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Abstract Recent successes in formally verifying increasingly larger computer-gener-
ated proofs have relied extensively on (a) using oracles, to find answers for recurring
subproblems efficiently, and (b) extracting formally verified checkers, to perform ex-
haustive case analysis in feasible time.

In this work we present a formal verification of optimality of sorting networks on
up to 9 inputs, making it one of the largest computer-generated proofs that has been
formally verified. We show that an adequate pre-processing of the information provided
by the oracle is essential for feasibility, as it improves the time required by our extracted
checker by several orders of magnitude.
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sorting networks
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1 Introduction

Although it was not the first computer-assisted proof, the proof of the four color the-
orem from 1976 [1,3] was the first to generate broad awareness of a new area of math-
ematics, sometimes dubbed “experimental” or “computational” mathematics, where
computers play an essential role. Since then, numerous theorems in mathematics and
computer science have been established via computer-assisted and computer-generated
proofs.

Besides obvious philosophical debates about what constitutes a mathematical proof,
concerns about the validity of such proofs have been raised often since. In particular,
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proofs based on exhausting the solution space were originally met with skepticism [2];
criticism target in particular the correctness and verifiability of the computer program
involved.

Nevertheless, computer-assisted proofs have become more and more present. Espe-
cially during the last decade, we have seen an increasing use of verified proof assistants
to create formally verified computer-generated proofs. This has been a success story,
and it has resulted in a plethora of formalizations of mathematical proofs – includ-
ing a formal verification of the four color theorem from 2005 [22]. A common element
to many of these proofs is that they include an exhaustive case analysis too large to
be handled manually. The original proof of the four color theorem required analyzing
1,936 different “maps”, obtained by reducing around 1 billion possibilities – a number
of cases that is substantially surpassed by more recent proofs, e.g. [30,38].

Outside the world of formal proofs, computer-generated proofs are flourishing, too,
and growing to tremendous sizes. The proof of Erdős’ discrepancy conjecture for C = 2
from 2014 [28] has been touted as one of the largest mathematical proofs, and produced
approximately 13 GB of proof witnesses. Another recent example, by two of the authors
of this article, is the computer-generated proof of the optimality of 25 comparisons
when sorting 9 inputs [10,11], which analyzed trillions of cases and resulted in over 70
million proof witnesses, totaling 27 GB of data.

Such large-scale computer-generated proofs are extremely challenging for formal
verification. Given the current state of theorem provers and computing equipment,
it is prohibitive due to memory and run-time constraints to use approaches such as
Claret et al.’s [9] of importing an oracle based on the proof witnesses into the theorem
prover Coq [4] for the scale of proofs we consider. For this reason, untrusted oracles
have appeared in recent years. Here, the verified proof tool is relegated to a checker
of the computations of the untrusted oracle, e.g., the hand-written untrusted code can
be programmed in an efficient programming language to compute a result, and verified
(extracted), slower code then merely checks results before continuing the computation.

In this article, we apply these techniques to verify our computer-assisted proof of
optimality of 25-comparator sorting networks on 9 channels. In order to complete this
task successfully, we go one step further than previous authors, and further modularize
the interaction between the untrusted computational tool and the trusted extracted
code by logging the results of the former into a file that is further processed before
being used by the latter to reconstitute a formal proof. Such an approach allows us
to rearrange the data from the original computation in such a way that the checker’s
performance is optimized. While we use Coq as the theorem prover underlying our
presentation, our ideas should be portable to other formal generic proof environments,
whether based on dependent type theory (e.g. Agda [34]) or not (e.g. Isabelle/HOL [33]
or HOL Light [23]).

The use of checkers that use oracles in formal proofs is briefly surveyed in Section 2,
with emphasis on the works most relevant to our endeavour. Our problem is then stated
in Section 3, which summarizes the underlying theory and the proof from [11] that we
aim to formalize, as well as including the NP-hardness proofs that justify using an
oracle. The formalization itself is the topic of Section 4. We conclude in Section 5
with an outlook of how our ideas can be applied to extend the power of present-day
computer-assisted proofs.

This work extends material previously published in [14,15]. The complete develop-
ment is available at http://www.imada.sdu.dk/~petersk/sn/.



Formally Proving Size Optimality of Sorting Networks 3

2 Background and related work

The Curry–Howard correspondence states that every constructive proof of an existen-
tial statement embodies an algorithm to produce a witness of the required property.
This correspondence has been made more precise by the development of program ex-
traction mechanisms for the most popular theorem provers. In this work, we apply
the mechanism described in [31] to extract a correct-by-construction program from a
Coq formalization. Coq’s program extraction feature allows targeting Ocaml, Haskell
or Scheme. In this work, we target the programming language Haskell due to its native
call-by-need/laziness: the heavy memory requirements that our extracted program has
make it unfeasible to try to execute it with an eager evaluation strategy.

Early experiments of program extraction from a large-scale formalization that was
built from a purely mathematical perspective demonstrated, however, that it is unrea-
sonable to expect efficient program extraction as a side result of formalizing textbook
proofs [13]. In spite of that, one can actually develop mathematically-minded formaliza-
tions that yield efficient extracted programs with only minor attention to definitions [29,
35]. This is in contrast to formalizations built with extraction as a primary goal, such
as those in the CompCert project [30], or strategies that potentially compromise the
validity of the extracted program (e.g. using imperative data structures as in [36]).

The program we extract uses information from an external source in the form of
an oracle. For the purpose of this work, an oracle is a (partial) function from a set of
problems to a set of answers – more concretely, a computer program that attempts to
provide an answer (not necessarily correct) for any problem in its domain. If an oracle
is total in the set of problems for which an answer exists, we call it an omniscient
oracle. In formal verification, oracles come in two flavours: trusted and untrusted.

Trusted Oracles. A trusted oracle is one whose answers are assumed to be correct
without verification. A typical example of using a trusted oracle is delegating a proof
obligation to a SAT or SMT solver, and having the theorem prover blindly trust its
output. There are different reasons for trusting an oracle’s results; a particular case is
that of using an external tool that has itself been formally verified, such as a formally
certified SAT solver [17]. However, when combined with constructive theory-based the-
orem provers, such as Coq, this approach also requires adding explicit assumptions
on the soundness of the oracle data. Similarly, Isabelle/HOL can be made to accept
output of external tools on blind faith [19].

Untrusted Oracles. When using untrusted oracles, the answers provided are not taken
at face value, and, consequently, they need to be enriched with sufficient information
for the theorem prover to check them. The key observation, as already pointed out
in [24], is that checking a proof is much more efficient than finding it. In the case of
SAT solving, a simple way to do this is to provide a concrete valuation together with
the answer that a given formula is satisfiable, allowing a simple verification of this fact
by the theorem prover. Whether used as a trusted or untrusted oracle, SAT solvers are
arguably omniscient oracles.

