of these issues.

2



P ̸= NP. The priority model has been studied in the context of many combi-
natorial optimization topics, including classical graph problems [10, 11, 1, 12],
scheduling [7, 13, 14, 15], satisfiability [16, 17], auctions [18], and general re-
sults, present in many of the above contributions as well as in [19]. Many
classical greedy algorithms have a simple structure consisting of two compo-
nents: a sorting, ordering, or priority component and an online, irrevocable
decisions component. The second component is where an irrevocable deci-
sion is made, while the first component determines the order in which the
items are processed by that second component. Priority algorithms have this
structure and they come in two flavors: fixed and adaptive. We illustrate
these models with two well known examples.

The input to the Minimum Spanning Tree problem is an edge-weighted,
undirected, connected graph, and the objective is to select a set of edges
forming a spanning tree of minimal total weight. Viewing Kruskal’s algorithm
for this problem as a fixed priority algorithm, we define the universe of input
items as U = {(u, v, w) ∈ N×N×Q | u ̸= v}, where (u, v) is an edge between
vertices u and v with weight w. An input instance is a finite subset I ⊂ U .
Kruskal’s algorithm can be thought of as defining an ordering on the entire
universe U (by non-decreasing weight w, with arbitrary tie-breaking) prior
to seeing any input items. The input I is then given to the algorithm one
input item at a time, in the order defined on the universe. When we discuss
correctness and quality, we often think of the input as being given by an
adversary, but of course still respecting the ordering that may not be total.
The algorithm makes an irrevocable decision when receiving the next item:
accept the edge if it does not form a cycle with the current partial solution
(the set of accepted items so far), and reject it otherwise.

Strengthening the model, adaptive priority algorithms may change the
ordering of the universe after processing each input item. An example of an
adaptive priority algorithm is Prim’s algorithm for the Minimum Spanning
Tree problem. The universe is as above. Prim’s algorithm also orders edges
by non-decreasing weight, but it has to maintain a single connected compo-
nent. Thus, the algorithm gives higher priority to edges incident to vertices
already added to the solution. Since the set of vertices in the solution keeps
growing, the ordering (the priority function) is updated in every step. We
emphasize that it is an ordering of the universe, the rest of the input is not
known, and the ordering is redefined before the next input is given.

Note that online algorithms are usually only used when problems have
an online nature, while priority algorithms provide a framework for certain

3



offline algorithms. However, as models, they seem quite similar. Priority
algorithms can be seen as either extending the power of online algorithms
by allowing a limited ordering of input items, or as limiting the power of an
adversary by not allowing it full control over the order of items.

We now discuss advice, starting with the online algorithms setting, where
advice has been considered for some time. An online algorithm processes
a sequence of input items, one at a time, with no knowledge of future in-
put items; an assumption that, even for inherently online problems, is not
necessarily realistic. Often some information about the input sequence is
known in advance, e.g., its length, the largest weight of an item, etc. The
knowledge could be absolute, approximate, or expected from experience. An
information-theoretic way of capturing some of this additional knowledge is
provided by the advice tape model3 of Hromkovič et al. [24] (further technical
development in Böckenhauer et al. [25]). In this model, an all powerful oracle
that knows the algorithm and sees the entire input sequence4 writes bits (re-
ferred to as advice bits) on an infinite tape. The algorithm uses the advice
tape in processing the online items. The “tape” analogy is used in many
other models, but the only important properties are that there are always
bits when the algorithm asks for them and there is no detectable end to the
collection of bits. The advice complexity of an algorithm is the number of
bits read. Usually, we are interested in the worst-case number of bits read as
a function of the input length. Results for online algorithms with advice are
bounds on the number of advice bits necessary and/or sufficient to achieve a
given competitive ratio.5 Often, a few bits of advice improve the competitive
ratio dramatically over what is achievable by an online algorithm without
advice.

The lower bound results can be interpreted as hardness results for the on-
line problems: if many advice bits are necessary in order to reach optimality
(or significantly improve the competitive ratio), the problem is hard. Results
can also give strong lower bounds on certain types of semi-online algorithms

3Other advice models have been proposed, including the helper and answerer models
of Dobrev et al. [20], the tree exploration model with advice of Fraigniaud et al. [21], and
the per request model of Emek et al. [22]. See [23] for a comparison of these models.

4In contrast with the online and priority worlds, in the Turing machine world the advice
depends only on the input length n and not the input itself.

5The competitive ratio is the term used in online algorithms for what is essentially the
approximation ratio when considering offline problems.

4



and inspire algorithm design. See [23] for an extensive list of articles. Of
most relevance to us are results concerning graph algorithms [26, 27, 28, 29,
30, 31, 32, 33].

A superset of the current authors introduced advice into the fixed priority
model [34]. As for online algorithms in the advice tape model, an oracle
knows the algorithm, sees the entire input sequence, and writes advice bits
on the tape. The advice is then read by the priority algorithm at its discretion
during its execution. Just to emphasize, since the oracle knows the algorithm,
the bits always represent what the algorithm expects, so the oracle and the
algorithm cooperate. In this model, one is interested in the number of advice
bits necessary and/or sufficient to achieve a given approximation ratio. In
addition to introducing this model, [34] also developed a general framework
for proving lower bounds in this model and applied this framework to several
classical problems, including Maximum Independent Set, Maximum Bipartite
Matching, Minimum Vertex Cover, etc. That paper left it as an open question
whether the ideas can be extended to the (arguably more useful) adaptive
priority model, and if this would result in useful new paradigms. Our current
paper addresses that question.

There are many models that represent computation as a leveled tree (or
even more generally as a DAG – directed acyclic graph), such as decision
trees, branching programs, small depth formulas/circuits, various proof sys-
tems (tree-like and general resolution), pBT algorithms, etc. One can often
define a notion for each of these tree/DAG models which intuitively captures
the amount of parallelism needed to carry out the computation efficiently.
Such a notion can be viewed as being somewhat analogous to the notion of
advice in our setting. For example, in the pBT (priority backtracking) model
of Alekhnovich et al. [35], an algorithm is represented by a pair of functions:
one function allows reordering of the universe of input items, and another
function assigns a value to a decision based on already seen input items. The
ordering function can be fixed, adaptive, or fully adaptive (we are not dis-
cussing this in full here). The execution of such an algorithm on a particular
instance can be represented by an ordered leveled tree, where each node cor-
responds to a partial execution and is labeled by the sequence of input items
seen so far and decisions made for those items. The children of a node (in
order from left to right) correspond to different input items to be considered
next according to the current ordering function. The correctness condition
requires that at least one of the leaves contains an optimal choice of decisions.
The width of a pBT algorithm is the maximum width of a level of such a

5



tree, where the maximum is taken over all levels and all instances of a given
length. The length of the ordered (left-to-right) depth-first search traversal
of a the pBT tree corresponds to the running time of the natural backtrack-
ing algorithm associated with the pBT algorithm. This model captures many
backtracking algorithms, but not all of them. For example, early termination
as well as choices of which decision to make next can be based on only the
already seen portion of the input in pBT, and these choices cannot be made,
for example, based on the value of an LP-relaxation of the entire instance
(as is often done in real-life backtracking algorithms). The logarithm of the
width of a pBT algorithm can be thought of as “advice” length, but there
are notable differences between the pBT model and the priority algorithms
with advice model. In particular, one can try to simulate the pBT model by
a priority algorithm with advice, and vice versa, but one quickly runs into
issues of whether priorities and/or decisions are allowed to depend on advice.
Establishing precise connections between these models is an interesting open
problem. Connections between the fixed pBT algorithms and fixed priority
algorithms with advice were previously discussed in [34]. While it is interest-
ing to carry out a comparative study between various tree/DAG-like models
and expose informal and formal connections between them and the notion
of advice, it is not the goal of the present paper. We discuss only one such
connection at length later in this paper, and that is the connection between
priority algorithms and branch-and-bound/branch-and-reduce algorithms.

We now briefly list our contributions.

• We introduce the notion of advice in the adaptive priority model and
identify four natural models based on how the priority function is al-
lowed to depend on the advice.

• We extend the general lower bound framework of [34] to work in what
we call the oblivious priority function model. The results automatically
apply to the weakest model which does not use advice in the priority
functions at all and also to the fixed priority results in [34]. We simplify
the proof that the framework from [34] works, and we strengthen the
lower bounds implied by the framework by a factor of 2. The framework
offers a template for lower bound results: By exhibiting gadget pattern
pairs fulfilling a given list of criteria, a lower bound can be computed
with fairly limited work.

• As evidence that adding advice to adaptive priority algorithms extends

6



both adaptive priority algorithms and online algorithms with advice,
we study the classical Minimum Vertex Cover problem on triangle-free
graphs of maximum degree 3. We present an adaptive priority algo-
rithm with advice that achieves optimality. The algorithm works in
all but the weakest of our models. Known results imply that adaptive
priority algorithms for this problem cannot achieve optimality without
advice [1]. We show that online algorithms must use more advice than
our algorithm to achieve optimality. Our algorithm is purely combina-
torial and requires a somewhat involved analysis.

• Priority algorithms with advice that achieve optimality naturally lead
to exact algorithms by trying all possible advice strings of length no
more than the upper bound proven. We call exact algorithms designed
this way priority exact algorithms. We discuss the implications of
our lower bounds on priority algorithms with advice for proving lower
bounds on the running times of such algorithms.

In [34], the lower bound template is based on an advice-preserving re-
duction (using the same advice) between two problems within the priority
framework: it is established that if there exists a fixed priority algorithm with
advice for problem A, then there also exists one for Pair Matching (PM) with
the same advice length, and it is shown that PM requires a lot of advice. Such
a reduction must map each input for PM to an input for A, so that deci-
sions for A can be used for making decisions for PM. The difficulty is that
the inputs and the decisions for A and PM must be aligned so that inputs
respect priority functions, and decisions are not based on information not
available at that point during the execution of the algorithm. This becomes
significantly harder when moving to adaptive priority algorithms, since the
priorities for the two problems can depend on advice and can change dramat-
ically between input items. We avoid some of these difficulties by working
with an advice-preserving reduction between a problem in an online setting
and a problem in the priority setting, removing the difficulties in aligning pri-
ority functions, and allowing us to focus more on how priority functions are
allowed to depend on advice. Our extension to adaptive priority algorithms
enables us to define and establish lower bounds for priority exact algorithms.

The remainder of the paper is organized as follows. Section 2 introduces
the four adaptive priority models with advice. In Section 3, we discuss con-
nections to exact algorithms. In Section 4, we show the first lower bound,

7



based on a construction from [1], and show that the result is tight for a re-
stricted problem. This first example problem serves as an introduction to
some of our lower bound techniques. In Section 5, we present our adaptive
priority algorithm for the Minimum Vertex Cover problem on triangle-free
graphs of degree at most 3 and analyze its advice complexity. Section 6
presents the extension of the general lower bound framework of [34] to adap-
tive priority with advice, along with a new framework for algorithms that
solve to optimality. Another example problem is considered in Section 7, pre-
senting different lower bounds obtained in two of the different models, along
with a matching upper bound in one of the two models. Open problems are
discussed in Section 8.

2. Models

A request-answer game [36, 37] is specified by the universe of input items
U , the universe of decisions D, the objective function Obj : Un × Dn →
R ∪ {±∞} on inputs of length n, and the type of a problem, which could
be either “maximization” or “minimization”. An input to a request-answer
game is a finite multi-set of items from the universe, i.e., X = {x1, . . . , xn}
where xi ∈ U . We assume that the objective function is invariant under si-
multaneous permutations of input items and decisions, i.e., for all x1, . . . , xn,
all d1, . . . , dn, and all permutations π : [n]→ [n],

Obj(x1, . . . , xn, d1, . . . , dn) = Obj(xπ(1), . . . , xπ(n), dπ(1), . . . , dπ(n)).

The values ±∞ in the objective can be used to specify infeasible input. The
setting of request-answer games is very general and includes most problems
of interest in the areas of online and priority algorithms.

A function P : U → R is called a priority function. We introduce a short-
hand notation maxP X := argmax{P (x) | x ∈ X} for the element of highest
priority in the multi-set X. In case there are multiple elements of highest
priority, we assume ties are broken in an adversarial fashion, i.e., we assume
the most unfavorable tie-breaking for our algorithms. Thus, all upper bounds
we prove will be valid for all input instances, and we can make the simplifying
assumption that maxP X is an element, and not a set of elements.

A priority algorithmAlg is not given all of the input,X, at once. Instead,
Alg receives X one item at a time. The priority algorithm has some limited
control over the order in which X is given: Each time, before the next input

8



item is given, Alg defines a priority function, P , and the next input item
given to Alg is maxP X. Recall that the priority function is defined on the
universe, U , and not directly on the remaining part of the input X, which
is not known to the algorithm. We use both the terminology that an input
item has been given to the algorithm and that the algorithm has received or
gets an input item.

What we have described above is the most general version of priority
algorithms, called adaptive, since the priority function can be adapted based
on the input given so far. As the name indicates, fixed priority algorithms
are those where the priority function cannot be updated during the execution
of the algorithm. This simpler class was treated in [34].

We consider priority algorithms in the advice tape model [24, 25], and
start with a discussion of this model. The setup is exactly as described for
online algorithms in the introduction. In the advice tape model, there are
two cooperating players – the algorithm and the oracle. The oracle sees
the entire input X and writes advice to the algorithm on the infinite advice
tape using the binary alphabet. The algorithm can decide to read zero or
more bits (for emphasis, often referred to as advice bits) from the advice
tape, sequentially from left to right, before making each decision. We use
si to refer to the prefix of the advice tape that has been read so far by the
algorithm. The maximum number of advice bits read, that is, the largest
value of |sn| for any input of size n, is the advice complexity of the algorithm
(a function of n). See Algorithm 1 for a template illustrating the setup for a
priority algorithm with advice.

A priority algorithm with advice must have this format. A concrete algo-
rithm is defined by specifying three elements for each iteration: the priority
functions Pi, how many advice bits to read, and how the decision di is made.

The decisions, di, and how many bits of advice to read, |si+1| − |si|, are
always functions of the information seen so far, i.e., the input seen so far, the
advice seen so far, and the previous decisions. Of course, one may omit the
dependence of di on d1, . . . , di−1, since these decisions can be reconstructed
from x1, . . . , xi−1 and si−1. As mentioned in the introduction, priority al-
gorithms with advice can give rise to practical algorithms. However, as a
starting point, advice is created by an oracle, and the setup is used to mea-
sure some aspect of problem difficulty. Thus, it makes sense to consider how
advice may be used by the algorithm. In particular, to what extent do we
allow the priority functions to be defined based on the advice obtained by
the algorithm at a given time? We make the following distinctions:

9



Algorithm 1 Template: Priority Algorithm with Advice

1: X is the input
2: read zero or more bits from the advice tape
3: s0 ← the prefix of the advice string just read
4: i← 1
5: while X ̸= ∅ do
6: Pi ← the priority function for iteration i
7: xi ← maxPi

X
8: read zero or more bits from the advice tape
9: si ← the known content of the advice string

10: di ← Di(x1, x2, . . . , xi, d1, d2, . . . , di−1, si) ▷ the decision for input xi

11: X ← X \ {xi}
12: i← i+ 1

Unrestricted priority function model. We allow the priority functions
to depend on the input received so far and the advice read so far:

Pi(x1, . . . , xi−1, si−1).

Oblivious priority function model. We allow the priority function to
depend on the input received so far and the advice read so far, as in the unre-
stricted priority function model, but the priority function must give the same
priority to all input items which are indistinguishable, when ignoring names
not present in the input items already seen. (For example, for unweighted
graph problems, vertices of the same degree, where neither the vertices nor
their neighbors have been seen yet, should have the same priority.)
Decision-based priority function model. We allow the priority functions
to depend on the input received so far and the decisions made so far:

Pi(x1, . . . , xi−1, d1, . . . , di−1).

Advice-free priority function model. We only allow the priority func-
tions to depend on the input received so far:

Pi(x1, . . . , xi−1).

Similarly to this, in [34] the priority functions were assumed to not depend
on the advice (but the priority function was fixed, not adaptive).

10



Clearly, any algorithm that works in the oblivious priority function model
also works in the unrestricted priority function model. Any algorithm that
works in the decision-based priority function model also works in the unre-
stricted priority function model, since the input and advice determine the
decisions. Similarly, any algorithm that works in the advice-free priority
function model can be simulated by an algorithm in any of the other models,
for which reason we refer to this model as the weakest. Observe that the
unrestricted and decision-based priority functions models coincide when ad-
vice encodes the decisions to be made. This sometimes functions as a point
of reference, since no more advice than encoding all the decisions is neces-
sary. The oblivious priority function model appears to be incomparable to
the decision-based priority function model and its motivation is as follows.
Although it seems natural to let decisions depend on the advice in any way
and it makes sense to let the priority function depend on advice, it does not
seem natural for an algorithm to use, for example, a priority function that
prefers input items with certain names that have not been seen yet.