Another popular approach is for the untrusted oracle to provide an explicit proof
term [16] or a proof in a formal language that can be translated to the languages of
different theorem provers [5]. Recent years have seen untrusted oracles be used for
a verified compiler [30] and for polyhedral analysis [21], for example. In both cases,
the verified proof tool is relegated to a checker of the computations of the untrusted
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oracle, typically by using hand-written untrusted code to compute a result and verified
(extracted) code to check it before continuing the computation.

The termination proof certification projects IsaFoR/CeTA [39], based on the the-
orem prover Isabelle/HOL, and A3PAT [12], based on Coq, go one step further. Here
different termination analyzers provide proof witnesses, which are stored in a common
format [5] and later checked. The termination analyzers are typically developed by one
research group, while the verified checkers for the proof witnesses are developed by
another group. Likewise, there is no coupling at runtime, with the search for a proof
witness often being separate both in time and physical domain.

However, a typical termination proof has only 10–100 proof witnesses and totals
a few KB to a few MB of data, and recent work [38] mentions that problems were
encountered when dealing with proofs using “several hundred megabytes” of oracle
data. In that particular case, they avoided having to deal with such amounts of data,
however, by reducing the number of proof witnesses for this class of problems. In
contrast, the proof we consider (presented in Section 3) requires dealing with 70 million
proof witnesses, totaling more than 27 GB of oracle data after aggressively reducing the
number of cases to be considered. Data sizes continue to increase; the recent proof of
the Boolean Pythagorean Triples conjecture [25] generated 200 TB of proof witnesses.

3 The Problem

The goal of this work is to develop a formal verification of the recent computer-
generated proofs of size optimality of sorting networks with up to 9 inputs, which
were obtained by an ad-hoc computer program [10,11], co-authored by two of the au-
thors of this article. In this section, we describe the problem domain and the particular
solution, and afterwards we justify our choice of verifying it using a verified checker
relying on an untrusted oracle.

3.1 The optimal-size sorting network problem

Sorting networks are hardware-oriented algorithms for sorting a fixed number n of
inputs, given on n distinct channels, using a predetermined sequence of comparisons
between them. They are built from a primitive operator, the comparator, which reads
the values on two given channels, and interchanges them if necessary to guarantee that
the smallest one is always on a predetermined channel. A comparator network C of size
k is a sequence of k comparators. If C1 and C2 are comparator networks, then C1;C2

denotes the comparator network obtained by concatenating C1 and C2. Comparator
networks are often represented as Knuth diagrams [27], where channels are represented
as horizontal lines and comparators as vertical lines between them, ordered from left
to right.

Figure 1 depicts a comparator network on 5 channels as it operates on the input
〈9, 2, 7, 4, 8〉 provided on the left side. The output of this network on this input is
〈2, 4, 7, 8, 9〉, available on the right side. In general, a comparator network C can be
seen as a function, mapping input vectors into output vectors, and we say that C is a
sorting network if this function maps each input to its ascendingly sorted version. This
can be decided in finite time in light of the following result.



Formally Proving Size Optimality of Sorting Networks 5

8

4

7

2

9

8

4

7

9

2

8

7

4

9

2

8

9

4

7

2

8

9

4

7

2

8

9

4

7

2

8

9

4

7

2

9

8

4

7

2

9

8

7

4

2

9

8

7

4

2

Fig. 1 A sorting network on 5 channels, operating on the input 〈9, 2, 7, 4, 8〉.

Lemma 1 (Zero-one principle [27]) A comparator network C is a sorting network
on n channels if and only if C sorts all binary sequences of length n.

We denote the output of the network for an input x ∈ {0, 1}n as C(x).

Definition 1 The set of outputs of C is outputs(C) = {C(x) | x ∈ {0, 1}n}.

We can rephrase the zero-one principle as stating that C is a sorting network if and
only if all elements of outputs(C) are sorted.

All the comparators in the network in Figure 1 sort their inputs ascendingly. Such
comparators are called standard comparators, and networks that only contain standard
comparators are called standard comparator networks. However, there are situations
when it pays off to use comparators that sort their inputs descendingly, even when the
final output is sorted ascendingly. In practice, such generalized comparator networks
may be more efficient due to the physical structure of the network (applying a compar-
tor to two channels in close proximity is faster than when they are further apart). In
theory, generalized comparator networks naturally arise in the proofs of some results,
and we need to consider them in our formalization. Exercise 5.3.4.16 in [27] presents a
standardization algorithm to construct a standard sorting network from a generalized
sorting network that we discuss in more detail in Section 4.

The optimization problem we consider is the following: how many comparators
do we need to sort n inputs? This question is known as the optimal-size problem in
the literature. Most known answers to this problem rely on exhaustive analysis of
state spaces. For 5 inputs, the state space is small enough to be exhausted by manual
inspection and symmetry arguments [20]. For 7 inputs, a similar analysis was first
performed by an ad-hoc computer program, also described in [20]. For 9 inputs, a
similar approach eventually succeeded [11] – albeit nearly 50 years later. Optimality
results for 6, 8, and 10 inputs follow by a theorem of Van Voorhis (Theorem 1 below),
and therefore also depend on the soundness of the exhaustive case analysis. We denote
by S(n) the size of the smallest sorting network on n inputs; the known values of S(n)
are given in Table 1.

Theorem 1 (from [40]) For all n ≥ 3, S(n+ 1) ≥ S(n) + dlog2(n)e.

n 1 2 3 4 5 6 7 8 9 10
S(n) 0 1 3 5 9 12 16 19 25 29

Table 1 Known sizes of optimal sorting networks on n inputs.
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Conceptually, solving the optimal-size problem on n channels reduces to exhaus-
tively generating all standard n-channel comparator networks of size S(n) − 1 and
checking that none of them is a sorting network. However, even for small n such a
naive approach is combinatorically infeasible. There are n(n−1)/2 standard compara-
tors on n channels, and hence (n(n− 1)/2)k networks with k comparators. For n = 9,
this approach amounts to inspecting approximately 2.25× 1037 comparator networks
of size 24, which is clearly prohibitive. Instead, the strategy followed in [11] (which re-
covers ideas from [20]) is an iterative approach, generate-and-prune, which constructs
a set of standard comparator networks one comparator at a time and uses symmetries
to eliminate networks that need not be considered.

Definition 2 Let Ca and Cb be two comparator networks on n channels. We say that
Ca subsumes Cb, and write Ca � Cb, if there exists a permutation π of 1, . . . , n such
that π(outputs(Ca)) ⊆ outputs(Cb), where permutations are lifted to sequences and
sets of sequences in the natural way.

We write Ca �π Cb when we need to make π explicit.