When including advice, one can ask how computationally expensive it
is to generate that advice. This could vary significantly from one algo-
rithm/application to the next, but the model allows anything; the priority
model does not impose any computational restrictions on priority functions
or decisions by the algorithm. This is in line with the information-theoretic
nature of the priority model and similar to other areas, such as online algo-
rithms, communication complexity, decision tree complexity, etc. These mod-
els sidestep hard computational questions, such as P vs. NP, by introducing
informational bottlenecks. The strengths of this information-theoretic mod-
eling are that it makes the proven lower bounds stronger and that it makes
it possible to prove results that do not depend on unproven assumptions in
complexity theory. The main weakness of this information-theoretic model-
ing is that the algorithms that are designed might be impractical. However,
priority algorithms achieving good approximation ratios tend to have easily
computable priority functions and easily computable decisions.

3. Priority Exact Algorithms

There is a simple, general technique one can use to convert a priority
algorithm with advice to an offline algorithm with the same approximation
ratio. If the algorithm uses at most ℓ bits of advice for some input length,
then, on an input of that length, one can enumerate all 2ℓ advice strings and

11



execute the algorithm on each of them, keeping track of the best result. We
call such algorithms priority exact algorithms, since algorithms which solve
problems to optimality are generally referred to as exact algorithms.

3.1. Example: Maximum Independent Set

In the textbook Exact Exponential Algorithms by Fomin and Krasch [38],
in presenting the measure-and-conquer technique, they begin with a simple
branching algorithm, mis3 (Algorithm 2), for Maximum Independent Set, the
problem of finding the maximum size among subsets of the vertices where no
two of the vertices are adjacent. We show how mis3 could be changed to a
priority exact algorithm for graphs of bounded degree at most ∆.

Algorithm 2 Maximum Independent Set algorithm mis3 from [38]. N [v]
denotes {v} ∪ {neighbors of v}, d(v) the current degree of v, ∆(G) the max-
imum degree in G, and α(G) the size of the maximum independent set.

1: Algorithm mis3 (G)
2: Input: A graph G = (V,E).
3: Output: A maximum cardinality of an independent set of G.
4: if ∃v ∈ V with d(v) = 0 then
5: return 1 + mis3(G \ {v})
6: if ∃v ∈ V with d(v) = 1 then
7: return 1 + mis3(G \N [v])

8: if ∆(G) ≥ 3 then
9: choose a vertex v of maximum degree in G

10: return max(1 + mis3(G \N [v]), mis3(G \ {v}))
11: if ∆(G) ≤ 2 then
12: compute α(G) using a polynomial time algorithm
13: return α(G)

As a first intuitive explanation, note that the algorithm gradually de-
creases the size of the graph until the size of a maximal independent set is
found, except that in Line 10 two options are explored recursively. Using
advice, one could simply make the correct choice of these two options. A
priority exact algorithm could be designed by trying all different sequences
of such choices.

In greater detail, an input item is a vertex, together with a list of all
its neighbors. In the priority algorithms framework, we assume that the

12



history is known, i.e., that the algorithm knows the sequence of all earlier
input items it has received and which decisions it made for these. Thus, in
designing priority functions, we can also talk about the current degree, i.e.,
the number of neighbors that have not yet been removed, as it is done in
mis3.

In the priority exact algorithm we design the priority functions, Pi, de-
pending partially on the current degrees of the vertices. Since neighbors of
accepted vertices must be rejected, these neighbors are given highest priority
(∆+3, say). Then, vertices of current degree 0 have the next highest priority,
∆+2, vertices of current degree 1 have priority ∆+1, and all other vertices
have priority equal to their current degree.

When there are only disjoint cycles remaining, we define priority functions
as follows: The lowest priority vertices are those of degree 2, so they are not
processed until it is time to start a new cycle. Every time we start the
processing of a new cycle (a degree 2 vertex), we accept the vertex (include
it in the maximum independent set). The highest priority is given to vertices
adjacent to a vertex just processed. If it has current degree 0, it is rejected,
because it is adjacent to the first vertex in the cycle. If it has current degree 1,
it is accepted if its neighbor was rejected and vice versa. Note that the
priority does not alone determine the decision made.

Advice comes into play in the case where the branching occurs, in Line 10.
One bit of advice is used to tell which branch gives the better result, and the
adaptive priority algorithm with advice takes that branch, i.e., the advice
is used to determine if the vertex under consideration should be included
into the maximum independent set or not. Note that the algorithm can
easily determine when to read a bit of advice, so the maximum amount of
advice needed is the number of branches on the shortest (meaning with fewest
branches) of the root-to-leaf paths that leads to a maximum independent
set. If one has a bound m on that number of branches in the best case,
it is never necessary to go through more than all 2m possible bit strings of
length m, and the natural approach is to do the recursive branching with a
bit in the advice string indicating which branch to take. In doing so, if one
encounters an (m + 1)st branching, one can simply terminate computation
in that direction and move to the next bit string. Thus, mis3 can be seen
as a priority exact algorithm. Since the priority functions depend only on
which branches have been taken previously on the current root-to-leaf path,
it only depends on decisions made so far, so the defined priority algorithm
with advice is in the decision-based priority function model.

13



The calculation of m is exterior to the algorithm and could, for example,
be an upper bound given as a function of |V |. By recording accepted vertices,
keeping the result with the best α(G), it is simple to return a maximum
independent set instead of just the size of it.

By the standard correspondence between Maximum Independent Set and
Minimum Vertex Cover, mis3 can immediately be converted to an algorithm
for finding a minimum vertex cover6 by reversing the decisions made. In Sec-
tion 5, mis3 is extended to a priority algorithm with advice, PriorityVC,
for finding minimum vertex covers in triangle-free graphs of maximum de-
gree 3, adding more priorities, particularly for vertices of degree 3, considering
which neighbors are shared with previously processed vertices. PriorityVC
is shown to require at most 7|V |/22 bits of advice, which is provably less ad-
vice than required by any online algorithm with advice. No adaptive priority
algorithm without advice can achieve an approximation ratio for this prob-
lem better than 4/3 [1]. Thus, PriorityVC is an example of an algorithm
with an amount of advice that cannot be matched by any online algorithm
and with an approximation ratio that cannot be matched by any priority
algorithm without advice. This shows that the class of adaptive priority al-
gorithms with advice is a larger class than either of these related classes of
algorithms.

Running the algorithm PriorityVC on all possible advice strings of
length 7n/22, we obtain an offline algorithm solving the problem to optimal-

ity, a priority exact algorithm, that runs in time7 O∗
(
2

7n
22

)
⊂ O∗(1.247n).

This is much better than the naive O∗(2n) brute-force approach; however,
there are other more involved optimal offline algorithms achieving even better
running times for the Minimum Vertex Cover problem. The best published
exact algorithm for Minimum Vertex Cover restricted to graphs of maxi-
mum degree 3 runs in O∗(1.0836n) [39]. That algorithm is not a priority
exact algorithm; in Section 4 and Subsection 6.3, we show that no prior-
ity exact algorithm (derived from a priority algorithm with advice in the
decision-based or oblivious priority function models) for Minimum Vertex
Cover on triangle-free graphs of maximum degree 3 has a running time less

6Minimum Vertex Cover is the problem of finding a minimum-size subset of the vertices
where every edge in the graph is incident to at least one of the vertices.

7The notation O∗() is similar to big-Oh, except that it allows ignoring polynomial
factors, i.e., O∗(g(n)) has the same meaning as O(g(n) poly(n)).

14



than Ω(1.142n). We comment further on this in Subsection 6.3.

3.2. Priority Exact Algorithms, in General

When attacking new NP-hard problems, the priority exact algorithms ap-
proach has the potential to deliver a first upper bound that beats the brute
force approach, giving an aim for later, more specialized, possible improve-
ments.

A significant motivation for originally introducing and studying priority
algorithms was to develop a framework for proving lower bounds for a large
collection of algorithms at the same time: Establishing that no fixed (or
adaptive) priority algorithm can attain a certain approximation ratio implies
that one has to look beyond this fairly broad design pattern to possibly dis-
cover an algorithm with a better approximation ratio. We note that this
motivation is just as relevant for the design of exact or approximation algo-
rithms using the framework outlined above. A discussion of the lower bound
results we obtain is included in Subsection 6.3.

Priority exact algorithms form a subset of the more general branch-and-
reduce [40, 41] exact algorithms, which find an optimal solution to a problem
using a search tree and backtracking. Trying successive possibilities for the
advice, setting some decision to accept or reject for example, is essentially the
same as a branch operation in the more general algorithms. The restriction
that input items be prioritized independently of each other means that there
are many possibilities allowed in the general branch-and-reduce algorithms
that are not allowed in priority exact algorithms. For the Minimum Vertex
Cover problem, for example, priority exact algorithms cannot handle maxi-
mal connected components of small size separately (or even handle a vertex
of degree 2 differently depending on whether or not it is contained in a tri-
angle); in fact, the lower bounds are proven by considering small connected
components.

While there are restrictions, the advantage of priority exact algorithms is
that they should be relatively easy to implement and efficient (other than the
branching, of course). A straight-forward implementation of a priority exact
algorithm as a branching algorithm may lead to many fewer branches than
one would obtain by enumerating all bit strings of the maximum length,
even in the worst case. In many cases the problem size would reduce by
different amounts, depending on whether the decision was accept or reject,
for example. One could also apply standard techniques for establishing upper

15



bound results, such as measure and conquer [42] to obtain better upper
bounds.

In general, branch-and-reduce algorithms can be considered to have been
converted from (usually not priority) algorithms with advice. Advice can be
given for each node in the search tree indicating which branch to take to
find an optimal solution. If the work done at a node can be handled by a
priority algorithm (and all root-to-leaf paths have the same length), then it
is essentially a priority exact algorithm. However, for example for Minimum
Vertex Cover, most exact algorithms use operations that do not fit in the
priority algorithm model.

In [43], the author presents a lower bound that also holds for priority
exact algorithms (recursive proofs) for Maximum Independent Set (if one
ignores cutting off the length of the root-to-leaf paths considered due to the
maximum length of the advice string necessary), but also for more powerful
algorithms, and proves that there exists a c > 1 such that the running time
is at least Ω(cn). In fact, this result holds for every graph in a large class.

Exponential lower bounds for other classes of (what can be seen as)
branch-and-reduce algorithms exist for other problems as well, for exam-
ple k-SAT [44, 45, 46], Maximum Independent Set [43], Graph Coloring [47],
and Knapsack [48].

4. Example: Minimum Vertex Cover

We now present an example, mainly illustrating some of our techniques for
proving lower bounds for priority algorithms with advice, but also presenting
an algorithm showing that the result is tight for the class of inputs given by
the adversary. Both the algorithm and lower bound apply to the decision-
based priority model.

Given a simple undirected graph G = (V,E), a subset of vertices S ⊆ V
is called a vertex cover if every edge in G is incident to at least one vertex
from S. Minimum Vertex Cover is the problem of finding a vertex cover
of minimum size. An input item is a vertex together with a complete list
of its neighbors (including those vertices that have not even appeared as
part of the input yet); this is known as the vertex arrival, vertex adjacency
model. Thus, for each vertex, when it becomes the highest priority vertex,
the priority algorithm must decide whether or not to “accept” or “reject”
that vertex, under the condition that at the end, for every edge in the graph,
at least one of its endpoints must have been accepted.

16



Theorem 1. No adaptive priority algorithm can solve Minimum Vertex
Cover optimally with fewer than |V |/7 bits of advice in the decision-based
priority function model.

Proof Within the proof, we have found it beneficial to include intuition and
introduce terminology relevant for the general templates, making the style
somewhat different from a normal formal proof.

We build on the construction in [1] (which was reused in [34]), showing
that for this problem, no adaptive priority algorithm without advice can
achieve an approximation ratio better than 4/3. The two graphs in Fig. 1
are used.

4

3 7 5

2 6

1 4

3

7

52

61

Figure 1: Topological structures of graphs giving a lower bound for the Minimum Vertex
Cover problem. Graph 1 is on the left and Graph 2 is on the right. The unique minimum
vertex covers are marked in gray.

In proving lower bounds for adaptive priority algorithms, the adversary
chooses the input, first choosing the universe of input items, and then creating
an actual input X from that universe. Originally the adversary can set X to
the entire universe. Then it (perhaps gradually) removes input items from
X as the algorithm selects input items using priority functions and makes
irrevocable decisions for them. Thus, the input item selected by the current
priority function is always one of the remaining input items in X with highest
priority. When there are ties, the adversary can choose among those with
highest priority. (In this proof, the adversary can simply choose an arbitrary
item of highest priority, so we may assume that there is always a single input
item with highest priority.)

17



For Minimum Vertex Cover, the adversary, Adv, will select an isomorphic
copy of either Graph 1 or Graph 2 from Fig. 1, depending on the algorithm,
Alg. Since both graphs have seven vertices, the universe, U , of input items,
contains the names of seven vertices (the same names are used for both
graphs), and for each of the vertices, all possibilities for input items (names
of vertices and lists of neighbors) for degrees two and three. Note that both
graphs have unique minimum vertex covers of size 3. The numbers shown
in the figure are for our reference only and do not represent actual input
items given to an algorithm. The figure represents the topological structure
of the inputs. The actual input items would be created out of all consistent
namings of vertices in such graphs. To illustrate this point, consider vertex 1
in Graph 1. It is adjacent to vertices 2 and 6. The corresponding possible
input item could happen to be (1, {2, 6}), but it could also be (5, {2, 3}), for
example. In the latter case, the actual input vertex 5 would be mapped to
vertex 1 in the figure, vertex 2 would be mapped to vertex 2, and vertex 3
would be mapped to vertex 6. In total, there are 7 × 6 × 5 possible input
items that could be associated with vertex 1 in Graph 1. After a particular
item has been processed, the number of items that could be associated with
subsequent vertices is reduced because of consistency requirements.

Given this universe of input items, the first priority function for any
algorithm, Alg, for Minimum Vertex Cover must select either a vertex of
degree 2 or a vertex of degree 3 as the first vertex to be processed.

In order to obtain a vertex cover of size 3, it is necessary to accept vertex 1
in Graph 1 and reject vertex 2 in Graph 1. Thus, for the case where the first
vertex selected by Alg has degree 2, Adv can force Alg to produce a vertex
cover of size at least four by choosing vertex 1 from Graph 1 if Alg rejects
and choosing vertex 2 from Graph 1 if Alg accepts. Because of how the
universe is defined, Adv can do this regardless of which input item with
degree 2 Alg chooses.

Similarly, in order to obtain a vertex cover of size 3, it is necessary to
accept vertex 3 in Graph 1 and reject vertex 1 in Graph 2. Thus, for the case
where the first vertex selected by Alg has degree 3, Adv can force Alg to
produce a vertex cover of size at least four by choosing vertex 3 from Graph 1
if Alg rejects and choosing vertex 1 from Graph 2 if Alg accepts. Again,
because of how the universe is defined, Adv can do this regardless of which
input item with degree 3 Alg chooses.

To define a problem where k = |V |/7 bits of advice are necessary for opti-
mality in the decision-based priority model, we consider an algorithm, Alg′,

18



and an adversary, Adv′. We create k disjoint subuniverses, U1,U2, . . . ,Uk,
copies of the subuniverse U , with different names for the vertices in each
copy, and define the universe, U ′, for Alg′ to be the union of these k sub-
universes. The input for Alg′ is the union of H1, H2, . . . , Hk, where Hi is an
isomorphic copy of either Graph 1 or Graph 2.

With its priority functions, Alg′ can choose input items in many different
ways, and could, for instance, interleave input items stemming from different
copies of U . However, for each Ui, there is always a first vertex in Ui that
Alg′ chooses (from the current subset X of the universe, U ′). When Adv′

is not restricted by advice that Alg′ has read, it can force Alg′ to accept
a vertex cover of size four for Hi, exactly as Adv forces Alg, depending on
whether this first vertex from Ui has degree 2 or 3.

We now define 2k sequences of input items for Alg′, by describing how
one of these 2k sequences of input items is defined: Alg′ selects input items
one at a time, and Adv′ knows from which of the k subuniverses the input
items originate.

In this concrete case of an adaptive priority algorithm (with advice), since
we are assuming that Alg′ solves the problem to optimality, the adversary
can assume in the decision-based priority model that the current priority
function is determined based on Alg′ making the correct accept/reject de-
cisions up to this point. Now, Adv′ does the following: Assume that Alg′

has already received input items originating from i of the subuniverses from
which U ′ was defined and the adversary has a current subset X ⊆ U ′. If
that is the case, then X contains exactly enough input items to complete
one graph from each of the subuniverses from which Alg′ has received some
input item (how this is maintained is explained below). From subuniverses
not included in these i subuniverses, X still contains all possible names for
vertices in the graphs. Now, Alg′ receives its next input item: the input
item in X of the highest priority in this round.

If that next input item, v, is from one of the i subuniverses, nothing fur-
ther is done. However, if that next input item originates from a subuniverse
not among the i, then the following is done.

If v has degree 2, Adv′ can choose that it is vertex 1 in Graph 1 or
vertex 2 in Graph 1. If v has degree 3, Adv′ can choose that it is vertex 3 in
Graph 1 or vertex 1 in Graph 2. It makes a choice and then removes from X
all input items originating from the selected subuniverse of U ′, except enough
to make up exactly the graph that was chosen (Graph 1 or Graph 2) with
the vertex names consistent with the first input item from that graph.

19



Continuing this inductively defines one of the 2k distinct input sequences.
If a priority algorithm with advice for Minimum Vertex Cover uses fewer

than k bits of advice for instances with 7k input items, the same advice
must be given for at least two of the sequences, I1 and I2, defined above.
Alg′ therefore uses the same priorities and makes the same decisions on I1
and I2 until some difference is detected. Thus, consider the first time in the
processing of I1 and I2, where an input item that has current highest priority
is the first input item of a graph from some Uj, but the graphs included in
I1 and I2 from Uj are different.

Up until (and including) this point, all input items have been the same
for the two sets. Thus, Alg′ must make the same decision for v in both I1
and I2, but one of those decisions leads to a vertex cover of size four. Thus,
Alg′ is not optimal, and k bits of advice are necessary. □

This lower bound is generalized in Subsection 6.3, giving a template for
proving such bounds.

For an algorithm matching the lower bound of the above theorem on these
particular types of inputs using Graphs 1 and 2, we begin with the case k = 1,
i.e., we receive a graph isomorphic to either Graph 1 or 2. Making the correct
decision on the first vertex received enables a priority algorithm to obtain
a vertex cover of size 3 by giving highest priority after that to neighbors
of vertices which are already chosen, accepting if the known neighbor was
rejected, and rejecting if the known neighbor was accepted. Continuing in
this way until all vertices are processed always produces the minimum vertex
cover. Thus, one bit of advice is necessary and sufficient for optimality for
these restricted inputs; the one bit indicates whether or not the first vertex
should be accepted or rejected.

Extending the algorithm just described for the case k = 1 for achieving
optimality when one bit of advice is given per subuniverse, one notes that
k bits of advice are also sufficient for these very specific types of input. Thus,
in this very restricted problem, for every positive integer k, there is an input
size where k bits of advice are necessary and sufficient.

Since the results in this section concern exact, rather than approximation
algorithms, all results also apply to Maximum Independent Set for graphs of
maximum degree 3. Both Graph 1 and Graph 2 are triangle-free graphs, so
the lower bound also holds for triangle-free graphs of maximum degree 3, as
does the 4/3 lower bound on the approximation ratio for adaptive priority
algorithms without advice.

20



5. Solving Minimum Vertex Cover to Optimality for Triangle-Free
Graphs of Maximum Degree 3

We consider the Minimum Vertex Cover problem, as defined in Section 4,
on triangle-free graphs of maximum degree 3, in the online and in a prior-
ity setting with advice. The vertex arrival, vertex adjacency model is used.
(Since the results in this section concern exact, rather than approximation
algorithms, all results also apply to Maximum Independent Set for triangle-
free graphs of maximum degree 3.) Let n denote the number of vertices in
the input graph. As mentioned in Section 4, no adaptive priority algorithm
without advice can achieve an approximation ratio for this problem better
than 4/3 [1], since graphs used in the construction there were triangle-free
with maximum degree 3. In this section, we show that asymptotically this
problem requires at least (n−4)/3 bits of advice to solve optimally in the on-
line setting, while it can be solved optimally using at most 7n/22 < 0.3182n
bits of advice in the adaptive priority setting.

We begin with the negative result for the online setting.

Theorem 2. Asymptotically, for n ≥ 7, no online algorithm using fewer
than (n − 4)/3 bits of advice can accept a minimum-sized vertex cover for
all triangle-free graphs of maximum degree 3.

Proof The adversary will use a graph with n = 6n′ + 1 vertices, where
n′ ≥ 2. The set of all vertices is denoted by V .

One way to describe the adversarial input is as if it is being constructed
in stages. In the first stage, the adversary creates 2n′ disconnected paths of
length 2 each, or 2-paths, for short (this already gives 6n′ nodes). In the
second stage, the adversary connects endpoints of 2-paths, chaining several
paths together into one large cycle. Not all initial 2-paths will necessarily
participate in the cycle. Finally, the adversary attaches one more vertex to
an appropriately chosen vertex v in the cycle and decides how to present this
constructed graph online. An optimal decision to accept or reject a middle
vertex of each initial 2-path depends on the answers to these questions: Does
this 2-path participate in the large cycle or not, and, if it participates in
the cycle, is it located at an even or odd distance from v? When the fully
constructed adversarial input is presented to an online algorithm such that
middle vertices of initial 2-paths are given first, the algorithm does not yet
know the answers to the questions above, so a lot of advice is required to
infer correct decisions for these vertices.

21



More formally, let S = {v1, v2, . . . , v2n′} be the first 2n′ vertices to be
given – they form middle vertices of 2-paths, so all vertices in S will have
degree 2. Throughout the processing of S, the neighbors will be vertices never
seen before. As described above, some neighbors of S will be connected so as
to form a cycle, which we denote by C. Then there will be a unique vertex w
of degree 1, connected to one designated neighbor v ∈ C \ S. Finally, the
set of all other vertices will be denoted I, i.e., I = V \ (C ∪ {w}). This set
induces isolated 2-paths, with the middle vertices in S. The vertex v will
have degree 3. There will be an even number of vertices from S in I and,
thus, an even number in C. The construction is illustrated in Fig. 2.

S

w

v

Figure 2: The construction used in Theorem 2. Here, we have n′ = 4. The optimal vertex
cover is shown in green. Vertices with a single arrow pointing to them are those vertices
from S that were selected to be at odd distance from node v. Vertices with two arrows
pointing to them are those nodes from S that were selected to be at even distance from
node v. Here, the number of vertices in S not in the optimal vertex cover is r = 2.

Note that this graph has a unique minimum-size vertex cover: the middle
vertex of each path in I and every other vertex in C, starting with v.

For each vertex, u ∈ S, all of which have degree 2, Alg must decide
whether to accept or reject this vertex, without knowing if u is in I or C. Of
course, within C, Alg will not know if u will be at an even or odd distance
from v.

Suppose we want to create a graph G with 0 ≤ r ≤ n′ vertices from S
not in the optimal vertex cover. We can choose any subset R of r vertices in
S to be at odd distances from v in C. Among the other vertices, r can be
placed at the even locations in C, and the remaining 2n′ − 2r vertices from
S can be in I. (The placement of v is also arbitrary, but we are fixing a
placement in this counting.) For fixed r, there are

(
2n′

r

)
different possibilities

for the subset R. In all, there are
∑n′

r=0

(
2n′

r

)
different possibilities for the

subset R, each with a different optimal vertex cover (note that r = 0 is a

22



degenerate case where there is no cycle, v, or w, but the instance is still a
possibility, and for r ≥ 1, the unique cycle C has at least 6 vertices and
n ≥ 7, so the graph is triangle-free). Any online algorithm that gets the
same advice for two of them must give a suboptimal cover for at least one
of them. Thus, an algorithm that solves the problem to optimality needs at
least log2

∑n′

r=0

(
2n′

r

)
> log2 2

2n′−1 = 2n′ − 1 = (n− 4)/3 bits of advice.
Just for emphasis, note that all input items in S are fixed to be exactly the

same in all instances that we consider, i.e., input items in S do not depend
on the choice of R, v, and w. Thus, an online algorithm receiving items from
S can only rely on advice to act differently on S from instance to instance.

□

Now, we present an adaptive priority algorithm with advice that works
in both the decision-based and oblivious priority function models, uses fewer
than (n− 4)/3 bits of advice, and achieves optimality.

We present an adaptive priority algorithm PriorityVC with advice for
the Minimum Vertex Cover problem on triangle-free graphs of maximum
degree 3. The main result of this section is the following:

Theorem 3. PriorityVC solves Minimum Vertex Cover on triangle-free
graphs with maximum degree 3 optimally in both the decision-based and
oblivious priority function models and uses at most (7/22)n = 0.3181n bits
of advice, where n is the number of vertices.

Proof Follows from Lemmas 1 and 4. □

In order to describe and analyze the algorithm, we have to introduce and
define some terminology. We do this in the order from most intuitive to least
intuitive. Fortunately, most of the terminology will be self-explanatory, but
needs to be stated for the sake of completeness.

Since it is an adaptive priority algorithm, PriorityVC works in discrete
time steps. Each time step consists of the algorithm updating the priority
function, receiving the next input item according to the new priority, poten-
tially reading advice, and then making a decision as to including the vertex
corresponding to the input item in the solution or not. We also refer to the
decision of including the vertex in the solution as accepting the vertex and
the opposite decision as rejecting the vertex. The decision is called correct if
it is possible to extend the partial solution obtained after the decision to a
minimum vertex cover in the input graph.

23



In many cases it is possible to make a decision that is guaranteed to be
correct without consulting advice at all. Consider, for example, a vertex of
degree 1 – it is easy to see that a correct decision is to reject such a vertex
and then accept its unique neighbor.

Suppose that at time t vertex v arrives and it is not possible, from the
vertices seen so far, to make a decision that can be guaranteed to be correct
no matter what happens in the rest of the input. Since we want to solve the
problem to optimality, PriorityVC then reads a single bit of advice. This
bit encodes a correct decision for the algorithm. In other words, if the bit is 1,
then the algorithm accepts v and otherwise the algorithm rejects v. In these
cases, we say that the advice is to accept or reject the vertex, respectively.
We also say that v received advice.

Once a decision has been made for a vertex, this vertex is called processed.
Vertices that have not been processed are called unprocessed. Suppose that
the algorithm processes the vertices in the order v1, v2, . . . , vn – this notation
is only for the duration of this paragraph and will have a different meaning
in the proofs below. Recall that the input items consist of pairs (vi, N(vi)),
where N(vi) is the neighborhood of the vertex vi. Since the priority algorithm
is adaptive, it can effectively remove processed vertices from the input graph.
Namely, at time i, the algorithm knows v1, . . . , vi−1. Therefore, in defining
the priority function, the algorithm can ignore vertices in {v1, . . . , vi−1} when
assigning a priority to (v,N(v)), which is equivalent to removing vertices
v1, . . . , vi−1 from the rest of the input graph. We refer to N(v)\{v1, . . . , vi−1}
as the current neighborhood of v and |N(v) \ {v1, . . . , vi−1}| as the current
degree of v. We refer to N(v) and |N(v)| as the original neighborhood of v
and the original degree of v, respectively.

The following is less intuitive but useful terminology for vertices:

aa-vertex: a processed vertex that received advice to be accepted.

ar-vertex: a processed vertex that received advice to be rejected.

a-vertex: either an aa-vertex or an ar-vertex.

non-a-vertex: a vertex that was processed without advice.

contributing: an aa-vertex with two rejected and one unprocessed neigh-
bor.

24



c-neighbor: an unprocessed vertex that is a neighbor of a contributing ver-
tex.

bad-vertex: a vertex that requires advice and all of its neighbors are c-
neighbors of other vertices at the time this vertex is processed.

a-sibling: a neighbor of an aa-vertex v such that v has another neighbor
that has been accepted.

Observe that the above definitions are with respect to a given time step. In
particular, it is possible that a vertex v is processed during some time step
and at that point becomes an aa-vertex. At a later time step, it could become
a contributing vertex. Also observe that it is possible that a neighbor of an
unprocessed vertex is a c-neighbor, that is, a neighbor of some other vertex
that is contributing at the time of consideration.

The pseudocode of PriorityVC is given in Algorithm 3. Ties that are
not broken by PriorityVC explicitly can be broken arbitrarily (even by an
adaptive adversary).

In order to finish the specification of PriorityVC, we have to describe
how the oracle generates the advice. The oracle sees the entire input be-
forehand and it knows how PriorityVC works. Since PriorityVC is
deterministic, the oracle can, in effect, simulate PriorityVC on the input.
Thus, the oracle knows the order in which the vertices are processed and it
knows at which time steps PriorityVC asks for advice. The oracle supplies
the advice in the order in which the advice is requested by PriorityVC.
Suppose that at some time, PriorityVC processes v based on advice. If
there is a unique correct decision for v, the oracle provides that decision,
either accept or reject, which is one bit of information. If either decision
is correct (could be completed to a minimum vertex cover) and v is a bad-
vertex, the oracle advises to accept. Finally, if either decision is correct and v
is not a bad-vertex, the oracle advises to reject. This tie-breaking condition
is particularly important for the analysis.

We mention a few high level features of PriorityVC. Vertices that
obviously can be handled without advice are those with current degree 0
or 1, and neighbors of rejected (accepted in mis3) vertices. The two key
observations in the design of mis3 are the following: First, the vertices just
described should receive the highest priorities (as described in Section 3.1).
Second, if we process vertices of current degree 3 prior to processing vertices
of current degree 2 (with a small exception of P4; ignore that for the moment),

25



Algorithm 3 PriorityVC algorithm.

procedure PriorityVC
while there exist unprocessed vertices do

Define the priority function P as follows
(listed in order from highest to lowest priorities):

P1: nodes with a rejected neighbor;
highest priority is given to those nodes whose neighbor
was most recently rejected.

P2: nodes with current degree 0.
P3: nodes with current degree 1;

highest priority is given to those nodes with a most recently
processed neighbor; among those, highest priority is given to
those nodes that had two neighbors that became aa-vertices.

P4: nodes with current degree 2 that had a third neighbor in
common with a previously rejected bad-vertex.

P5: a-siblings.
P6: nodes with current degree 3 with 2 or 3 neighbors in common

with a single aa-vertex that was not a bad-vertex when it
received advice.

P7: nodes with current degree 3 that share neighbors with
a-vertices.

P8: other nodes with current degree 3.
P9: nodes with current degree 2

Receive the next vertex v according to P
switch priority of v

case P1 or P6:
Accept v

case P2, P3, P4, P5, or P9:
Reject v

case P7 or P8:
Obtain advice to accept or reject and apply it to v

then, when a vertex of current degree 2 arrives according to P9, we know
that all the remaining vertices in the graph have current degree 2. We can
conclude that the remaining graph is a collection of disjoint cycles and an
optimal vertex cover in such a graph can be computed by a priority algorithm

26



without advice. Therefore, with such an approach, only vertices of current
degree 3 may require advice and the goal is to minimize the number of such
vertices. This is where cooperation between the oracle and the algorithm
becomes crucial – we shall see that the tie-breaking condition of the oracle is
chosen so as to create scenarios under which some vertices of current degree 3
may be processed without advice.

Next, we analyze PriorityVC formally. We begin with the easier proof
of correctness of the algorithm and then establish the sufficient number of
bits of advice. Suppose that at time t a vertex arrives according to priority
P9 for the first time. Then we refer to the time interval [1, t− 1] as Phase 1
and to the time interval [t, n] as Phase 2. If such t does not exist then we
set t = n + 1 meaning that the entire time interval [1, n] consists of only
Phase 1 and Phase 2 is empty. Correctness of the algorithm follows from the
following lemma.

Lemma 1. Every decision of PriorityVC is correct.

Proof The proof is by induction in the number of input items. For the base
case, no input items have been processed and all decisions have trivially been
correct. For the inductive step, if all previous decisions have been correct,
we need to demonstrate that the decision for the next vertex is also correct.
Let v be the newly arriving vertex.

First, suppose that the algorithm is in Phase 1.
Case: v has priority P1, P2, P3, P7, or P8. Decisions of PriorityVC

are obviously correct.
Case: v has priority P4. PriorityVC rejects v, so suppose for the sake

of contradiction that v should have been accepted. Let v′ denote a bad-vertex
and u1, u2, and u3 its three neighbors such that u1 is also a neighbor of v.
This is illustrated in Fig. 3.

Observe that another optimal vertex cover is obtained by accepting the
vertices v′, u2, u3, v and rejecting u1. Thus, the oracle would have given advice
to accept v′, since at the time v′ was processed, both decisions were correct,
and the oracle prefers accepting bad-vertices. This is a contradiction, so the
decision of PriorityVC to reject v is correct.

Case: v has priority P5. Observe that processing bad-vertices leads to
processing of their neighbors prior to any vertex with priority P5 being pro-
cessed. Therefore, v is a neighbor of an aa-vertex v′ and v′ was never bad.
Denote the neighbors of v′ by u1, u2, u3 such that u1 = v. Consider the

27



(processed)

acc

v′
(bad)
rej (advice)

u2u1 u3

acc acc

v contributing vertices
acc acc acc acc

Figure 3: Illustration of the case of v having priority P4 in Lemma 1. Some edges are
omitted so as to avoid clutter.

time when v′ received advice to be accepted. We claim that at most one of
u1, u2, u3 can be accepted in the future. Suppose, for the sake of contradic-
tion, that at least two nodes, say, u1 and u2, must be accepted in the future.
Then accepting u1, u2, u3 and rejecting v′ would result in a vertex cover of
the same size or smaller as accepting v′, u1, u2 and rejecting/accepting u3.
In this case, since v′ was not bad at the time it received advice, the oracle
should have given advice to reject v′ according to the tie-breaking condition.
This is a contradiction, and therefore at most one of u1, u2, u3 can be ever
accepted. By definition of an a-sibling, either u2 or u3 has been accepted
prior to v = u1 being processed, so it is correct to reject v.

Case: v has priority P6. As in the previous case, let v′ be the aa-vertex
that shares at least two neighbors with v and that was not bad at the time
it was processed. As already argued, at most one neighbor of v′ can be
accepted, therefore at least one of the neighbors of v in common with v′ must
be rejected. Since each edge must be covered by the solution, we conclude
that v must be accepted.