Lemma 2 ([11], adapted from [7]) Let Ca and Cb be comparator networks of the
same size on n channels such that Ca � Cb. If there exists a sorting network Cb;C of
size k, then there exists a sorting network Ca;C′ of size k.

The optimality proof is then obtained by a program that works as follows. First, it
initializes Rn0 to consist of a single element: the empty comparator network. Then, it
repeatedly applies two types of steps, Generate and Prune, as follows.

1. Generate: Given Rnk , constructN
n
k+1 by appending one comparator to each element

of Rnk in all possible ways.
2. Prune: Given Nn

k+1, construct R
n
k+1 such that every element of Nn

k+1 is subsumed
by an element of Rnk+1.

The algorithm stops when a sorting network is found.
Throughout execution, the two sets Rnk and Nn

k always contain comparator net-
works of size k on n channels. To implement Prune, we loop on Nn

k and check whether
the current network is subsumed by any of the previous ones; if this is the case, we
ignore it. Otherwise, we add it to Rnk , and remove any networks already in this set
that are subsumed by it. This yields a double loop over Nn

k where at each iteration
we need to determine whether or not a subsumption exists – which, in the worst case,
requires looping through all n! permutations for each pair of networks. For n = 9,
the largest set Nn

k is N9
15, with over 18 million elements, thus there are potentially

300× 1012 subsumptions to test. The precise sizes of N9
k and R9

k are given in Table 2;
the number of outputs that needs to be considered in the subsumption tests can be
found in Table 3.

Soundness of generate-and-prune follows from the observation that all Nn
k and

Rnk are complete for the optimal-size sorting network problem on n channels, in the
following sense: if there exists an optimal-size sorting network on n channels, then there
exists one of the form C;C′ for some C ∈ Nn

k (or C ∈ Rnk ), for every k.
Successful execution of this algorithm for different values of n, as described in [11],

confirmed all known values of S(n) for 3 ≤ n ≤ 8, and was able to obtain the new
value S(9) = 25; since [27] includes a 29-comparator sorting network on 10 channels,
Theorem 1 implies that S(10) = 29.
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k 0 1 2 3 4 5 6 7 8 9 10∣∣N9
k

∣∣ – 36 35 102 231 639 1,824 6,214 23,268 94,827 382,523∣∣R9
k

∣∣ 0 1 3 7 20 59 208 807 3,415 14,343 55,991

k 11 12 13 14 15 16∣∣N9
k

∣∣ 1,428,794 4,586,075 11,272,878 18,420,674 18,264,160 11,081,077∣∣R9
k

∣∣ 188,730 490,322 854,638 914,444 607,164 274,212

k 17 18 19 20 21 22 23 24 25∣∣N9
k

∣∣ 4,504,484 1,367,643 323,600 59,428 8,893 1,413 268 58 8∣∣R9
k

∣∣ 94,085 25,786 5,699 1,107 250 73 27 8 1

Table 2 Sizes of the sets R9
k and N9

k for 1 ≤ k ≤ 25.

k 0 1 2 3 4 5 6 7 8 9 10 11

min 512 384 288 216 162 135 108 90 72 60 50 45
med 512 384 320 256 200 168 138 116 100 86 74 64
max 512 384 320 256 224 192 164 144 128 116 108 94

k 12 13 14 15 16 17 18 19 20 21 22 23 24 25

min 40 35 30 26 23 21 19 17 15 14 13 12 11 10
med 56 48 42 36 31 28 24 22 18 16 14 12 11 10
max 80 74 60 51 46 38 34 28 24 20 15 13 11 10

Table 3 Minimum, median, and maximum number of outputs of the networks in the sets N9
k .

3.2 On the use of an oracle

In order to obtain formal verifications of the values of S(n), we make use of an untrusted
oracle. We justify this choice by discussing the extent to which the complexity of the
original proof depends on search steps that can be bypassed. In order to make some
of our analyses more precise, we focus on the concrete verification of S(9) = 25. The
concrete problem we study is thus: how can we formally verify this value using a
generate-and-prune approach?

The algorithm presented earlier includes two steps that consist of solving existential
subproblems: deciding whether a network subsumes another; determining whether a
comparator network is a sorting network. We discuss each of them in turn.

In Prune, we remove comparator networks from a set based on subsumption. The
basic existential problem here is: given two comparator networks, does one of them
subsume the other? This is a particular case of what we coin the Binary String Sets
Permutation Inclusion Problem.

Instance: Two sets S and S′ of binary strings of length k for some constant
integer k ≥ 1.
Question: Does there exist a permutation π such that ∀x ∈ S : π(x) ∈ S′?

We include a novel proof that this problem is NP-complete:

Theorem 2 The Binary String Sets Permutation Inclusion problem is NP-complete.
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Proof Inclusion in NP is easy, given a permutation as a certificate. For the hardness
part, we reduce from 3-SAT. Consider a 3-SAT formula with n clauses and m propo-
sitional variables. We assume without loss of generality that all clauses have exactly
three literals and that no clause has more than one instance of any given propositional
variable. In the following, we specify binary strings for both S and S′, using positions
in the strings starting from zero. Any position that we leave unspecified should be zero.
All strings have length k = 2m+ 2+ 2(m+ n).

For intuition, the first 2m position are used for encoding the truth values of the m
propositional variables. The next two bits are used to get all strings up to the same
number of ones before padding. This will be clear below, but these two bits will be
either “00” or “11”. This is because the representation of a propositional variable uses
one one-bit and the representation of a clause uses three one-bits. Thus, these two bits
can be used to always get up to three one-bits. The final 2(m+n) positions are used to
pad strings with a different number of ones. Since a permutation preserves the number
of ones, together with the arrangement above of always getting up to three ones, this
can be used to control which strings in S′ a given string in S can be mapped to.

We assume that the propositional variables are p1, . . . , pm. For each propositional
variable pi, we create a string sfi in S with “01” in the positions 2(i−1) and 2(i−1)+1,
“11” in positions 2m and 2m+ 1, and ones in the last 2i positions.

As an example, if m = 5 and n = 3, then sf2 is

00|01|00|00|00||11||0000000000001111 ,

where the vertical lines are included only to improve readability.
We also let sfi belong to S′ together with an additional string, sti, exactly like the

one just described, except that we have “10” in positions 2(i− 1) and 2(i− 1) + 1.
Continuing the example, st2 is

00|10|00|00|00||11||0000000000001111 .

Thus, sfi is in S, and both sfi and sti are in S′. Furthermore, the strings sfi and sti
are the only ones in S or S′ having exactly 3 + 2i ones. Since permutations preserve
the number of ones, if there should exist a permutation π with the properties above,
then it is necessary that either π(sfi ) = sfi or π(sfi ) = sti. In the reduction, the first
choice corresponds to the truth assignment where pi is false and the second to the one
where pi is true.