Since the case of P9 cannot happen in Phase 1, we move to the analysis
of Phase 2. As discussed prior to this lemma, at the beginning of Phase 2
we know that the remaining graph is a collection of cycles. Once a vertex
of current degree 2 arrives according to P9, it is rejected, which creates two
vertices of current degree 1 each. They are neighbors of a rejected vertex,
so they are processed next according to P1. The degrees of their neighbors
on the cycle drop to 1 or 0, so they are processed according to P1–3. This
continues until all vertices in this cycle have been processed. Then the next
cycle is processed and so on. The correctness of the constructed vertex cover
follows from the fact that a minimum vertex cover in every cycle rejects at

28



least one vertex. Thus, by the isomorphisms of a cycle, it is always safe to
reject the first vertex from the cycle. After that, correctness follows by the
correctness of cases P1–3, as in Phase 1. □

Central to the analysis of the number of bits of advice is the notion of
a component. A new component starts when a new a-vertex is processed
that does not have neighbors in common with a previously processed a-
vertex. When a new component is started, any previous component is closed,
meaning that it receives no more vertices. A vertex is included in the current
component if it is not in any previous component, and one of the following
cases applies:

• it is an a-vertex that shares a neighbor with a previously processed
a-vertex from the current component,

• it is a neighbor of an a-vertex from the current component,

• it is accepted or rejected before the component is closed.

Note that a component in the above sense is not to be confused with a
connected component – it is possible for a connected graph to consist of sev-
eral components, and it is possible that such a component is not connected.

We let c denote the final number of components created by PriorityVC
on the given input. For i ∈ [c], we let ai(t) denote the number of a-vertices
in component i at time t, and we let si(t) denote the size of component i at
time t. Let t̂i denote the time component i is closed. We use a shorthand
notation ai := ai(t̂i) and si := si(t̂i) for the final number of a-vertices in
component i and the final size of component i, respectively. We also define
ni(t) := si(t)−ai(t), which is the number of non-a-vertices in component i at
time t, and ni = si− ai, which is the number of non-a-vertices in component
i.

The high level idea behind bounding the number of advice bits used by
PriorityVC is to prove two inequalities and then take their linear combi-
nation. The first inequality (Lemma 2) is more local in that it is proved for
each component independently of other components. The second inequal-
ity (Lemma 3) is more global in that it incorporates potential interactions
between components. Both inequalities are proved via weight reallocation
arguments as explained in the following lemmas.

We begin with the more difficult local lemma.

29



Lemma 2. For all i ∈ [c], we have

si ≥ 3ai + 1.

Proof Consider component i.
If ai = 1, then the vertex that received advice and its three neighbors are

added to the component by definition, so si ≥ 4 = 3ai + 1.
If ai = 2, then the two vertices that received advice can share at most

one neighbor. If, to the contrary, they had two vertices in common, then
if the first of the two vertices is rejected, then its neighbors are accepted,
and the second vertex becomes unary and does not need advice due to P3;
a contradiction. Similarly, if the first vertex is accepted, it becomes an aa-
vertex and the second vertex gets accepted without advice due to P6. So
counting the two vertices and their five distinct neighbors gives that si ≥
7 = 3ai + 1.

If ai ≥ 3, then the situation is more involved. The desired inequality
trivially follows if we can establish

ni ≥ 2ai + 1. (1)

For j ∈ [ai], let tj denote the time step when the jth a-vertex in component
i is processed. Call this vertex vj. Thus, the component gets started at time
t1 with a-vertex v1. Denote the three neighbors of vj by uj,1, uj,2, uj,3.

Denote the weight of a vertex v by w(v). Each non-a-vertex v that gets
added to this component starts out with weight w(v) = 1. Each a-vertex vj
that gets added to this component starts out with weight w(vj) = 0. The
weight is reallocated from non-a-vertices to a-vertices, so as to guarantee the
properties below at the end of processing the component. We let the index
of the a-vertices v1, v2, . . . , vℓ denote the order in which weight is allocated
to them, and establish the following:

I1 w(v1) = 1.5;

I2 w(v2) = 2.5;

I3 w(v3) = 2.5;

I4 w(vj) = 2 for j ∈ [4, ℓ].

30



Note that since we are in the case ai ≥ 3, this is well-defined. We check that
I1–4 are sufficient to establish the claim. Observe that the total amount of
weight allocated to component i is exactly ni. After reallocating the weight,
I1–I4 imply that the total weight in the component is ≥ 1.5+2.5+2.5+2(ai−
3) = 2ai + 0.5. Since the reallocation procedure does not destroy weight or
create extra weight, the total amount of weight in the component at the end
is ni. This implies that ni ≥ 2ai + 0.5. Since ni and ai are integers, we have
ni ≥ 2ai + 1, as desired.

We execute weight reallocation in parallel with PriorityVC. The re-
allocation follows some rules: (a) after sufficient weight is reallocated to an
a-vertex, this weight is not reallocated ever again; (b) only the weights of
vertices that are in component i can be reallocated (to an a-vertex in com-
ponent i); (c) at any point in time, the weight of non-a-vertices can be either
0, 0.5, or 1; (d) if the weight of a non-a-vertex is 0, then the vertex has been
processed and removed from the graph; (e) the weight of every non-a-vertex
can be reallocated twice: 0.5 can be reallocated when its degree goes from 3
to 2 (and not more than 0.5 is reallocated in this scenario) and the remaining
0.5 is reallocated when the degree of the vertex drops down further, when it
is processed, or even after it is processed; (f) every unprocessed vertex with
weight 0.5 is a neighbor of a processed a-vertex. We do not keep track of
each of the above statements explicitly in the following case analysis, since
this is rather tedious. It is fairly straightforward to verify that each claim
continues to hold in the analysis below.

Observation 1: For point (b), we make one observation that is used
repeatedly, namely that a certain neighbor of a neighbor cannot belong to
an earlier component, which means that we are allowed to reallocate weight
from it. Note that the only unprocessed vertices of a closed component are
neighbors of aa-vertices. Consider an a-vertex vj in the current component
that shares a neighbor uj,1 with a previously processed a-vertex vj′ , also of
component i, for some j′ < j. Then after processing vj, the current degree of
uj,1 drops to 1. Let z be the unique neighbor of uj,1 at that point. We claim
that z cannot belong to a previous component. If z did belong to a previous
component, say i′ < i, then z would necessarily be a neighbor of an a-vertex
in component i′. Suppose that component i′ was closed at time t. The degree
of uj,1 is 3 until vj′ is being processed. Thus, at time t, uj,1 shared a neighbor,
z, with an a-vertex in component i′. This implies that component i′ should
not have been closed at time t, since it could be extended by considering uj,1.
Thus, z cannot belong to a previous component, and we are free to allocate

31



weight away from z.
With this additional observation, we are ready to prove I1–4.
I1. Observe that if the first a-vertex is an ar-vertex, then all its neighbors

are removed prior to any other vertex receiving advice. Since a-vertices in a
component are connected through common neighbors, there can be no other
a-vertices in the component, so ai = 1. Therefore, since we assume that
ai ≥ 3, the first a-vertex must be an aa-vertex. This vertex and its three
neighbors are added to the component. We reallocate 0.5 units of weight
from each of the neighbors to v1. This is illustrated in Fig. 4.

0

1 1 1

1.5

0.5 0.5 0.5

v1 v1

u1,1 u1,2 u1,3 u1,1 u1,2 u1,3

acc (advice)

Figure 4: Illustration of reallocating 0.5 units of weight from each of the neighbors to v1
in I1. In order not to clutter the illustration, we do not show all edges incident to vertices.
How a vertex is processed starting at t1 is indicated next to the vertex. The weight of a
vertex is shown inside the vertex.

I2. The second a-vertex v2 must have exactly one neighbor in common
with v1: if it had no neighbors in common, a new component would get
started; if it had more than one neighbor in common, then it would be
processed without advice. Without loss of generality, let that neighbor be
u1,3 = u2,1. Observe that v2 must have received advice to be accepted. If it
received advice to be rejected, then all its neighbors would be accepted and
u1,1 and u1,2 would become a-siblings (if they have not been processed yet),
so they would get processed prior to v3. But this implies that all neighbors
of v1 and v2 would be eliminated prior to v3 and v3 would never be added to
the current component, contradicting the assumption that ai ≥ 3.

Thus, we assume that v2 received advice to be accepted. At time t2, the
current degree of u1,3 must be 2: if it was higher, then the original degree
(which would include v1) would be more than 3; if it was lower, then u1,3

would be processed prior to v2 and v2 would not have received advice. One
of the vertices contributing to the current degree of u1,3 is v2. Let the other
vertex be z. Observe that z is different from all of u1,1, u1,2, u2,2, u2,3 since
otherwise the input graph would contain a triangle. When v2 is processed,
the current degree of u1,3 drops to 1, so it will be rejected and its neighbor

32



accepted. Since z is a new vertex that has been added to the component, we
can reallocate one unit of weight from z to v2. We also reallocate 0.5 units
of weight from each of the neighbors of v2 to v2. This results in the overall
weight of v2 being 2.5, as desired. It is easy to check that this reallocation
satisfies all the rules and the illustration is shown in Fig. 5.

0

10.5 1

v2

u2,3u1,3 = u2,1 u2,2

acc (advice)

0.5 0.5

u1,1 u1,2

2.5

0.5

v2

u2,3u1,3 = u2,1 u2,2

0.5 0.5

u1,1 u1,2

1
acc

rej

0

0.50

z z

Figure 5: Illustration of reallocating 1 unit of weight from z and 0.5 units of weight from
each of neighbors of v2 to v2 in I2.

I3. There are several cases for v3.
Case 1. Consider the case where v3 shares a single neighbor with a pre-

vious aa-vertex (could be either v1 or v2). Without loss of generality, let
the shared neighbor be u3,1. Then u3,2 and u3,3 are added to the current
component for the first time so they start out with weight 1. Since u3,1 has
not yet been processed at t3, its weight is 0.5.

Subcase 1(a). Suppose that v3 receives advice to be rejected. Then the
weight of all its neighbors can be reallocated to v3 resulting in w(v3) = 2.5,
as desired. This obeys the reallocation rules, since v3 and all its neighbors
will be removed from the graph prior to t4. This is illustrated in Fig. 6.

0

10.5 1

v3

u3,3u3,1 u3,2

rej (advice)2.5

0

v3

0 0

acc acc acc
u3,3u3,1 u3,2

Figure 6: Illustration of reallocating the weight of all the neighbors of v3 to v3 in I3,
Subcase 1(a).

Subcase 1(b). Suppose that v3 receives advice to be accepted. Without

33



loss of generality suppose that u3,1 = u2,2, i.e., the single shared neighbor is
with v2 (v2 and v1 behave symmetrically in the following argument). Arguing
similarly to I2, after accepting v3, the current degree of u3,1 would drop to 1.
Let z be the unique neighbor of u3,1 at that point. Then, by the priority
tie breaking in P3, u3,1 is rejected and z is accepted. If z has weight 1 at
time t3, then the weight reallocation is done similarly to I2. Otherwise, z has
weight 0.5. By Observation 1, z is in the current component. The vertex z
cannot be a neighbor of v3, or there would be a cycle. The only vertices in
the current component of weight 0.5 after processing vertices in I1 and I2 and
reallocating weights are neighbors of v1 and v2. Since z cannot be a neighbor
of v2 (this would create a triangle), it must be a neighbor of v1. Without
loss of generality, assume z = u1,1. Since z is accepted, u1,2 becomes an a-
sibling, unless it was already processed. So, both u1,2 and u1,1 are processed
and removed from the graph prior to t4. Thus, we can reallocate 0.5 units
of weight from each of u1,2, z = u1,1, u2,2 = u3,1, u3,2, u3,3 to v3 resulting in
w(v3) = 2.5 as desired. This last case is illustrated in Fig. 7.

0

10.5 1

v3

u3,3u2,2 = u3,1 u3,2

acc (advice)

0.5

u1,2

acc

rej

z = u1,1

2.5

0.5

v3

u3,3u2,2 = u3,1 u3,2

0.5

u1,2

z = u1,1

rej

0

0

00

0.5

Figure 7: Illustration of reallocating 0.5 units of weight from each of u1,2, z = u1,1, u2,2 =
u3,1, u3,2, u3,3 to v3 in I3, Subcase 1(b).

Case 2. Suppose that v3 shares two neighbors with previous aa-vertices –
one with v1 and another with v2. More specifically, without loss of generality
suppose that u3,1 = u1,1 and u3,2 = u2,2.

Subcase 2(a). If v3 receives advice to be rejected, then the three neighbors
u3,1, u3,2, u3,3 are accepted. Their weights are reallocated to v3. Moreover,
u1,2 (assuming that u1,3 was the neighbor common to v1 and v2) was either
processed earlier and had 0.5 units of weight remaining, or becomes an a-
sibling and is processed prior to t4. In either case, we can reallocate 0.5 units
of weight from u1,2 to v3 for the total amount of weight reallocated to v3
being 2.5. This is illustrated in Fig. 8.

34



0

10.5

v3

u3,3u1,1 = u3,1
u2,2 = u3,2

rej (advice)

0.5

u1,2

2.5

0

v3

0 0

acc acc acc

0.5

u3,3u1,1 = u3,1
u2,2 = u3,2u1,2

rej

0

Figure 8: Illustration of reallocating 1 unit of weight from u3,3 and 0.5 units of weight
from u1,2 and the other neighbors of v3 to v3 in I3, Subcase 2(a).

Subcase 2(b). If v3 receives advice to be accepted, then the current degrees
of u3,1 and u3,2 drop down to 1 each (same argument as in I2). Let the unique
neighbor of u3,1 be z1 and the unique neighbor of u3,2 be z2. Note that z1 is
not a neighbor of v3 or v1 in the original graph for otherwise it would contain
a triangle. Similarly, z2 is not a neighbor of v3 or v2. Observe that after
processing v3, vertices u3,1, u3,2, z1, and z2 will be processed prior to t4. If
either z1 or z2 (which could be the same vertex) has weight 1 at t3, then we
can reallocate 0.5 units of weight from each of u3,1, u3,2, u3,3 to v3 and 1 unit
of weight from z1 or z2 to v3 for the total weight 2.5 as desired. An example
where the weight of z1 is 1 at time t3 is illustrated in Fig. 9.

0

10.5

v3

u3,3u1,1 = u3,1
u2,2 = u3,2

acc (advice)

z1

2.5

0

v3

0

rej rej

acc

0.5

u3,3u1,1 = u3,1
u2,2 = u3,2

1

z1

0

0.5

Figure 9: Illustration of reallocating 0.5 units of weight from each of u3,1, u3,2, u3,3 to v3
and 1 unit of weight from z1 or z2 to v3 in I3, Subcase 2(b).

The only remaining scenario is when each of z1 and z2 have weight 0.5 at
time t3. Based on I1 and I2 and properties of z1 and z2 mentioned above, it
must be the case that z1 = u2,3 and z2 = u1,2, since, otherwise, there is a tri-
angle, so z1 ̸= z2. In particular, after processing v3, vertices u1,1, u2,2, u1,2, u2,3

will be processed prior to t4. Thus, we can reallocate 0.5 from each of them,

35



plus 0.5 from u3,3.
I4. Let j ≥ 4 and consider vj receiving advice at time tj. Each of the

neighbors of vj has current degree at least 2 (same reason as in I2) and at least
one of the neighbors is shared with a previous aa-vertex in the component.

Case 1. Suppose that vj receives advice to be accepted. Without loss
of generality assume that uj,1 is a neighbor shared with vj′ for some j′ < j.
After processing vj the degree of uj,1 drops to 1, so by the priority tie breaking
in P3, it is rejected and its neighbor, call it z, is accepted. We can reallocate
0.5 units of weight from each of uj,1, uj,2, uj,3 and z to vj for the total weight
of 2.0, as desired. This is illustrated in Fig. 10.

0.5

vj

uj,3

acc (advice)

z

rej

acc

≥ 0.5 ≥ 0.5

0

≥ 0.5

uj,2uj,1

vj′
(processed)

0

vj

uj,3

z

2.0

≥ 0

vj′
(processed)

≥ 0 ≥ 0

uj,2uj,1

Figure 10: Illustration of reallocating 0.5 units of weight from each of uj,1, uj,2, uj,3 and z
to vj in I4, Case 1.

Case 2. Suppose that vj receives advice to be rejected. Then the three
neighbors are accepted. As argued before, each of the neighbors has degree
at least 2 at time tj, and each of the neighbors has at least 0.5 units of
weight available for reallocation. If at least one of the neighbors has 1 unit of
weight available, then we can reallocate 2.0 units of weight from the neighbors
of vj to vj, as desired. If each neighbor has only 0.5 units available, then
each neighbor is also a neighbor of a previously processed aa-vertex in this
component. Let v′k be such a processed neighbor of uj,k for k ∈ [3]. Observe
that the v′k are all distinct, since a vertex receiving advice can share at most
one neighbor with a previous aa-vertex. If some v′k is not a contributing
vertex at time tj, then, by accepting uj,k, the other remaining neighbor of v′k
becomes an a-sibling and will be processed prior to tj+1. In this case, we can
reallocate 0.5 from the a-sibling and each of the uj,k for k ∈ [3] to vj for a
total weight of 2.0, as desired.