Assume that the clauses are C1 through Cn. Now, for each clause, we make the
following string for S. Assume that clause Cj contains propositional variables phq

,
for q ∈ {1, 2, 3}. We make the string scj by placing “01” in positions 2(hq − 1) and
2(hq − 1) + 1, for q ∈ {1, 2, 3}, and ones in the last 2(j +m) positions.

Continuing the example, if clause C2 is (p2 ∨ p3 ∨ p5), we would get the string

00|01|01|00|01||00||0011111111111111 .

Clause Cj gives rise to 7 strings in S′. Considering string scj and the possibility
of independently swapping the “01” occurrences to “10” for each of the propositional
variables in the clause, this would give rise to 8 strings. We include all of these except
one: The string where we have “01” for each literal occurring positively and “10” for
each literal occurring negatively.
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Continuing the example, for clause C2 above, the string of this form that would
not be included in S′ would be

00|01|10|00|01||00||0011111111111111 .

Finally, we include strings starting with 2i ones and the rest zero, for i ∈ {1, . . . ,m},
in both S and S′, and refer to these as the control strings.

Observe that the transformation above is clearly polynomial time.
We claim that with this definition of S and S′, a permutation with the desired

property exists if and only if the formula is satisfiable.
Assume first that the formula is satisfiable, and consider a truth assignment A

making it true. Since the “01” and “10” patterns corresponding to different propositional
variables are in different positions, we can define a permutation π such that, for each
sfi , π(s

f
i ) = sfi if A(pi) is false and π(sfi ) = sti if A(pi) is true. This automatically

implies π(s) = s for each control string s. Since, for the truth assignment A, any clause
Cj evaluates to true, π(scj) is one of the seven strings in S′ created from Cj , and we
have established a permutation as desired.

For the other direction, we assume that we have a permutation with the desired
properties, and must now prove that the formula is satisfiable. First note that the
number of ones is even in all the control strings and odd in all other strings. Since
permutations preserve the number of ones, and each control string has a different
number of ones, we must have that π(s) = s for each control string s. From this it
follows inductively that, for each i ∈ {1, . . . ,m}, π maps positions {2(i−1), 2(i−1)+1}
into {2(i−1), 2(i−1)+1}, and thus the string sfi must be mapped into sfi or sti, since
otherwise the number of ones is not preserved.

Thus, we design a truth assignment A from this by letting A(pi) be false if and
only if π(sfi ) = sfi . Since the only one of the 8 possible patterns created from Cj
corresponding to all literals evaluating to false is the only combination not included in
S′, and since the other 7 options are the only ones where the number of ones in scj is
preserved, A must be a satisfying assignment. ut

This result does not directly imply that the subsumption problem (given two com-
parator networks Ca and Cb on n channels, deciding whether Ca � Cb) is also NP-
complete: although all instances of the subsumption problem are instances of the binary
string sets permutation inclusion problem, the converse is not true, as not all sets of
binary sequences of length n are sets of outputs of some comparator network. However,
it is not known whether the additional structure in the subsumption problem can be
used to solve it more efficiently; all known approaches use general methodologies for
the more general problem [7,11].

On the other hand, the problem whose instances occur in Prune has an extra degree
of complexity, as the comparator networks are also existentially quantified. It can thus
be stated as follows: does a given set of comparator networks contain two networks such
that one of them subsumes the other? In terms of being polynomial-time decidable,
this problem is equivalent to the previous one, as it just adds a quadratic outer loop;
of course, in practice this additional loop has an important impact on actual execution
time.

The reduction from Nn
k to Rnk involves a sequence of dependent subproblems, as

each network that is eliminated changes the set given as input to the next subproblem.
Often, Nn

k contains chains of subsumptions Ca � Cb � Cc; then we can remove
Cc using the last subsumption and then remove Cb using the first subsumption, but
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Formalize → Implement → Optimize

Fig. 2 The steps in the development of our formal proof.

attempting to perform these actions in reverse order fails, since Cb is no longer available
– rather, we have to use the fact that Ca � Cc by transitivity (see Section 4.3).
We can exploit this dependency in our oracle by choosing an optimal sequence of
subproblems/subsumptions that optimizes the global complexity of the algorithm (and
not just the oracle invocation), so that the complexity of the Prune step becomes linear
in |Nn

k | instead of quadratic. The details of this optimization are given in Section 4.3.
At the end of Prune we encounter a second type of existential problem when we need

to check that we have not found a sorting network yet. Given a comparator network C
on n channels, deciding if C is defective (not a sorting network) is NP-complete. This
result is reported by Johnson [26], who attributes the result to Rabin.

4 The Formalization

In this section we describe how we can construct a correct-by-construction checker that
validates all the results obtained by the untrusted computer program in [10,11].

The formalization was done in the theorem prover Coq [4]. We assume the reader is
familiar with functional programming, and explain the aspects of the syntax that are
relevant for understanding our work in the presentation. The complete development is
available at http://www.imada.sdu.dk/~petersk/sn/.

Our strategy for developing this proof consists of three steps, depicted in Figure 2.

1. We formalize the theory of sorting networks.
2. We implement a naive checker in Coq, using an untrusted oracle, and prove the

checker correct.
3. We optimize the checker iteratively in lock-step with adapting the oracle, reproving

the correctness of the checker after each change.

In the first step, our focus is on the mathematical theory of sorting networks. In
order to separate concerns, we do not worry about how the results we prove are used in
the actual implementation of the checker, and formalize the theory as close as possible
to the mathematical definitions and other formal elements of the algorithm.

Afterwards, we implement a checker that follows the algorithm behind our ad-hoc
computer program as closely as possible, where possible replacing computationally
expensive subproblems by calls to an oracle. Since the use of an oracle is not directly
compatible with Coq, the formalized checker depends on a parameter (the oracle). By
applying program extraction, we obtain a concrete implementation in Haskell that is
connected to a concrete implementation of the oracle. The soundness of the formalized
checker is therefore universally quantified over all possible oracles.

Then we perform several optimizations of the checker, of two different types: opti-
mizations of the algorithm and optimizations of the implementation. For the former,
we use the fact that all answers needed from the oracle are available beforehand to
improve the algorithm’s performance. As we show later, this also requires changes to
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the implementation of the oracle. For the latter, the idea is to use standard computer
science techniques to optimize performance – for example by using binary search trees
instead of lists in relevant cases. After each change, we reprove the correctness of the
optimized checker, benefiting from the modularity of our approach in two ways. First,
by formalizing the theory of sorting networks for its own sake (rather than as a library
tailored towards proving the correctness of the original algorithm), we ensure that all
the results needed in this stage are available, and that they have been stated in general
forms. Second, although changes to the algorithm require different inductive proofs,
their correctness uses the same arguments as previously developed. Therefore, reprov-
ing the soundness of the checker is much simpler and faster than in the previous step.
As a result, the total time spent on this third phase was approximately half of that
spent in the first two phases.

Our formalization is constructive, but due to our use of rewriting with dependent
types, we assume (through imported libraries) the axiom

JMeq_eq: ∀ (A:Type) (x y:A), JMeq x y → x=y+

(For a discussion of why this axiom is needed, see [32].)
The remainder of this section is divided into three parts, corresponding to the three

steps above.

4.1 Formalizing sorting networks

We begin by giving an overview of the formalization of the theory of sorting networks,
explaining the main challenges it poses.

Sorting networks. In order to represent comparator networks, we abstract from their
physical structure and assume the channels are numbered from top to bottom, starting
from 0.1 A comparator is then simply a pair of numbers, and a comparator network is
a list of such pairs.

Definition comparator : Set := nat ∗ nat.
Definition CN : Set := list comparator.

Here, nat is the Coq type of natural numbers, and Set is the type of sets; so the first
definition says that the type of comparators is simply N × N, and that the collection
of all comparators forms a set.

Not all pairs of natural numbers are valid, however. Their arguments should be
distinct, and the number of channels in the network restricts the valid values for a
comparator’s arguments. Rather than incorporating these constraints into the defini-
tion, we characterize valid comparators by means of a predicate. This design decision
allows the code implementing the checker to be syntactically closer to the one in [11].

Definition comp_channels (n:nat) (c:comparator) : Prop :=
let (i,j) := c in (i<n) ∧ (j<n) ∧ (i<>j).

The term (comp_channels n c), which reads “c is a comparator on n channels”, has
type Prop, signaling that it is a proposition; in particular, it has no computational
content, as we discuss later. A similar predicate channels states that all comparators
in a comparator network are on n channels.

1 Numbering from 0, rather than from 1, simplifies some aspects of the formalization.



12 Luís Cruz-Filipe et al.

As an example, the comparator network in Figure 1 is represented in Coq by the
list ((0,1)::(2,3)::(1,3)::(2,4)::(1,4)::(0,2)::(3,4)::(1,2)::(2,3)::nil).

To characterize sorting networks, we take the zero-one principle (Lemma 1) as defi-
nition, and let comparator networks act only on binary sequences. Binary sequences are
a dependent type (for each natural number n we have a type (bin_seq n)), similar to the
standard library type Vector. These could also have been defined as (Vector bool); how-
ever, our choice makes proofs simpler, since induction on elements of type (bin_seq n)
gives the three relevant cases directly without requiring an extra elimination over their
element. This is also reflected in shorter extracted code.

Inductive bin_seq : nat → Set :=
| empty : bin_seq 0
| zero : ∀ n:nat, bin_seq n → bin_seq (S n)
| one : ∀ n:nat, bin_seq n → bin_seq (S n).

Intuitively, empty is the empty binary sequence (of length 0), (zero n s) is the sequence
of length n+1 obtained by prepending 0 to s, and likewise for (one n s). By using Coq’s
mechanisms for adding notation and making arguments implicit, we can write [ ], [ 0 ]s
and [ 1 ]s for these terms, so that we can write e.g. [ 0 ][ 0 ][ 1 ][ 0 ][ ] for the sequence 0010.

We define operations get and set over binary sequences such that (get i s) returns
the element (0 or 1) in position i of s, and (set i s k) sets position i of s to k, which is
either 0 and 1. Setting an index larger than the length of a sequence leaves it unchanged,
while attempting to get the value in an index out of range returns 2. These two cases
– which do not occur in any context of our formalization – must be contemplated, as
Coq requires that all functions be totally defined.

A binary sequence is sorted if its first element is 0 and the remaining sequence is
sorted, or if it consists entirely of 1s.

Fixpoint all_ones {n:nat} (x:bin_seq n) : Prop := match x with
| [ ] ⇒ True
| [ 0 ]s ⇒ False
| [ 1 ]s ⇒ all_ones s
end.

Fixpoint sorted {n:nat} (x:bin_seq n) : Prop := match x with
| [ ] ⇒ True
| [ 0 ]y ⇒ sorted y
| [ 1 ]y ⇒ all_ones y
end.

The match constructor performs case analysis on the structure of x. Coq checks that
these functions are total by verifying that the recursive calls are on structurally smaller
terms.

Sequences propagate through comparator networks as expected.

Fixpoint apply (c:comparator) n (s:bin_seq n) :=
let (i,j):=c in let x:=(get s i) in let y:=(get s j) in
match (le_lt_dec x y) with
| left _ ⇒ s
| right _ ⇒ set (set s j x) i y
end.

Fixpoint full_apply (S:CN) n (s:bin_seq n) := match S with
| nil ⇒ s
| cons c S' ⇒ full_apply S' _ (apply c s)
end.
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One comment on the first definition, as we use this code structure repeatedly. The term
(le_lt_dec x y) has type {x ≤ y}+{y < x}, which is an example of a type of decidable
propositions. Terms of the form {A}+{B}, where A and B have type Prop, are built by
providing a proof that one of A or B holds, and we can compute which one – so such
proofs include an algorithm that determines which of A or B is the case.2 In our example,
(le_lt_dec x y) states that we can decide whether x ≤ y or y < x; left and right are
the constructs for showing that A (respectively, B) holds. So, apply (i,j) n s compares
the values at positions i and j of s and swaps them if necessary, exactly as described
informally in Section 3.

A sorting network is then a comparator network that sorts all binary inputs.

Definition sorting_network (n:nat) (S:CN) :=
(channels n S) ∧ ∀ s:bin_seq n, sorted (full_apply S s).

We also define an alternative characterization of sorting networks in terms of their
sets of outputs and prove its equivalence to this one.

Definition outputs (C:CN) (n:nat) : list (bin_seq n) :=
(map (full_apply C n) (all_bin_seqs n)).

Theorem SNW_char : ∀ C n, channels n C → (∀ s, In s (outputs C n) → sorted s) →
sorting_network n C.

Here, the function all_bin_seqs generates all binary sequences of a given length.
This formalization was developed focusing on the theory at hand. This means

that we included several relevant properties of the types we defined, which we omit
here for the sake of brevity. These include relations between the operations on binary
sequences (e.g. get (set s i j) i = j as long as i and j are in the correct ranges) or
trivial properties of sorting networks (e.g. they do not change sorted inputs, or they
preserve the number of 0s throughout execution).