The only remaining subcase is when all of the v′k are contributing vertices

36



at tj. This means that vj is a bad-vertex at time tj. Consider what happens
after processing vj. The degree of each uj,k drops to exactly 1 and they are
accepted. Let zk be the unique neighbor of some uj,k immediately prior to
uj,k being accepted (note that the zk do not have to be distinct, but this
does not matter for the following argument). If, after processing all uj,k, the
degree of at least one of the zk drops below 2, then it would be processed prior
to tj+1. In this case, we can reallocate 0.5 units of weight from each of uj,k

and 0.5 units of weight from the to-be-processed zk to vj for a total weight
of 2.0. Otherwise, consider z1, for example. After processing all uj,k the
current degree of z1 is 2. Thus, it can be rejected without advice according
to priority P4 and its weight can be reallocated to vj for the total weight of
vj being at least 2.0 (the other weights coming from the uj,k), as desired. □

Next, we prove the second inequality.

Lemma 3. We have
10a− 4c ≤ 3n,

where n is the number of vertices in the graph, a is the number of advice
bits read by PriorityVC, and c is the number of components, as defined
earlier.

Proof We prove this via a weight reallocation argument similar to the one
used in Lemma 2. Weight reallocation is done in parallel with PriorityVC,
so we can describe it one vertex at a time. Weight reallocation is performed
each time an input vertex receives advice and may involve vertices that are
processed immediately after that without advice. There are several key dif-
ferences from the weight reallocation done in Lemma 2. First of all, every
vertex starts with initial weight 3 – no matter whether the vertex is an a-
vertex or non-a-vertex. Secondly, we allow weight to be reallocated even from
unprocessed vertices from closed components, since we are not interested in
a component-wise inequality, but the inequality for the entire input. The
weight reallocation procedure will guarantee the following properties:

J1. The first a-vertex of every component receives 6 units of weight.

J2. Subsequent a-vertices in every component receive 10 units of weight each.

The reallocation procedure satisfies the following additional constraints: (a)
no extra weight is created or consumed; (b) the weight of a vertex is at least

37



its current degree; (c) if a vertex has weight 0, then it must have been pro-
cessed; (d) at any point in time t the weight that could have been reallocated
by t comes only from vertices processed by time t or neighbors of a-vertices
processed by time t. We will not explicitly check each of these constraints in
the cases described below, but it is easy to verify from the arguments.

We first see how J1 and J2 imply the claim and then define the reallocation
procedure to satisfy J1 and J2. Observe that after processing the entire input,
the total weight in component i is at least 6 + 10(ai − 1). Adding this over
all components i ∈ [c], we see that the total weight in the input graph is at
least 6c + 10(a − c), since components are vertex disjoint. Without weight
reallocation, the total weight would be 3n since each vertex starts out with
exactly 3 units of weight. Since the weight reallocation procedure does not
create extra weight, we have 3n ≥ 6c+10(a−c), which implies the statement
of the lemma.

Although we are allowed to reallocate weight from unprocessed vertices
from closed components, we still define the procedure for each component
separately. We use the notation of Lemma 2. More specifically, consider
component i. Let ai denote the total number of a-vertices in the component
at the end. For j ∈ [ai], let tj denote the time step when the jth a-vertex vj
in component i was processed. Thus, the component gets started at time t1
with a-vertex v1. Denote the three neighbors of vj by uj,1, uj,2, uj,3.

J1. Since v1 is the first vertex of the component, its neighbors have not
been processed and they cannot be neighbors of previous a-vertices. Thus,
we have w(v1) = w(u1,1) = w(u1,2) = w(u1,3) = 3. No matter whether v1
is an aa-vertex or an ar-vertex, after it is processed and removed from the
graph, the degrees of the neighbors drop by 1 each. Thus, we can reallocate
one unit of weight from u1,k for k ∈ [3] to v1, resulting in w(v1) = 6, as
desired. This is illustrated in Fig. 11.

J2. Let j ≥ 2. We consider several cases depending on the type of vj
and its (multi-hop) neighborhood.

Case 1. Suppose that vj receives advice to be accepted. Since vj is not
the first vertex in the component, it shares a neighbor with a previous aa-
vertex vj′ in the component for some j′ < j. Let that neighbor be uj,1. As in
the proof of Lemma 2, the current degree of uj,1 is 2 prior to processing vj, so
its weight is also 2. After processing vj, we reallocate 1 unit of weight from
each uj,1, uj,2, and uj,3 to vj and the weight allocated to vj becomes 6. The
current degree of uj,1 drops to 1. Let z denote the unique neighbor of uj,1 at
that moment. Then, by the priority tie breaking in P3, uj,1 is rejected and z

38



3

3 3 3

6

2 2 2

v1 v1

u1,1 u1,2 u1,3 u1,1 u1,2 u1,3

acc or rej (advice)

Figure 11: Illustration of reallocating one unit of weight from u1,k for k ∈ [3] to v1 in
J1. As in Lemma 2, we do not show all edges incident to vertices so that the illustration
does not become cluttered. How a vertex is processed is indicated next to the vertex. The
weight of a vertex is shown inside the vertex.

is accepted. We reallocate one additional unit of weight from uj,1 to vj. Since
z was present in the graph prior to vj being processed, the current degree of
z at time tj must be at least 2. After z is processed, we reallocate its weight
to vj. At this point, the weight allocated to vj becomes at least 9. Let y be
any neighbor of z other than uj,1 prior to z being removed. Since processing
z decreases the degree of y and we do not care which component y belongs
to, we reallocate one unit of weight from y to vj resulting in total weight
allocated to vj being 10. Observe that the triangle-free condition ensures
that z is not uj,2, uj,3 and it does not matter for the argument whether y
is uj,2 or uj,3 or any other vertex in the graph. This case is illustrated in
Fig. 12.

2

vj

uj,3

acc (advice)

z

rej

acc

≥ 2 ≥ 2

3

≥ 2

uj,2uj,1

vj′
(processed)

y

≥ 2

0

vj

uj,3

z

≥ 1 ≥ 1

≥ 10

0

uj,2uj,1

vj′
(processed)

y

≥ 1

Figure 12: Illustration of reallocating one unit of weight from y to vj in J2, Case 1.

Case 2. Suppose that vj receives advice to be rejected. All neighbors of
vj will be accepted after that and we can reallocate the weight from those
neighbors to vj. The current degree of each neighbor of vj is at least 2 prior
to vj being processed (see arguments in Lemma 2 for why). Thus, if one of

39



the neighbors has current weight 3, then the total weight reallocated to vj
from its neighbors is at least 7. This, together with vj’s initial weight of 3,
results in w(vj) ≥ 10, as desired.

It only remains to handle the case when neighbors of vj have current
degree and weight 2 at the time vj is processed. Let z be the unique neighbor
of uj,1. The current degree of z is at least 2 prior to vj being processed, so
its weight is at least 2, as well. Processing vj and its neighbors decreases

2

vj

uj,3

rej (advice)

z

acc

≥ 2 ≥ 2

3

≥ 2

uj,2uj,1

0

vj

uj,3

z

≥ 10

uj,2uj,1

≥ 1

0 0

acc acc

Figure 13: Illustration of reallocating one unit of weight from z to vj in J2, Case 2.

the degree of z by at least 1 and therefore we may to reallocate one unit of
weight from z to vj. This last case is illustrated in Fig. 13. □

We are now ready to prove the bound on the number of advice bits used
by PriorityVC.

Lemma 4. PriorityVC uses at most (7/22)n = 0.3181n bits of advice on
triangle-free graphs of maximum degree 3.

Proof Lemma 2 says that 1 + 3ai ≤ si for i ∈ [c]. Since the components
are vertex-disjoint, the total number of vertices that received advice is a =∑c

i=1 ai and the total number of vertices is n =
∑c

i=1 si. Adding these
inequalities over all i ∈ [c], we obtain

3a+ c ≤ n (2)

Lemma 3 says that
10a− 4c ≤ 3n (3)

Adding 4 times Eq. (2) to Eq. (3) results in 22a ≤ 7n, i.e., a ≤ (7/22)n, as
desired. □

40



Corollary 1. The priority exact algorithm corresponding to PriorityVC
runs in time

O∗
(
2

7n
22

)
⊂ O∗(1.247n).

6. Hardness Results Using Templates

In this section, we present templates for proving lower bounds on how
much advice is needed for an adaptive priority algorithm to achieve a certain
approximation ratio or optimality. The results hold in the oblivious priority
function model (and the optimality results also hold in the decision-based
priority function model).

The rest of this section is organized as follows: In Subsection 6.1, we intro-
duce the notion of gadget pattern pairs and describe conditions on problems
and gadget pattern pairs that are sufficient for proving lower bounds using
the templates in the next two subsections. In Subsection 6.2, we present
templates for proving trade-offs between the number of advice bits and ap-
proximation ratios. We finish the section with a table listing the lower bound
results that can obtained for Minimum Vertex Cover with the gadget pat-
tern pairs from Subsection 4 and with known gadget pattern pairs for five
other problems. In Subsection 6.3, we present the template for proving lower
bounds on the number of advice bits needed to solve problems to optimal-
ity. The implications of these results for priority exact algorithms are also
discussed.

6.1. Gadget Pattern Pairs for the Templates

In this section, we generalize the construction introduced in Section 4.
These types of constructions will be used in our lower bound proofs, some
based on reductions and some adversarial. Thus, in some proofs, vertices are
given to the priority algorithm with advice by an adversary and, in other
proofs, by a reduction (algorithm). In this section, we just use the term
“adversary” to represent both of these options.

In Section 4, we presented a lower bound on solving the Minimum Vertex
Cover problem to optimality using priority algorithms with advice in the
decision-based priority function model. Two graphs, Graph 1 and Graph 2
were used. When a vertex of degree 2 was selected, the adversary chose
between two isomorphic copies of Graph 1 to include; these two isomorphic
copies constitute an example of the general concept, a gadget pattern pair.
Similarly, for a vertex of degree 3, the isomorphic copy of Graph 1, along with

41



the isomorphic copy of Graph 2, was another example of a gadget pattern
pair. These two gadget pattern pairs constitute our collection of gadget
pattern pairs for the Minimum Vertex Cover problem.

A gadget G for problem B is simply some constant-sized instance for
B, i.e., a collection of input items that satisfy the consistency conditions for
problem B. For example, if B is a graph problem in the vertex arrival, vertex
adjacency model, G could be a constant-sized graph. In this case, an input
item would possibly be a vertex name and a list of neighboring vertex names.

We will define a universe of input items from a union of subuniverses.
For this graph problem, in a subuniverse for a collection of gadget pattern
pairs, each vertex name exists as many times as the vertex of an input item
in the universe, because it can be paired with many different possible lists of
neighboring vertex names for the purpose of creating all possible isomorphic
instances of the gadget. The effect of this is that when an algorithm receives
the first input item of some degree d, it can be any of the degree-d vertices
in any of the gadget patterns in the collection. Consistency conditions must
apply to the actual given input. For instance, for each vertex name u which
is listed as a neighbor of v, it must be the case that v is listed as a neighbor
of u. There could of course be further constraints on the input instances; for
instance, restricting inputs to graphs of some maximum degree.

In our proofs, the adversary provides multiple gadgets (possibly many iso-
morphic ones), each coming from some gadget pattern pair in the collection.
We need that the sets of possible input items for these multiple gadgets are
disjoint, but contain all necessary input items for all gadget patterns in the
collection of gadget pattern pairs. To obtain this, we repeat the construction
above, creating distinct subuniverses for each gadget the adversary presents.
Thus, if, during the execution of an algorithm, the adversary presents m
gadgets to the algorithm, the universe consists of m disjoint subuniverses,
U1,U2, . . . ,Um; all of these subuniverses are identical up to renaming of ver-
tices. This implies that an input item identifies which subuniverse it is in.
We refer to this property as the disjoint copies condition.

We also make an assumption on the objective function related to the
gadgets: We say that the objective function for a problem B is additive with
respect to the gadgets if, for any instance formed from a set of m gadgets from
disjoint universes, the objective function value on the instance is the sum of
the objective function values on the individual gadgets. This implies that
optimality on the instance requires optimality on each gadget. For example,
this assumption will hold for many classical graph problems since the gadgets

42



will be maximal connected components and the corresponding objectives are
additive with respect to connected components.

Recall that maxP R denotes the first item in a set R according to the
current priority function P , i.e., the highest priority item (possibly after tie-
breaking by an adversary). Assume that Alg responds “accept” or “reject”
to any possible input item. This captures problems such as Minimum Vertex
Cover, Independent Set, Clique, etc.

Each collection of gadget pattern pairs also satisfies the first item condi-
tion, and the distinguishing decision condition. The first item condition says
that the first input item chosen by Alg from the subuniverse Uj, first(Uj),
identifies a gadget pattern pair, (Ga

j , G
r
j), from the collection of gadget pat-

tern pairs, and that the input item itself gives no information about which
of the two gadgets Ga

j or G
r
j it is in. For the Vertex Cover example from Sec-

tion 4, the first item could be a vertex of degree 2 or degree 3, and the two
cases lead to different gadget pattern pairs, but the actual input item gives
no information as to which of the gadget patterns within the pair it belongs
to. Given a priority function P , the first item condition can be written as:
first(Uj) = maxP Ga

j = maxP Gr
j . The distinguishing decision condition says

that the decision with regards to item first(Uj) that results in the optimal
value of the objective function in Ga

j is different from the decision that results
in the optimal value of the objective function in Gr

j . This first input item is
said to be the distinguishing item. For accept/reject, we list Ga

j , where the
correct decision is to accept, as the first gadget pattern of the pair, and Gr

j

as the second.

6.2. Lower Bounds on the Advice Needed for Approximation

In this section, we establish two theorems that give general templates for
gadget-based reductions from a problem referred to as 2-SGKH, one for max-
imization problems and one for minimization problems. While it takes some
work to establish these results, the theorems are easy to apply to concrete
problems once established. One simply has to define a collection of gadget
pattern pairs with the required properties and then plug numbers into our
formulas. We do this for a number of approximation problems at the end of
this section.

The following online problem, while seeming artificial, has been used ex-
tensively in proving lower bounds for online algorithms with advice, and we
can also use it for adaptive priority algorithms with advice.

43



Definition 1. The Binary String Guessing Problem [49] with known history
(2-SGKH) is the following online problem. The input consists of (n, σ =
(x1, . . . , xn)), where xi ∈ {0, 1}. Upon seeing x1, . . . , xi−1, an algorithm
guesses the value of xi. The actual value of xi is revealed after the guess.
The goal is to maximize the number of correct guesses. □

Böckenhauer et al. [49] provide a trade-off between the number of advice
bits and the approximation ratio for the binary string guessing problem. This
can be used to show that a linear number of bits of advice is necessary for
many online problems.

Theorem 4. [Böckenhauer et al. [49]] For the 2-SGKH problem and any
ε ∈ (0, 1

2
], no online algorithm using fewer than (1−H(ε))n advice bits can

make fewer than εn mistakes for large enough n, where H(p) = H(1− p) =
−p log(p)− (1− p) log(1− p) is the binary entropy function.

To obtain an optimal online algorithm with advice for 2-SGKH, n bits of
advice are necessary and sufficient [49].

Results and proofs presented here are somewhat similar to those presented
in [34] for fixed priority algorithms with advice. However, there are two
major differences. The harder and more interesting one is that we handle
adaptive priorities, where the priority functions may depend partially on
the advice. In addition, we reduce from string guessing directly instead of
going via an intermediate priority algorithm problem. The purpose of this is
to avoid losing constant factors with regards to the inapproximability results
through intermediate reductions, but this change also made it easier to handle
adaptive priorities.

The lower bounds in this section hold in the oblivious priority function
model. Recall that in Section 4, we showed a lower bound result for solving
Vertex Cover to optimality in the decision-based priority function model. It
is an open problem to determine if the approximation lower bounds we prove
here also hold in the decision-based priority function model. The problem
in proving this when dealing with approximation algorithms is that, theo-
retically, a priority algorithm with advice could use that advice to encode
information in the decisions it makes and then use those decisions in later
priority functions. This would allow the priority functions to depend on the
advice. For algorithms solving a problem to optimality, this encoding cannot
be done since the gadgets in the proof ensure that each decision made by an
optimal algorithm is forced.

44



The template is restricted to binary decision problems since the goal is
to derive inapproximability results based on the 2-SGKH problem, where
guesses (answers) are either 0 or 1. In our reduction from 2-SGKH to a
problem B, we assume that we have a priority algorithm Alg with advice
in the oblivious priority function model for problem B. Thus, the priority
functions may vary between inputs toAlg, but must assign the same priority
to unseen items that are indistinguishable (except for names of items) given
the input seen before this point. The current priority function will generally
be referred to as P . For the reduction, the inputs to 2-SGKH are X =
⟨x1, . . . , xn⟩.

Reduction algorithm. Based on Alg, its advice, and its priority functions,
we define an online algorithm Alg′ with advice (the reduction algorithm) for
2-SGKH. The reduction is advice-preserving, since Alg′ only uses the advice
that Alg does, no more. The input items, n, x1, x2, . . . , xn with xi ∈ {0, 1},
to 2-SGKH arrive in an online manner, so after n arrives, Alg′ must guess x1,
and then the actual value of x1 is revealed. In the general case, immediately
after the value xi is revealed, Alg′ must guess xi+1 and then the actual value
xi+1 is revealed. When xn is revealed, Alg′ knows that this is the end of the
input. At the end, there is some post-processing to allow Alg′ to complete
its computation. Alg′ is outlined in Algorithm 4, but we now describe how
Alg′ provides input to Alg in a consistent manner.

Consistent choice of input items.

• Alg′ defines the universe U to be the union of n disjoint gadget pair
universes, {U1,U2, . . . ,Un}. It eventually defines an input to problem
B, H1, H2, . . . , Hk, where Hi is a gadget Ga

i from Ui if xi = 0; otherwise
it is a gadget Gr

i from Ui.
These Hi can be defined initially, if the input items are isomorphic, in
which case a set R is initialized to contain the input items from these
gadgets. Otherwise, as in the case of the Vertex Cover gadget patterns
from Section 4, the algorithm’s priority functions can give subsets of in-
put items with identical priorities due to its oblivious nature. Knowing
the inputs to 2-SGKH and using the fact that the first item condition
holds, Alg′ can always determine which gadget to actually use for Hi

when the first input item from Ui is selected. The set R initially con-
tains all of the universe U , and Alg′ removes input items from R that

45



Algorithm 4 The reduction algorithm.

Given: Alg for problem B; the inputs to 2-SGKH are X = ⟨x1, . . . , xn⟩

1: R = U ▷ Use the input to B to give answers for X
2: i = 0 ▷ Current index of 2-SGKH input
3: while i < n do
4: Let P be the current priority function for Alg
5: v = maxP R ▷ Choose v as described in 6.2
6: if v is the first vertex from universe Ui+1 then
7: i = i+ 1
8: present v to Alg
9: answer 0 if Alg answers “accept” and 1 if Alg answers “reject”

10: receive actual xi

11: update R to only contain vertices from one of the two gadgets
12: make Hi gadget G

a
i if xi = 0 and GR

i if xi = 1
13: R = R \ (Ui \Hi)
14: else
15: present v to Alg

16: R = R \ {v}
17: while R ̸= ∅ do ▷ Post-processing to finish inputs for problem B
18: Let P be the current priority function for Alg
19: v = maxP R
20: present v to Alg
21: R = R \ {v}

46



are in Ui, but are not in Hi, when Hi has been determined. Other input
items are removed as they are processed.

• Alg′ decides which input item to give when the algorithm’s priority
function designates a set S of size greater than one as those input items
having highest priority. If at least one input item from every universe
has been processed, the reduction algorithm can make an arbitrary
choice, lexicographically, for example. The same holds if the input
items contain names of one or more input items that have already
appeared in earlier input items (for a graph in the vertex arrival, vertex
adjacency model, this means that the input item is a neighbor or a
neighbor of a neighbor of some vertex already processed). Otherwise,
Alg′ has arranged that Alg has seen or will see input items from the
first i− 1 universes and now presents the first from Ui. From the set of
input items with current highest priority, Alg′ chooses which gadget
pattern is correct for Hi: Ga

i if xi = 0 or Gr
i if xi = 1, satisfying that

the distinguishing item, v, for the gadget is among those in S. Alg′

presents v to the algorithm and chooses the actual gadget Hi consistent
with that.

The main challenge is to ensure that the input items toAlg are presented
in the order determined by the priority functions, which may change over
time. The fact that the priority function does not distinguish between input
items that have no known connection to input items already seen allows
Alg′ to choose a distinguishing item in a new gadget from a new universe
when that is necessary. In this case, by the disjointness of the universes for
the gadgets and since we work in the oblivious priority function model, such
a distinguishing item will always be in the set of items of highest priority.
Thus, the first items in the successive gadgets are chosen in order. The first
item chosen from a gadget is one where the distinguishing decision condition
holds, i.e., one where one decision is optimal for that gadget and the other
leads to a non-optimal solution.

We let Alg(I) denote the value of the objective function for Alg on
input I. The size of a gadget pattern G, denoted by |G|, is the number
of input items specifying a gadget consistent with that gadget pattern. We
write Opt(G) to denote the best value of the objective function on G. Re-
call that we focus on problems where a solution is specified by making an
accept/reject decision for each input item. We slightly abuse notation and
let first(G) denote the input item from gadget G that was presented to Alg

47



first, due to Alg′’s choice among the set of input items with highest priority.
We write Bad(G) to denote the best value of the objective function attain-
able on G after making the wrong decision for that first item, first(G), i.e., if
there is an optimal solution that accepts (rejects) first(G), then Bad(G) de-
notes the best value of the objective function given that first(G) was rejected
(accepted).

Definition 2. A collection of k ≥ 1 gadget pattern pairs{
(Ga

j , G
r
j) | 1 ≤ j ≤ k

}
for an optimization problem B is called (s, ρ)-reducible if the following con-
ditions are fulfilled:

• The objective function for B is additive with respect to the gadgets.

• Let U1, . . . ,Un each be subuniverses for the collection of gadget pattern
pairs, and the universe U be the union of the subuniverses. The fol-
lowing conditions must be satisfied for the gadget pattern pairs with
respect to the subuniverses:

– the consistency condition for B,

– the first item condition,

– the distinguishing decision condition,

– and the disjoint copies condition.

• s is the maximum number of input items in any gadget pattern in the
collection.

• The values

Opt(Ga
j ),Bad(Ga

j ),Opt(Gr
j),Bad(Gr

j)

must be independent of j, and we denote them by

Opt(Ga),Bad(Ga),Opt(Gr),Bad(Gr);

– We must have that Opt(Gr) ≥ Opt(Ga).

– If B is a minimization problem, ρ = min
{

Bad(Ga)
Opt(Ga)

, Bad(Gr)
Opt(Gr)

}
, and

if B is a maximization problem, ρ = min
{

Opt(Ga)
Bad(Ga)

, Opt(Gr)
Bad(Gr)

}
.

48



□

Theorem 5. Assume that the collection of gadget pattern pairs{
(Ga

j , G
r
j) | 1 ≤ j ≤ k

}
for a minimization problem B is (s, ρ)-reducible. Then for any ε ∈ (0, 1

2
],

no adaptive priority algorithm in the oblivious priority function model using
fewer than (1 − H(ε))n/s advice bits can achieve an approximation ratio
smaller than

1 +
ε(ρ− 1)Opt(Ga)

εOpt(Ga) + (1− ε)Opt(Gr)
.

Proof Consider an adaptive priority algorithm Alg for B in the oblivi-
ous priority function model. A reduction from 2-SGKH is specified in Al-
gorithm 4, combined with the definition of Alg′. The set R contains the
remaining items which could still be in the input to B and have not yet
been presented to Alg. At any point in time, one of the input items with
the highest priority among those still available in R is presented to Alg.
This item is the first input item from a gadget when (1) there are still gad-
gets in R, where none of their input items have been seen, and (2) the set
of input items with highest priority is the set of input items containing no
reference to any input item referenced in any input item already seen. If
this item is the first input item from a gadget, Hi, from first(Ui), it is an
input item where the distinguishing decision condition holds. In this case,
the next input to 2-SGKH to be processed is xi, and Alg′ guesses 0 for xi

if Alg accepts first(Ui) and 1 if Alg rejects. Note that Alg′ has created
H = ⟨H1, H2, . . . , Hn⟩ such that the answer Alg gives is correct for problem
B if and only if the answer Alg′ gives is correct for 2-SGKH. The correct
answer by Alg is well defined by the distinguishing decision condition.

The amount of advice is the same for both algorithms, so when it is
(1 − H(ε))n′ bits for the n′ inputs to 2-SGKH, it is at least (1 − H(ε))n/s
bits for the n ≤ sn′ inputs to B.

Now we turn to the approximation ratio obtained. We want to lower-
bound the number of incorrect decisions by Alg. We focus on the input
items which are first(Ui) and assume that xi is the next input to 2-SGKH
when first(Ui) is processed. Assume that Alg answers correctly on all inputs
that are not first(Ui) for any i.

49



We know from Theorem 4 that for any ε ∈ (0, 1
2
], any online algorithm

using fewer than (1 − H(ε))n advice bits makes at least εn mistakes on 2-
SGKH. Since we want to lower-bound the approximation ratio of Alg, and
since a ratio larger than one decreases when increasing the numerator and
denominator by equal quantities, we can assume that when Alg answers
correctly, it is on the gadget pattern pair with the larger Opt-value, Gr. For
the same reason, we can assume that the “at least εn” incorrect answers are
in fact exactly εn, since classifying some of the incorrect answers as correct
just lowers the ratio. For the incorrect answers, assume that the gadget
pattern Ga is presented w times, and, thus, the gadget pattern, Gr, εn − w
times.

Denoting the input created byAlg′ forAlg by I, we obtain the following,
where we use that Bad(Gx

j ) ≥ ρOpt(Gx
j ) for x ∈ {a, r}. Since the objective

function for problem B is additive,

Alg(I)

Opt(I)
≥ (1− ε)nOpt(Gr) + wBad(Ga) + (εn− w)Bad(Gr)

(1− ε)nOpt(Gr) + wOpt(Ga) + (εn− w)Opt(Gr)

≥ (1− ε)nOpt(Gr) + wρOpt(Ga) + (εn− w)ρOpt(Gr)

(1− ε)nOpt(Gr) + wOpt(Ga) + (εn− w)Opt(Gr)

= 1 +
w(ρ− 1)Opt(Ga) + (εn− w)(ρ− 1)Opt(Gr)

wOpt(Ga) + (n− w)Opt(Gr)

Taking the derivative with respect to w and setting equal to zero gives
no solutions for w, so the extreme values must be found at the endpoints of
the range for w which is [0, εn].

Inserting w = 0, we get 1 + ε(ρ− 1), while w = εn gives

1 +
ε(ρ− 1)Opt(Ga)

εOpt(Ga) + (1− ε)Opt(Gr)
.

The latter is the smaller ratio and thus the lower bound we can provide.

□

The following theorem for maximization problems is proved analogously.

Theorem 6. Assume that the collection of gadget pattern pairs{
(Ga

j , G
r
j) | 1 ≤ j ≤ k

}
50



for a maximization problem B is (s, ρ)-reducible. Then for any ε ∈ (0, 1
2
],

no adaptive priority algorithm in the oblivious priority function model using
fewer than (1 − H(ε))n/s advice bits can achieve an approximation ratio
smaller than

1 +
ε(ρ− 1)Opt(Ga)

εOpt(Ga) + (1− ε)ρOpt(Gr)
.

Proof The proof proceeds as for the minimization case in Theorem 5 until
the calculation of the lower bound of Alg(I)

Opt(I)
. We continue from that point,

using the inverse ratio to get values larger than one.
We use that for x ∈ {a, r}, Bad(Gx) ≤ Opt(Gx)/ρ.

Opt(I)

Alg(I)
≥ (1− ε)nOpt(Gr) + wOpt(Ga) + (εn− w)Opt(Gr)

(1− ε)nOpt(Gr) + wBad(Ga) + (εn− w)Bad(Gr)

≥ (1− ε)nOpt(Gr) + wOpt(Ga) + (εn− w)Opt(Gr)

(1− ε)nOpt(Gr) + w
ρ
Opt(Ga) + εn−w

ρ
Opt(Gr)

Again, taking the derivative with respect to w gives an always non-
positive result. Thus, the smallest value in the range [0, εn] for w is found at
w = εn. Inserting this value, we continue the calculations from above:

Opt(I)

Alg(I)
≥ (1− ε)nOpt(Gr) + wOpt(Ga) + (εn− w)Opt(Gr)

(1− ε)nOpt(Gr) + w
ρ
Opt(Ga) + εn−w

ρ
Opt(Gr)

=
(1− ε)nOpt(Gr) + (εn)Opt(Ga)

(1− ε)nOpt(Gr) + εn
ρ
Opt(Ga)

=
(1− ε)ρOpt(Gr) + ερOpt(Ga)

(1− ε)ρOpt(Gr) + εOpt(Ga)

= 1 +
ε(ρ− 1)Opt(Ga)

(1− ε)ρOpt(Gr) + εOpt(Ga)

The latter is the smaller ratio and thus the lower bound we can provide. □

We mostly use Theorems 5 and 6 in the following specialized form.

Corollary 2. Assume we are considering a (s, ρ)-reducible optimization prob-
lem.

51



For a minimization problem, if Opt(Ga) = Opt(Gr) = Bad(Ga) − 1 =
Bad(Gr) − 1, then no adaptive priority algorithm in the oblivious priority
function model using fewer than (1 − H(ε))n/s advice bits can achieve an
approximation ratio smaller than 1 + ε

Opt(Ga)
.

For a maximization problem, if Opt(Ga) = Opt(Gr) = Bad(Ga) + 1 =
Bad(Gr) + 1, then no adaptive priority algorithm in the oblivious priority
function model using fewer than (1 − H(ε))n/s advice bits can achieve an
approximation ratio smaller than 1 + ε

Opt(Ga)−ε
.

For the Minimum Vertex Cover problem, for example, we can apply the
minimization version of Corollary 2. The size of the gadget patterns is s = 7
vertices in all cases. Since Opt(Ga) = Opt(Gr) = 3, and, when the optimal
decision is not made on the first vertex processed, the vertex cover size is at
least 4, we obtain the following:

Corollary 3. For Minimum Vertex Cover and any ε ∈ (0, 1
2
], no adaptive

priority algorithm in the oblivious priority function model using fewer than
(1 − H(ε))n/7 advice bits can achieve an approximation ratio smaller than
1 + ε

3
.

The gadget pattern pairs used in [34] (called gadget patterns in that
paper) to prove lower bounds in the fixed priority model also work here in
the adaptive priority model; there are no additional restrictions used in the
proof here. (These gadget patterns are included for completeness.) The
reductions done here are directly from 2-SGKH, as opposed to going through
the Pair Matching problem, as in [34]. As mentioned earlier, this makes
the proofs simpler in most respects (except for having to take into account
changing priority functions), and it means that one does not lose a factor 2 in
the amount of advice required. Thus, the results from [34] can be expressed
using Table 1 as lower bounds for adaptive priority algorithm with advice.
All of the ratios obtained approach one as the amount of advice approaches
some fraction of n. The gadget pattern pairs used in [34] can also be used for
lower bounds on the amount of advice required for optimality. Thus, those
gadget pattern pairs satisfy the conditions of both templates in this paper.

To collect results in one table, we include results for optimality though
they are treated in the next section.

52



Table 1: Results for concrete problems: For a given problem, and any ε ∈ (0, 1
2 ], no

adaptive priority algorithm in the oblivious priority function model using fewer than the
specified number of bits of advice can achieve an approximation ratio smaller than the
ratio listed. The last column is the number of advice bits required for optimality.

Adv.
Problem

Advice for
Ratio for

Approx.
Opt.

Maximum Independent Set [34] (1−H(ε))n/8 1 + ε
3−ε

n/8

Maximum Independent Set [Fig. 1] (1−H(ε))n/7 1 + ε
4−ε

n/7

Maximum Bipartite Matching (1−H(ε))n/3 1 + ε
3−ε

n/3

Maximum Cut (1−H(ε))n/8 1+ ε
15−ε

n/8

Minimum Vertex Cover (1−H(ε))n/7 1 + ε
3

n/7

Maximum 3-Satisfiability (1−H(ε))n/3 1 + ε
8−ε

n/3

Unit Job Sched., Prec. Constraints (1−H(ε))n/9 1 + ε
6−ε

n/9

Note that the gadget patterns for Maximum Independent Set from [34]
have a smaller optimal independent set than the gadget patterns for the
equivalent Minimum Vertex Cover, shown in Fig. 1. Thus, there is a trade-
off between the lower bound for the approximation ratio one can prove and
the lower bound on the amount of advice needed to prove it.

We now go through the constructions that establish the remaining results
listed in Table 1. They are based on gadget pattern pairs that were presented
in [34] but included here for completeness.

6.2.1. Maximum Independent Set and Maximum Cut

The gadgets are drawn to have vertex 1 be the one with highest priority.

Maximum Independent Set.. The optimal decision is to accept in G1 and
reject in G2. The maximum number s of input items for a gadget is 8,
Opt(G1) = Opt(G2) = 3, and Bad(G1) = Bad(G2) = 2.

Maximum Cut.. The goal is to partition the vertices into two sets such that
the number of edges crossing the two sets is maximized. The partition is
specified by the algorithm assigning 0 or 1 to each vertex. In addition, we

53



4 5 6 7 8

1 2 3

1 4 3 2 5

6 7 8

Figure 14: Topological structure of the gadgets (G1, G2) for independent set.

require that 0 is assigned to vertices belonging to the larger block of the
partition. The maximum cut in G1 (or G2) puts the upper vertices in the
larger set and the lower vertices in the other set. The optimal decision for
the first vertex is unique: For G1, respond 1, and for G2, respond 0. The
maximum number s of input items for a gadget is 8, Opt(G1) = Opt(G2) =
15, and Bad(G1) = Bad(G2) = 14.