We also define a Coq tactic to (try to) prove automatically that a comparator
network C is a sorting network on n channels by applying SNW_char and checking that
all binary sequences of length n are sorted by C. However, as n increases this tactic
becomes too expensive, since it generates all 2n subcases recursively and solves them
afterwards. As a consequence, trying to prove that a 9-channel network is a sorting
network causes the system to run out of memory. This also confirms our intuition
that we would benefit from an approach based on a formalized checker, rather than
a complete formal proof. Indeed, we can actually prove (in Coq) that the property of
being a sorting network is decidable, which is instrumental in defining the checker. The
notation ~A denotes the negation of A.

Lemma SNW_dec : ∀ n C, channels n C → {sorting_network n C} + {~sorting_network n C}.

The subsumption lemma. The key result for proving the soundness of the algorithm
in [11] is the subsumption lemma (Lemma 2, page 6), which we restate here.

Lemma 2. Let Ca and Cb be comparator networks of the same size on n

channels such that Ca � Cb. If there exists a sorting network Cb;C of size k,
then there exists a sorting network Ca;C′ of size k.

2 This intuition is made precise by the program extraction mechanism of Coq [31], which
generates precisely this algorithm.
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Several variants of this result occur in the literature, and the proofs are all similar:
if Ca �π Cb and Cb;C is a sorting network, then Ca; std(π(C)) is also a sorting net-
work, where π(C) is obtained by renaming the channels according to π (assuming they
have been numbered as in our presentation) and std is the standardization procedure
described by Knuth (Exercise 5.3.4.16 in [27]). Each proof then proceeds to show that
the network thus constructed satisfies the additional properties needed for the problem
at hand.

From a mathematical perspective, instead of directly formalizing Lemma 2, it makes
more sense to study the operations involved in its proof – applying a permutation to
a comparator network and standardizing it. We first show how we formalize permu-
tations, and then discuss the formalization of std and the proof of the subsumption
lemma.

There are several common alternatives to representing permutations in Coq. The
standard library includes an inductive type stating that two lists are permutations of
each other; but manipulating it is cumbersome. Furthermore, we only use permutations
to rename channels in comparator networks, so we want a definition that makes it easy
and efficient to apply permutations to objects.

For this reason, we chose to represent permutations as finite functions. A permuta-
tion P is a list of pairs of natural numbers, with the intended meaning that (i, j) ∈ P
corresponds to P mapping i into j. We assume that P does not change i if there is no
pair (i, j) ∈ P – this makes it much simpler to represent transpositions, which are the
only permutations we need to represent explicitly in the formalization. We focus on
permutations of the numbers 0, . . . , n − 1, which we refer to as “permutations of [n]”.
In order for P to be a valid permutation of [n], several conditions have to hold:

1. all pairs (i, j) ∈ P must satisfy i < n and j < n;
2. no number may occur twice either as the first or as the second element of distinct

pairs in P ; and
3. the sets of numbers occuring as first or second elements of the pairs in P must

coincide.

As before, we separate the syntactic datatype of permutations from the semantic
property of being a permutation. Here, NoDup is the Coq standard library predicate
stating that a list does not have duplicate elements, and all_lt(n,l) is an inductive
predicate stating that all elements of l are smaller than n.

Definition permut := list (nat∗nat).

Definition dom (P:permut) := map (fst (A:=nat) (B:=nat)) P.
Definition cod (P:permut) := map (snd (A:=nat) (B:=nat)) P.

Definition permutation n (P:permut) :=
NoDup (dom P) ∧ all_lt n (dom P) ∧ (∀ i, In i (dom P) ↔ In i (cod P)).

As a sanity-check, we prove the relationship with the permutations in the Coq standard
library.

Lemma permutation_Permutation : ∀ (n:nat) (P:permut),
permutation n P → Permutation (dom P) (cod P).

All properties of permutations are added to the core hint database, so that Coq can
automatically prove most properties of permutations required during the formalization.

We provide mechanisms to define permutations in three different ways, correspond-
ing to the usage of permutations in proofs.
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1. The identity permutation is simply the empty list, which is a permutation of [n]
for any n.

2. Given a permutation P, we construct its inverse (inverse_perm P) by reversing all
pairs in P. If P is a permutation of [n], then so is (inverse_perm P).

3. The transposition i ←→ j is the permutation that switches i and j, leaving all
other values unchanged. This transposition is defined as the list {(i, j), (j, i)}, and
it is a permutation if i 6= j (otherwise the list {i, j} contains duplicate elements).
This side condition appears in some results about transpositions, but it is never
a problem since we only us transpositions with indices i and j originating from a
comparator (i, j).

Recall that a comparator (i, j) is said to be standard if i < j. We now enrich our
theory of comparator networks with a notion of standard comparator.

Definition comp_std (n:nat) (c:comparator) := let (i,j) := c in (i<n) ∧ (j<n) ∧ (i<j).

This definition includes some redundancy, as i < j and j < n imply that i < n, but it
is technically useful to keep a similar structure to the definition of comp_channels. As
before, we extend this predicate to lists, so that (standard n C) holds if C is a standard
comparator network on n channels.

The definition of standardization in [27] is as follows: given a comparator network
C, pick the first comparator (i, j) for which i > j, replace it with (j, i) and exchange
i with j in all subsequent comparators, then iterate the process until a fixpoint is
reached. To formalize this operation in Coq, we need to use well-founded recursion as
follows.

Function std (S:CN) {measure length S} : CN := match S with
| nil ⇒ nil
| cons c S' ⇒ let (x,y) := c in match (le_lt_dec x y) with

| left _ ⇒ ((x,y) :: std S')
| right _ ⇒ ((y,x) :: std (permute x y S'))

end end.

This function is not structurally decreasing, as its recursive call does not take S' as
an argument. Therefore, we annotate the definition with {measure length S}, which
tells the proof assistant that all recursive calls are made over arguments of smaller
length; this leaves a proof obligation (that (permute x y S') has length smaller than
cons c S'), which is shown using results over permutations (namely, that they preserve
the length of comparator networks they are applied to). This guarantees that std S
always terminates, and therefore std is a total function.

Then we prove that standardizing a comparator network on n channels yields a
standard comparator network on n channels. Other simple properties include, e.g., that
standardization preserves the size of a network, that it is an idempotent operation, and
that it does not change standard comparator networks. The key result is that it also
preserves sorting networks.

Theorem std_sort : sorting_network n C → sorting_network n (std C).

The proof of this result is non-trivial. Informally, the argument given in [27] seems
simple: the function computed by std(C) is the composition of some permutation with
the function computed by C, and since std(C) is standard, it preserves sorted sequences,
which implies that the given permutation must be the identity. Formalizing this result,
however, requires computing the concrete permutation explicitly and identifying several
implicit facts about permutations that were never mentioned explicitly. The formal
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proof proceeds in three steps. First, we characterize the relation between the function
computed by a comparator network before and after applying a permutation.

Lemma full_apply_permute : ∀ n x y, x <> y → x < n → y < n → ∀ C, channels n C →
∀ s:bin_seq n, let T := x←→ y in
(permute x y C)[s ] = apply_perm T (C[apply_perm T s ]).

Here, C[s ] stands for (full_apply C s), the result of applying a comparator network C to
a binary sequence s. This is a particular case of a more general result, which we state
in mathematical notation.

Lemma 3 If C is a comparator network on n channels, π is a permutation of 0 . . . n−1
and s is a binary sequence of length n, then π(C)(s) = π−1(C(π(s))).

To the best of our knowledge, this identity was never stated previously; instead, some of
the published proofs of variants of Lemma 2 (namely [7]) apparently use the incorrect
equality π(C)(s) = C(π(s)) – which fortunately does not compromise the validity of
the result. Using this lemma, we can now prove that the sets of inputs that are mapped
to the same output are the same for C as for std(C).

Lemma standardization_char : ∀ n C, channels n C → ∀ s s':bin_seq n,
C[s ] = C[s' ] → (standardize C)[s ] = (standardize C)[s' ].

The final step requires considering the case where s' is the sorted version of s and
using the fact that standard networks do not change sorted sequences.

Lemma standardization_sort_lemma : ∀ C n, channels n C →
(∀ s:bin_seq n, sorted C[s ]) → ∀ s:bin_seq n, sorted (standardize C)[s ].

It is then simple to prove std_sort from this last result. A consequence of this lemma is
that we can work only with standard comparator networks, which drastically reduces
the size of the search space.

It turned out to be easier to formalize a completely different proof of Lemma 2
than the one given in [7], which we now summarize. For legibility, we present it in
mathematical notation.

Proof (Lemma 2) Let Ca and Cb be comparator networks of the same size on n channels
such that Ca � Cb, and assume that Cb;C is a sorting network of size k. We show that
std(Ca;π(C

′)) is a sorting network of the same size as Cb;C′.
Given a binary sequence s, we write sort(s) for the sequence obtained by sort-

ing s, and we begin by showing that C′(π(Ca(s))) = C′(π(Ca(sort(s)))). By hy-
pothesis, C′(π(Ca(s))) = C′(Cb(x)) = (Cb;C

′)(x) = sort(x) for some x; likewise,
C′(π(Ca(sort(s)))) = sort(y) for some y, and sort(x) = sort(y) since x and y have
the same number of 0s (because they have the same number of 0s as s and sort(s),
respectively).

Since permutations are injective, π−1(C′(π(Ca(s)))) = π−1(C′(π(Ca(sort(s))))).
Rewriting using Lemma 3 yields π(C′)(Ca(s)) = π(C′)(Ca(sort(s))), so we conclude
that (Ca;π(C′))(s) = (Ca;π(C

′))(sort(s)). However, if (Ca;π(C′))maps two inputs to
the same output, then so does std(Ca;π(C′)), so we also have that std(Ca;π(C′))(s) =
std(Ca;π(C

′))(sort(s)). Since std(Ca;π(C
′)) is standard, it does not affect sorted

sequences, and therefore std(Ca;π(C
′))(sort(s)) = sort(s), so std(Ca;π(C

′))(s) =
sort(s).

Thus, std(Ca;π(C′)) is a sorting network. ut
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We summarize the definition of subsumption and the formal statement of Lemma 2.
The third result we include shows that, given two comparator networks Ca, Cb and
a permutation π, we can decide whether Ca �π Cb. The type permut is the type of
permutations.

Definition subsumption (n:nat) (C C':CN) (P:permut) (HP:permutation n P) :=
∀ s:bin_seq n, In s (outputs C n) → In (apply_perm P s) (outputs C' n).

Theorem SNW_subsumption : ∀ n P HP C C' N,
standard n C → subsumption n C C' P HP → sorting_network n (C'++ N) →
sorting_network n (standardize (C ++ apply_perm_to_net P N)).

Lemma subsumption_dec : ∀ n C C' P HP,
{subsumption n C C' P HP} + {~subsumption n C C' P HP}.

The details of these last proofs illustrate an important point: the development of
this formalization is an intrinsically mathematical task, requiring the same mathemat-
ical capabilities as developing any other formalization from both the developer and the
theorem prover. By constrast, the subsequent development of a checker on top of this
formalization is much more of a computer science task.

Completeness. Soundness of the generate-and-prune algorithm relies on the notion of
a complete set of filters, introduced in [11]. Intuitively, a set of comparator networks
is complete if one of its elements can be extended to an optimal sorting network (the
term filter is often used to denote a comparator network that is a prefix of another
network). A close inspection of the soundness proof reveals that the definition given
in [11] was incomplete, as it implicitly used additional properties of these sets. The
complete (formalized) definition of this notion reads as follows.

Definition size_complete (R:list CN) (n:nat) := ∀ k:nat,
(∃ C:CN, sorting_network n C ∧ length C = k) →
∃ C' C' ' : CN, In C' R ∧ standard n (C'++ C'')

∧ (∀ C1 c C2, (C'++ C'') = (C1++ c::C2) → ~redundant n C1 c)
∧ sorting_network n (C'++ C'') ∧ length (C'++ C'') ≤ k.

In mathematical notation, in order for a set of comparator networks R to be a complete
set of filters (as specified by size_complete), it must satisfy the following property: if
there exists a sorting network of size k, then R must contain an element C′ such that C′

can be extended to a standard sorting network of size at most k. (In particular, if k is
the size of an optimal sorting network, then this size must be exactly k.) The property
that this sorting network is standard is crucial for the soundness of generate-and-prune,
as its implementation only constructs standard networks (as we show shortly).

The other constraint states that the sorting network cannot have redundant com-
parators. A comparator (i, j) in comparator network Ca; (i, j);Cb is redundant if
xi < xj for all x ∈ outputs(Ca) – in other words, (i, j) never changes its inputs.
This notion is a simplification of that proposed in Exercise 5.3.4.51 of [27] (credited to
R.L. Graham). The condition is again necessary because generate-and-prune does not
build networks with redundant comparators, using the fact that these cannot occur in
optimal sorting networks.

We proceed to formalize redundancy. We establish a number of properties of redun-
dant comparators, including that they can always be removed from a sorting network,
and show that it can be decided whether a comparator is redundant. We also intro-
duce the more general notion of redundancy with respect to a set of inputs, useful for
defining the operation of removing all redundant comparators from a network.
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Definition redundant (n:nat) (C:CN) (c:comparator) :=
∀ s:bin_seq n, (apply c (C[s ])) = C[s ].

Definition red_wrt (n:nat) (I:list (bin_seq n)) (C:CN) (c:comparator) :=
∀ s, In s I → (apply c (C[s ])) = C[s ].