6.2.2. Maximum Bipartite Matching

The vertices on the right-hand side are known in advance, and the vertices
on the left arrive online. The gadgets are drawn to have vertex 1 be the one
with highest priority, and all possible first vertices look identical. The optimal
decision is to accept in G1 and reject in G2.

1

2

3

1

2

3

1

2

3

1

2

3

Figure 15: Topological structure of the gadgets (G1, G2) for bipartite matching.

The (maximum) number s of input items (the number of vertices given)
for any of the two gadgets is 3, Opt(G1) = Opt(G2) = 3, and Bad(G1) =
Bad(G2) = 2.

6.2.3. Maximum Satisfiability (MAX-3-SAT)

An input item (x, S+, S−) consists of a variable name x, a set S+ of clause
information tuples for those clauses in which x appears positively, and a set

54



S− of clause information tuples for those clauses where the variable x appears
negated. The clause information tuples for a particular clause contain the
name of the clause, the total number of literals in that clause, and the names
of the other variables in the clause, but no information regarding whether
those other variables are negated or not. The goal is to satisfy the maximum
number of clauses.

G1 = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7 ∧ C8,

where
C1 = (x1 ∨ x2 ∨ x3) C2 = (x1 ∨ ¬x2 ∨ ¬x3)

C3 = (x1 ∨ ¬x2 ∨ x3) C4 = (x1 ∨ x2 ∨ ¬x3)

C5 = (¬x1 ∨ x2 ∨ x3) C6 = (¬x1 ∨ x2 ∨ x3)

C7 = (¬x1 ∨ ¬x2 ∨ ¬x3) C8 = (¬x1 ∨ ¬x2 ∨ ¬x3)

G2 = C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 ∧ C7 ∧ C8,

where
C1 = (¬x1 ∨ x2 ∨ x3) C2 = (¬x1 ∨ ¬x2 ∨ ¬x3)

C3 = (¬x1 ∨ ¬x2 ∨ x3) C4 = (¬x1 ∨ x2 ∨ ¬x3)

C5 = (x1 ∨ x2 ∨ x3) C6 = (x1 ∨ x2 ∨ x3)

C7 = (x1 ∨ ¬x2 ∨ ¬x3) C8 = (x1 ∨ ¬x2 ∨ ¬x3)

Suppose without loss of generality that the highest priority input is

(x1, {(C1, 3, {x2, x3}), (C2, 3, {x2, x3}), (C3, 3, {x2, x3}), (C4, 3, {x2, x3})},

{(C5, 3, {x2, x3}), (C6, 3, {x2, x3}), (C7, 3, {x2, x3}), (C8, 3, {x2, x3})}).

Note that the optimal decision for x1 is unique for each of these gadgets and
is “True” for G1 and “False” for G2. The maximum number s of input items
for a gadget is 3, Opt(G1) = Opt(G2) = 8, and Bad(G1) = Bad(G2) = 7.

6.2.4. Unit Job Scheduling with Precedence Constraints

In this problem, we have a single machine and the requests are unit time
jobs with precedence constraints, indicating which jobs must be scheduled
before which others. There could be a cyclic set of constraints. The goal
is to schedule a maximum number of jobs that are compatible. The input
items are of the form (J, S+, S−), where J is the name of a job, S+ is the

55



set of jobs such that if they were scheduled together with J they would have
to be scheduled before J , and S− is the set of jobs such that if they were
scheduled together with J they would have to be scheduled after J .

The gadget below is a directed graph, specifying the precedence con-
straints.

0 1 2 3

4 5 6 7

8

Figure 16: Topological structure of a gadget for job scheduling of unit time jobs with
precedence constraints.

This gadget consists only of isomorphic items (each vertex has in-degree
2, out-degree 2, and 4 different neighbors in all). Thus, this gadget can
represent both G1 and G2 with renaming. Every optimal solution contains
Job 0 and excludes Job 8, so G1 has the job labeled 0 in this gadget as
the highest priority item and G2 has the job labeled 8 in this gadget as the
highest priority item. The maximum number s of input items for a gadget is
9, Opt(G1) = Opt(G2) = 6 (for instance, schedule jobs 1, 0, 2, 5, 4, 6), and
Bad(G1) = Bad(G2) = 5.

6.3. Lower Bounds on the Advice Needed for Optimality

In this section, we consider adaptive priority algorithms that solve prob-
lems to optimality.

Theorem 7. Assume that the collection of gadget pattern pairs{
(Ga

j , G
r
j) | 1 ≤ j ≤ k

}
for a problem B is (s, ρ)-reducible. Then, any optimal adaptive priority
algorithm, Alg, with advice in the oblivious priority function model must
use at least ⌊n/s⌋ advice bits on worst case instances with n input items.

56



Proof We use the proof of Theorems 5 and 6. Note that the reduction
algorithm in Fig. 4 uses the same amount of advice for the algorithm for
2-SGKH as for the algorithm for problem B and makes exactly the same
number of errors in guessing bits for 2-SGKH as it makes on first input items
of gadgets for problem B. Thus, if it solves B to optimality, it also solves
2-SGKH to optimality. Since n′ bits of advice are required on n′-bit inputs
to 2-SGKH [49], n′ bits of advice must be required for n′ gadgets as input
to problem B. If the maximum gadget size is s, then at least ⌊n/s⌋ are
necessary to achieve optimality. □

In the following, we consider completable problems. A problem B is
completable if every consistent set S ′ of n′ < n input items can be completed
to a consistent set S of n input items in such a way that if C ′ ⊆ S ′ is not
an optimal solution for S ′, there is no subset C = C ′ ∪ E of S with E a
subset of additional n−n′ items such that C is an optimal solution for S. In
other words, a problem is completable if there is a way to give the remaining
input items without giving an algorithm the opportunity to fix an earlier non-
optimal decision. For Minimum Vertex Cover and many other problems, for
example, one can complete the set S ′ to S by adding n−n′ isolated vertices.

The result in Section 4 for Vertex Cover in the decision-based priority
function model can be generalized to give the same result as above.

Theorem 8. Assume that the collection of gadget pattern pairs{
(Ga

j , G
r
j) | 1 ≤ j ≤ k

}
for a completable problem B is (s, ρ)-reducible. Then, any optimal adaptive
priority algorithm, Alg, with advice in the decision-based priority function
model must use at least ⌊n/s⌋ advice bits on worst case instances with n
input items.

Proof To define a problem where k = ⌊n/s⌋ bits of advice are necessary
and sufficient for optimality in the decision-based priority function model,
we consider an arbitrary algorithm, Alg′, for problem B, and an adversary,
Adv′. We create k disjoint universes, U1,U2, . . . ,Uk, copies of the universe U ,
with different names for the input items in each copy, and define the universe,
U ′, for Alg′ to be the union of these k universes. The input for Alg′ is the
union of H1, H2, . . . , Hk, where Hi is an isomorphic copy of either Ga

i or Gr
i .

57



We now define 2k distinct sequences of input items forAlg′, by describing
how one of these 2k sequences of input items is defined: Alg′ selects input
items one at a time, and Adv′ knows from which of the k universes the input
items originate.

Since we are assuming that Alg′ solves the problem to optimality, the
adversary can assume that the current priority function is determined based
on Alg′ making the correct accept/reject decisions up to this point. Now,
Adv′ does the following: Assume that Alg′ has already received input items
originating from i of the universes from which U ′ was defined and the adver-
sary has a current subset X ⊆ U ′. If that is the case, then X contains exactly
enough input items to complete one gadget from each of the universes from
whichAlg′ has received some input item (how this is maintained is explained
below). From universes not included in these i universes, X still contains all
possible namings of vertices from the gadgets.

Now, Alg′ receives its next input item which will be the input item in
X of the highest priority in this round, and that input item is the next in
the input sequence we are defining. This item is determined by the current
priority function which only depends on the input items received so far and
its decisions so far.

If that next input item, v, is from one of the i universes, nothing further
is done. However, if that next input item originates from a universe, Uj, not
among the i, then the following is done.

By the first item condition and the disjoint copies condition, the input
item v identifies for which gadget pattern pair, (Ga

j , G
r
j), in the collection v

is the distinguishing item, Adv′ chooses Ga
j or Gr

j , and then removes from
X all input items originating from Uj, except enough to make up exactly the
gadget that was chosen (consistent with whichever of Ga

j or Gr
j was chosen),

with the naming consistent with v being the distinguishing item from that
gadget.

Continuing this inductively defines one sequence of the 2k distinct se-
quences of input items. The number of input items in each sequence is at
most sk ≤ n. If it is less than n, irrelevant input items can be added, since
B is completable.

If a priority algorithm with advice for problem B in the decision-based
model uses fewer than k bits of advice for instances with sk input items,
the same advice must be given for at least two of the sequences, I1 and I2,
defined above. Alg′ therefore uses the same priorities and makes the same
decisions on I1 and I2 until some difference is detected. Thus, consider the

58



first time in the processing of I1 and I2, where an input item v that has
current highest priority is the first input item of a gadget from some Ui, but
the gadgets included in I1 and I2 from Ui are different.

Up until (and including) this point, all input items have been the same
for the two sets. Thus, Alg′ must make the same decision for v in both I1
and I2, but, by the distinguishing decision condition, one of those decisions
leads to a solution which is not optimal, by the additivity of the objective
function. Thus, Alg′ is not optimal, and k bits of advice are necessary. □

The templates from the theorems in this section are quite similar and
general, applying to binary decision problems where collections of gadget
pattern pairs satisfying the required conditions can be created. One can
check that all of the gadget pattern pairs presented in [34] are appropriate,
thus giving immediate lower bounds for several problems.

Recall that an exact algorithm created in the obvious way (trying all ad-
vice strings of the maximal required length) from adaptive priority algorithms
with advice is called a priority exact algorithm. For any problem satisfying
the conditions of the previous theorem, any priority exact algorithm obtained
for the problem examines at least 2n/s possibilities. This can rule out the
possibility of improvements using priority exact algorithms for certain prob-
lems that already have known complexities better than this. When the size
of the gadget patterns is small, this gives larger lower bounds. For exam-
ple, for Minimum Vertex Cover the size of the gadget patterns is s = 7,
since all possible gadgets have seven vertices. Thus, the lower bound for
Minimum Vertex Cover (on triangle-free graphs with maximum degree 3) is
Ω(2

n
7 ) ⊂ Ω(1.142n), which is larger than the best known exact algorithms for

this problem, showing that those algorithms are not priority exact algorithms
(derived from a priority algorithm with advice in the decision-based or obliv-
ious priority function models). For Maximum Independent Set, our previous
gadget patterns [34] have size s = 8, but the gadget patterns for Minimum
Vertex Cover also work for Maximum Independent Set (the problems are
complements of each other), so the lower bound we obtain for Maximum
Independent Set is also Ω(2

n
7 ).

Unfortunately, these lower bound results only apply to priority exact algo-
rithms as defined from priority algorithms with advice in either the decision-
based or the oblivious priority function models (obtained from a priority al-
gorithm with advice by running the algorithm on all possible advice strings,
all of the same length). As mentioned earlier, there are usually better imple-

59



mentations of these algorithms as branch-and-reduce algorithms, giving the
possibility of better analyses of their running times.

In particular, these lower bounds were all proven using constant-sized
gadget patterns, each one being a connected component of the entire graph.
In practice, though, each connected component (gadget) should be treated
independently, each only requiring one bit of advice. Then, if a lower bound
of f(n) is proven on the number of advice bits needed for a problem of
size n, consisting of s components, instead of running time Ω(2f(n)), only
O∗(2s) = O∗(1) time is necessary (trying the advice strings “0” and “1”
for each component). Thus, it seems very limited how broadly these lower
bounds can be interpreted.

Brahe [50] has a construction for Maximum Independent Set and Mini-
mum Vertex Cover using a connected graph which also gives a linear lower
bound on the amount of advice required for optimality in the decision-based
priority function model (those specific connected graphs were explicitly de-
signed to have triangles, so they are not triangle-free, but they still have
maximum degree 3). Thus, the technique of running the algorithm inde-
pendently on each connected component fails there, and one obtains an ex-
ponential lower bound for exact algorithms based on the adaptive priority
algorithms with advice in the decision-based priority function model.

7. The Thorny Path Problem

In this section, we consider another problem using adaptive priority al-
gorithms with advice. Using different techniques, we prove lower bounds for
this problem in the unrestricted and decision-based models. We conjecture
that the lower bound in the unrestricted model is not tight. We prove match-
ing upper and lower bounds in the decision-based priority function model.
These bounds establish a hierarchy, showing that for any positive integer k,
there is a problem for which k of bits of advice is necessary and sufficient for
optimality.

We call a tree a thorny path if it has a root, s, with two children, and
at any depth greater than zero and smaller than the maximum depth of the
tree, there are exactly two nodes; one with zero and one with two children.

We define the thorny path problem as follows. Given a forest G consisting
of a number of trees, each of which is a thorny path, as well as a start vertex
s of one of the thorny paths of G, the goal is to construct a path from s
to one of the two leaves of maximum depth. The universe of input items

60



is U = Z3. An input item (u, v, w) is a vertex u with a left child v and
a right child w. One can think of u, v, and w as vertex names or object
identifiers. The universe of decisions is D = {0, 1,⊥}. Given an input item
(u, v, w), the decision 0 means to include edge (u, v) in the solution, the
decision 1 means to include edge (u,w) in the solution, and the decision
⊥ means to not include any of the two edges in the solution. The thorny
path problem is parameterized by a single parameter k ∈ N, which is one
less than the maximum depth in the thorny path containing s. We refer to
the parameterized thorny path problem as the k-thorny path problem. An
example of a thorny path is shown in Fig. 17.

u

v w

s

Figure 17: An example of a 4-thorny path.

We begin with a simple observation.

Lemma 5. In the decision-based priority function model, the k-thorny path
problem can be solved by an adaptive priority algorithm with k bits of advice.

Proof The first priority function gives highest priority to an input item
of the form (s, ·, ·) and an advice bit is used to select the correct child.
Subsequent priority functions give highest priority to items with the most
recently selected child as the first entry and an advice bit is used to choose
the next child correctly. No advice is necessary at depth k, since including
either edge gives a valid solution, a leaf at depth k + 1. □

Now we turn to lower bounds, starting with the unrestricted priority
function model. We do not give upper bounds. Note, however, that advice
giving the name of a leaf in the thorny path can be used to follow parents up
to the root, without using additional advice. This advice can be quite large,
however, since the universe size is unbounded.

61



Theorem 9. In the unrestricted priority function model, the k-thorny path
problem cannot be solved by an adaptive priority algorithm with log k − 1
bits of advice.

Proof Assume that we have ℓ adaptive priority algorithms without advice,
Alg1, . . . ,Algℓ. We fix m large enough (depending on ℓ, to be specified
later) and let x1, . . . , xm ∈ Z \ {1} be distinct. Let U be the input universe,
consisting of all triples with distinct items formed from {s, x1, . . . , xm}, with
the only exception being that s only appears as a first element of any triple.
We construct a thorny path instance I (that is, a subset of the input universe
that will be used as input) with one thorny path such that each algorithm
Alg1, . . . ,Algℓ makes a mistake on I. We construct I iteratively. In step j,
we construct a subinstance Ij that guarantees that algorithm Algj makes
a mistake. The thorny path of Ij starts at vertex s and ends in two leaves.
In addition to Ij, we keep track of a leaf vj that is going to be extended in
step j+1. We also keep track of a set of input items Sj ⊆ S that can be used
to extend our instance beyond Ij. Sj will not contain any input items where
the first entry is currently a non-leaf element of Ij. The condition that Algj

makes a mistake on Ij also continues to hold no matter how Ij is extended
with elements from Sj.

For the base case, I0 is empty, and none of the algorithms have made a
mistake yet. We set v0 = s and S0 = U .

Assume that we have constructed a thorny path Ij and the leaf of Ij to
be extended using items from Sj is vj. Moreover each of Alg1, . . . ,Algj

makes a mistake on Ij and continues to make that mistake no matter how Ij
is extended by elements from Sj. Consider running Algj+1 on input Ij ∪ Sj

(in spite of it being an invalid input). In each iteration, the algorithm gives
highest priority to an input item from Ij or from Sj. Consider the first time
Algj+1 selects an input item from Sj.

If Algj+1 has already made a mistake on an input item from Ij, then we
can simply take Ij+1 = Ij, vj+1 = vj, and Sj+1 = Sj. All the properties are
easy to verify in this case.

Otherwise, let (x, y, z) be the first element from Sj that is requested by
Algj+1. Without loss of generality, assume that the decision of Algj+1

is to accept edge (x, y) and not (x, z). If x = vj, then we extend Ij+1 =
Ij ∪ {(x, y, z)} and Sj+1 is Sj with all items involving y or x removed, as
well as those items that have z as second or third coordinate. Observe that
this ensures that Algj+1 makes a mistake on item (x, y, z) and this fact is

62



unaffected by further extensions of Ij+1. In this case, we have vj+1 = z.
The last case to consider is when Algj+1 requests (x, y, z) from Sj and

x ̸= vj. In this case, we also consider an item (vj, x, w) ∈ Sj for some w that
is different from any other value appearing in the construction so far. By the
way Sj is constructed, and taking m large enough, such a w is guaranteed
to exist. We extend Ij+1 = Ij ∪ {(vj, x, w), (x, y, z)}. Again, without loss of
generality, assume that Algj+1 accepts (x, y) rather than (x, z). We again
set vj+1 = z and Sj+1 to be the set Sj with all items involving x, y, w, or vj
removed, as well as those items that have z as the second or third coordinate.
This guarantees that Algj+1 makes a mistake on item (x, y, z) and continues
to make a mistake on this item no matter how Ij+1 is extended with elements
from Sj+1.

After all ℓ algorithms have made a mistake, leaving a final vj and Sj, an
input item from Sj with vj as the first coordinate is moved from Sj to Ij,
finishing the construction.

Observe that each Sj can be defined by some subset F ⊆ {s, x1, . . . , xm}.
Namely, Sj consists of all triples formed from F , as well as triples formed
by having the first coordinate equal to vj and the remaining two coordinates
coming from F . In each iteration going from j to j + 1, at most 4 elements
are removed from F . At the end, three additional elements from F are used
for the last item. Therefore, m = 3 + 4ℓ is sufficient to guarantee a universe
large enough that the construction terminates only after all algorithms are
fooled by the instance.

Finally, assume that b advice bits are used by an adaptive priority al-
gorithm with advice with the above construction as input. We determine a
lower bound on b. Running an algorithm in the unrestricted priority function
with b bits of advice is equivalent to running 2b algorithms in parallel. Thus,
we have ℓ = 2b algorithms that can all be fooled simultaneously by a k-thorny
path problem, where k ≤ 2ℓ, since the last case above uses two layers to fool
the algorithm in question. Since b bits are insufficient and 2b+1 = 2ℓ ≥ k, it
follows that log k − 1 bits are insufficient. □

The following theorem shows that the upper bound in Lemma 5 is tight
for the decision-based priority function model. The proof uses the same ideas
as the proof of the lower bound in Section 4. In that proof, 2k different input
sequences were created, and using fewer than k bits of advice led to at least
two of them getting the same advice and an error being made on one of those
two. Those sequences can be seen as forming a binary tree, with inputs at the

63



nodes in the tree and the two possible decisions leading to the two subtrees.
Thus, sequences that are the same up until input m share the same path
from the root to that input. This is not quite the case for the thorny path
problem, since it is possible for the adaptive priority algorithm to select an
input item that is not connected to the last one seen. However, the tree
determines 2k root-to-leaf paths, which naturally define 2k thorny paths and
their inputs.

Theorem 10. An adaptive priority algorithm with advice in the decision-
based priority function model must use at least k bits of advice to solve the
k-thorny path problem.

Proof LetAlg be an adaptive priority algorithm with advice in the decision-
based priority function model. We consider Alg’s computation on the k-
thorny path problem.

We construct 2k input instances of the k-thorny path problem. To explain
the construction, we use a binary tree with 2k+1 leaves and s as the root. The
leaves will be the leaves in the thorny path problems, and each root-to-leaf
path, along with the siblings of the vertices on the path, will be the thorny
paths that should be followed by Alg to get to a leaf. The 2k different
paths one can take from s to a parent of a leaf will represent the 2k input
instances we are constructing. They will not be the input instances since
input instances could have further input items that are discarded by Alg.
Each node in the tree has an associated ordered list of input items, which are
all the ones for which the algorithm chooses ⊥ (discard) until the next time
it chooses 0 or 1 (left or right). Thus, a path in the tree defines an input
sequence consisting of the input items forming the path with the associated
ordered lists of input items added. More precisely, the ordered list of input
items associated with a node u appears in the input sequence just prior to
the input item with u as root (of that input item; recall that an input item
consists of three nodes, two of which are the children of the first, the root).

The tree represents all execution paths Alg can take based on different
advice. Along the way, we will also explain how the adversary will change
the input universe as an execution proceeds. In an execution (that follows
one path), the universe is decreased gradually as execution progresses down
the path, and the universe that is used at a given point varies depending on
which path was chosen by Alg (based on its advice).

In constructing the tree, we start with s in the root and we add nodes
to the tree gradually by adding two children to a currently childless node.

64



Let u be such a node of depth at most k. We consider Alg’s execution on
the partial input defined by the path from s to u (including the input items
associated with nodes on the path). The path, together with the associated
lists, defines the decisions Alg must make on this partial input.

Naturally, Alg just follows one path in the tree, making decisions to go
left or right or discard based on the advice it gets. However, if it is at u,
then the next input item Alg’s priority function selects is only based on the
partial input and its decisions. Now, for an input item, (x, y, z), either x = u
or x is not on the s-to-u path (this follows from how we treat the universe;
see later).

If x = u, we add the leaves y and z to the tree as children of u. All input
items remaining containing u or its sibling are removed from the universe.

If x ̸= u, the adversary removes all input items remaining that contain x,
y, or z from the universe. Thus, x can never become part of any root-to-leaf
path that currently ends at u. The input item (x, y, z) is then appended to
the ordered list of discarded input items associated with u.

There are no more input items added after there are 2k+1 leaves at
depth k + 1. If the tree is never completed, there is a path where Alg
never finds a leaf, so Alg fails. Otherwise, the 2k different input sequences
defined by the paths in the tree must have distinct advice strings. Thus, at
least k advice bits are necessary. □

Note that this proof does not appear to work in the unrestricted priority
function model, since it is not clear that the tree can be defined in that
case. For example, if advice (in addition to the decisions made) is used to
determine which input item is chosen next, an input that we placed off of a
thorny path might actually only be chosen if it is on the path.

8. Open Problems

The extension of the adaptive priority model to the advice tape model
leads to many new research directions. We consider the following open prob-
lems to be of particular interest:

• Design and analyze new adaptive priority algorithms with advice for
(special cases of) classical optimization problems and convert them to
offline algorithms, by trying all possibilities for the advice as with pri-
ority exact algorithms or by implementing them as branch-and-reduce

65



algorithms. In particular, are there priority algorithms with advice that
lead to faster (in terms of the base of the exponent) exact exponential
time offline algorithms than the best known?

• The previous question also applies to approximation algorithms, when
the best known offline approximation algorithm is exponential in terms
of running time.

• Suggest how to extend the lower bound results to the unrestricted pri-
ority function model. A first example of such a lower bound for an
artificial problem was given in Section 7 for the thorny path problem.

• Suggest and investigate other extensions of the adaptive priority frame-
work besides the information-theoretic advice tape extension. For in-
stance, one could consider a class of adaptive priority algorithms where
advice is given by an AC0 circuit. What can be said about the power
and limitations of such algorithms?

• More generally, study the structural complexity of priority algorithms
with advice. What reasonable complexity classes can be defined based
on advice complexity and approximation ratio?

• The lower bounds implied by our reduction-based framework are of
the form “constant inapproximability even given linear advice.” Can
this framework be extended to handle super-constant inapproximabil-
ity with sublinear advice? More generally, the goal is to design some
framework that could work in this other realm of parameters. A good
starting point would be to show that we cannot obtain an approxima-
tion ratio of n1−ε for Maximum Independent Set with O(log n) bits of
advice for any fixed ε ∈ (0, 1]. Note that under the assumption P ̸= NP,
this lower bound follows from the famous result of H̊astad [51]. The
goal here is to prove this lower bound unconditionally for the restricted
class of priority algorithms with advice.

Acknowledgments

We would like to thank Nicolai Bille Brahe for pointing out an ambi-
guity in an earlier version of this paper and the reviewers for many helpful
comments that improved our presentation.

66



The first and second authors were supported in part by the Indepen-
dent Research Fund Denmark, Natural Sciences, grants DFF-7014-00041 and
DFF-0135-00018B, and the third author was supported in part by Natural
Sciences and Engineering Research Council (NSERC) of Canada.

References

[1] A. Borodin, J. Boyar, K. S. Larsen, N. Mirmohammadi, Priority algo-
rithms for graph optimization problems, Theoretical Computer Science
411 (1) (2010) 239–258.

[2] H. Whitney, On the abstract properties of linear dependence, American
Journal of Mathematics 57 (3) (1935) 509–533.

[3] B. Korte, L. Lovász, Mathematical structures underlying greedy algo-
rithms, in: International FCT-Conference on Fundamentals of Compu-
tation Theory (FCT), Springer, Berlin, Heidelberg, Germany, 1981, pp.
205–209.

[4] B. Korte, L. Lovász, Structural properties of greedoids, Combinatorica
3 (3) (1983) 359–374.

[5] B. Korte, L. Lovász, Greedoids – a structural framework for the greedy
algorithm, in: W. R. Pulleyblank (Ed.), Progress in Combinatorial Op-
timization, Academic Press, Cambridge, Massachusetts, USA, 1984, pp.
221–243.

[6] B. Korte, L. Lovász, Greedoids and linear objective functions, SIAM
Journal on Algebraic Discrete Methods 5 (2) (1984) 229–238.

[7] A. Borodin, M. N. Nielsen, C. Rackoff, (Incremental) priority algo-
rithms, Algorithmica 37 (4) (2003) 295–326.

[8] R. L. Graham, Bounds for certain multiprocessing anomalies, Bell Sys-
tems Technical Journal 45 (9) (1966) 1563–1581.

[9] D. R. Karger, C. Stein, J. Wein, Scheduling algorithms, in: M. J. Atallah
(Ed.), Algorithms and Theory of Computation Handbook, Chapman &
Hall/CRC Applied Algorithms and Data Structures series, CRC Press,
Boca Raton, Florida, USA, 1999.

67



[10] S. Angelopoulos, A. Borodin, On the power of priority algorithms for
facility location and set cover, Algorithmica 40 (4) (2004) 271–291.

[11] S. Davis, R. Impagliazzo, Models of greedy algorithms for graph prob-
lems, Algorithmica 54 (3) (2009) 269–317.

[12] B. Besser, M. Poloczek, Greedy matching: Guarantees and limitations,
Algorithmica 77 (1) (2017) 201–234.

[13] O. Regev, Priority algorithms for makespan minimization in the subset
model, Information Processing Letters 84 (3) (2002) 153–157.

[14] R. J. Lipton, A. Tomkins, Online interval scheduling, in: 5th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 1994, pp.
302–311.

[15] P. A. Papakonstantinou, Hierarchies for classes of priority algorithms for
job scheduling, Theoretical Computer Science 352 (1-3) (2006) 181–189.

[16] M. Poloczek, Bounds on greedy algorithms for MAX SAT, in: 19th
Annual European Symposium on Algorithms (ESA), Vol. 6942 of Lec-
ture Notes in Computer Science, Springer, Berlin, Heidelberg, Germany,
2011, pp. 37–48.

[17] M. Poloczek, G. Schnitger, D. P. Williamson, A. van Zuylen, Greedy al-
gorithms for the maximum satisfiability problem: Simple algorithms and
inapproximability bounds, SIAM Journal on Computing 46 (3) (2017)
1029–1061.

[18] A. Borodin, B. Lucier, On the limitations of greedy mechanism design
for truthful combinatorial auctions, ACM Transactions on Economics
and Computation 5 (1) (2016) 2:1–2:23.

[19] N. Lesh, M. Mitzenmacher, Bubblesearch: A simple heuristic for im-
proving priority-based greedy algorithms, Information Processing Let-
ters 97 (4) (2006) 161–169.

[20] S. Dobrev, R. Královič, D. Pardubská, Measuring the problem-relevant
information in input, RAIRO – Theoretical Informatics and Applica-
tions 43 (3) (2009) 585–613.

68



[21] P. Fraigniaud, D. Ilcinkas, A. Pelc, Tree exploration with advice, Infor-
mation and Computation 206 (11) (2008) 1276–1287.

[22] Y. Emek, P. Fraigniaud, A. Korman, A. Rosén, Online computation
with advice, Theoretical Computer Science 412 (24) (2011) 2642–2656.

[23] J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen, J. W. Mikkelsen,
Online Algorithms with Advice: A Survey, ACM Computing Surveys
50 (2) (2017) 19:1–19:34.

[24] J. Hromkovič, R. Královič, R. Královič, Information complexity of online
problems, in: 35th International Symposium on Mathematical Founda-
tions of Computer Science (MFCS), Vol. 6281 of Lecture Notes in Com-
puter Science, Springer, Berlin, Heidelberg, Germany, 2010, pp. 24–36.

[25] H.-J. Böckenhauer, D. Komm, R. Královič, R. Královič, T. Mömke,
Online algorithms with advice: The tape model, Information and Com-
putation 254 (1) (2017) 59–83.

[26] M. P. Bianchi, H. Böckenhauer, T. Brülisauer, D. Komm, B. Palano,
Online minimum spanning tree with advice, International Journal of
Foundations of Computer Science 29 (4) (2018) 505–527.

[27] S. Dobrev, R. Královič, R. Královič, Advice complexity of maximum
independent set in sparse and bipartite graphs, Theoretical Computer
Science 56 (1) (2015) 197–219.

[28] S. Dobrev, R. Královič, E. Markou, Online graph exploration with ad-
vice, in: 19th International Colloquium on Structural Information and
Communication Complexity (SIROCCO), Vol. 7355 of Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, Germany, 2012, pp.
267–278.

[29] M. M. Halldórsson, K. Iwama, S. Miyazaki, S. Taketomi, Online inde-
pendent sets, Theoretical Computer Science 289 (2) (2002) 953–962.

[30] B. Gorain, A. Pelc, Deterministic graph exploration with advice, ACM
Transactions on Algorithms 15 (1) (2019) 8:1–8:17.

[31] D. Komm, R. Královič, R. Královič, C. Kudahl, Advice complexity of
the online induced subgraph problem, in: 41st International Symposium

69



on Mathematical Foundations of Computer Science (MFCS), Vol. 58 of
LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany,
2016, pp. 59:1–59:13.

[32] D. Komm, R. Královič, R. Královič, J. Smula, Treasure hunt with ad-
vice, in: 22nd International Colloquium on Structural Information and
Communication Complexity (SIROCCO), Vol. 9439 of Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, Germany, 2015, pp.
328–341.

[33] S. Miyazaki, On the advice complexity of online bipartite matching and
online stable marriage, Information Processing Letters 114 (12) (2014)
714–717.

[34] A. Borodin, J. Boyar, K. S. Larsen, D. Pankratov, Advice complexity of
priority algorithms, Theory of Computing Systems 64 (2020) 593–625.

[35] M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R. Impagliazzo,
A. Magen, T. Pitassi, Toward a model for backtracking and dynamic
programming, Computational Complexity 20 (4) (2011) 679–740.

[36] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, A. Wigderson, On
the power of randomization in on-line algorithms, Algorithmica 11 (1)
(1994) 2–14.

[37] P. Raghavan, M. Snir, Memory versus randomization in on-line algo-
rithms, IBM Journal of Research and Development 38 (6) (1994) 683–
707.

[38] F. V. Fomin, D. Kratsch, Exact Exponential Algorithms, Texts in The-
oretical Computer Science. An EATCS Series, Springer, Berlin, Heidel-
berg, Germany, 2010.

[39] M. Xiao, H. Nagamochi, Confining sets and avoiding bottleneck cases:
A simple maximum independent set algorithm in degree-3 graphs, The-
oretical Computer Science 469 (2013) 92–104.

[40] M. Davis, H. Putnam, A computing procedure for quantification theory,
Journal of the ACM 7 (3) (1960) 201–215.

70



[41] M. Davis, G. Logemann, D. W. Loveland, A machine program for
theorem-proving, Commun. ACM 5 (7) (1962) 394–397.

[42] F. V. Fomin, F. Grandoni, D. Kratsch, A measure & conquer approach
for the analysis of exact algorithms, Journal of the ACM 56 (5) (2009)
25:1–25:32.

[43] V. Chvátal, Determining the stability number of a graph, SIAM Journal
on Computing 6 (4) (1977) 643–662.

[44] P. Pudlák, R. Impagliazzo, A lower bound for DLL algorithms for k -sat
(preliminary version), in: D. B. Shmoys (Ed.), 11th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), ACM/SIAM, New York,
New York/Philadelphia, Pennsylvania, USA, 2000, pp. 128–136.

[45] D. Achlioptas, P. Beame, M. Molloy, A sharp threshold in proof com-
plexity yields lower bounds for satisfiability search, Journal of Computer
and System Sciences 68 (2) (2004) 238–268.

[46] M. Alekhnovich, E. A. Hirsch, D. Itsykson, Exponential lower bounds
for the running time of DPLL algorithms on satisfiable formulas, Journal
of Automated Reasoning 35 (1–3) (2005) 51–72.

[47] C. McDiarmid, Determining the chromatic number of a graph, SIAM
Journal on Computing 8 (1) (1979) 1–14.

[48] V. Chvátal, Hard knapsack problems, Operations Research 28 (6) (1980)
1402–1411.

[49] H.-J. Böckenhauer, J. Hromkovič, D. Komm, S. Krug, J. Smula,
A. Sprock, The string guessing problem as a method to prove lower
bounds on the advice complexity, Theoretical Computer Science 554
(2014) 95–108.

[50] N. B. Brahe, Exact algorithms from priority algorithms with advice for
vertex cover in graphs of maximum degree 3, Master’s thesis, University
of Southern Denmark, Denmark (2021).

[51] J. H̊astad, Clique is hard to approximate within n1−ε, Acta Mathematica
182 (1) (1999) 105–142.

71