Lemma red_wrt_dec : ∀ n I C c, {red_wrt n I C c} + {~red_wrt n I C c}.
Lemma redundant_dec : ∀ n C c, {redundant n C c} + {~redundant n C c}.

Fixpoint rem_red (n:nat) (C:CN) (I:list (bin_seq n)) := match C with
| nil ⇒ nil
| c :: C' ⇒ match (red_wrt_dec _ I nil c) with

| left _ ⇒ rem_red n C' I
| right _ ⇒ c :: rem_red n C' (map (apply c (n:=n)) I)

end end.

Definition remove_red (n:nat) (C:CN) := rem_red n C (all_bin_seqs n).

Lemma rem_red_SNW : ∀ n C, sorting_network n C → sorting_network n (remove_red n C).

Regarding completeness, we prove that the set {[]} is complete, and that if there
is a complete set of filters R whose elements all have size k, then all sorting networks
on n channels have size at least k. This key property does not hold for the informal
definition of size completeness in [11].

Lemma empty_complete : ∀ n, size_complete (nil::nil) n.

Lemma complete_size : ∀ R n k, size_complete R n → (∀ C, In C R → length C = k) →
∀ S, sorting_network n S → length S ≥ k.

The above formalization of the theory of sorting networks closely follows the math-
ematical definitions, lemmas and theorems described in e.g. [11,27,37]. There is, how-
ever, an interesting difference: instead of stating and proving results of the form
∀N.ϕ(N) → ∃N ′.ψ(N ′), we define particular operations T (e.g. std), and prove that
∀N.ϕ(N) → ψ(T (N)), from which we can straightforwardly prove the original state-
ment. The existence of these operations follows directly from the fact that the theory of
sorting networks is constructive. However, the fact that the proofs of these statements
given in [7,11,27,37] all proceed by explicitly constructing the witness allows us to
formalize this theory as a mathematical theory of operators over sorting networks and
their properties, rather than a theory of existential statements about sorting networks.

4.2 Implementing a naive checker

We now proceed to the second stage of the formalization: implementing the generate-
and-prune algorithm in Coq, and proving its soundness. By applying the program
extraction mechanism, we obtain a Haskell program that executes that algorithm and
satisfies the soundness properties specified in the formalization by virtue of the sound-
ness of program extraction [31].

Preliminaries. Before presenting the checker, we explain the idea behind program ex-
traction and illustrate with some of the results presented in the previous section. In
the Coq framework, the Curry–Howard correspondence states that we can view terms
and types in the Coq type system from two different perspectives. From a functional
programming point of view, it is a programming language where types correspond to
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the typical function types and terms to function definitions; from a logical point of
view, types correspond to propositions and terms to proofs of those propositions. The
Coq framework favors a mixture of both visions, which we have implicitly adhered to
in the previous section, by distinguishing (higher-level) types Set for “computationally
meaningful types” and Prop for “logical types”. (There is a more general family of com-
putationally meaningful types, but we do not use those in this presentation.) Thus,
in our formalization, an object of type CN is a computational object (an instance of a
datatype), whereas an object of type (channels n C) is not (it is a proof that a particular
object satisfies some property).

The mechanism of program extraction [31] takes this correspondence one step fur-
ther, by defining formal mappings from Coq to functional programming languages that
map computational types into functional programs, “forgetting” all logical statements.
In particular, we are interested in the translation to Haskell. The structure of the
mapping is such that every Haskell program is guaranteed to satisfy any additional
properties of the original Coq term it originated from.

As an example, the Coq type of binary sequences presented above is extracted to
the following Haskell datatype. Observe that this is no longer a dependent type.

data Bin_seq =
Empty

| Zero Int Bin_seq
| One Int Bin_seq

Likewise, the types of comparator networks and all functions defined on those are
extracted to Haskell programs with the same behaviour. In particular, we show the
code for deciding whether a comparator network is a sorting network.

sNW_dec :: Int → Cn → Bool
sNW_dec n c =
sumbool_rec (\_ → True) (\_ → False) (all_sorted_dec n (outputs c n))

sumbool_rec :: (() → a1) → (() → a1) → Bool → a1
sumbool_rec f f0 s =
case s of {
True → f __;
False → f0 __}

We explain this code. The operator sumbool_rec performs case analysis on the type
of decidable statements, which is isomorphic to the type of Boolean values. If the
third argument evaluates to True, sumbool_rec returns its first argument, otherwise it
returns its second argument.3 The result of (sNW_dec n c) is therefore essentially that of
(all_sorted_dec n (outputs c n)). The function all_sorted_dec is obtained from another
decidability predicate (given a list of binary sequences, we can decide whether all of
its elements are sorted), and outputs computes the set of outputs of the network.

The important part is that this code does not include the actual proof that c is (not)
a sorting network when the result is True (False), since that part of the original term
is non-computational. However, soundness of the extraction mechanism guarantees
that (sNW_dec n c) evaluates to True precisely when c is a sorting network – since the
extracted code for (sNW_dec n c) performs precisely this test.

In the current stage, we are interested in writing a checker in Coq, and that means
we essentially write functional code that is extracted directly to very similar-looking

3 The indirect way in which this is done is unfortunately typical of program extraction, and
adds some layers of complexity to what a direct program would achieve.
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Haskell functions, while the soundness results are not extracted at all. However, we use
case analysis on the decidability results we proved earlier, so all the algorithms implicit
in those proofs impact the behaviour of our program. It is interesting to note that the
direct proofs implement efficient algorithms in many cases (as sNW_dec stated above:
it has been shown [8] that any algorithm to decide whether a comparator network
is a sorting network by testing binary inputs must check all non-sorted inputs). The
notable exception is the decidability of subsumption, which we discuss in the section
on optimizations.

The generation step. The formalization of the generation step proceeds in two phases.
First, we define the simple function appending a comparator to the end of a comparator
network in all possible ways, and Generate simply maps it into a set. The function
all_st_comps produces a list of all standard comparators on n channels. We prove that
Generate maps complete sets into complete sets, as long as the input does not contain
a sorting network. (If the latter is the case, then all elements in the generated set
contains redundant comparators, which prevents the set from being complete.)

Definition add_to_all (cc:list comparator) (C:CN) :=
map (fun c ⇒ (C ++ (c :: nil))) cc.

Fixpoint Generate (R:list CN) (n:nat) := match R with
| nil ⇒ nil
| cons C R' ⇒ (add_to_all (all_st_comps n) C) ++ Generate R' n
end.

Theorem Generate_complete : ∀ R n, size_complete R n →
(∀ C, In C R → ~sorting_network n C) → size_complete (Generate R n) n.

In our formalization, we do this as an additional step, removing all networks whose
last comparator is redundant from the set. This is done using a specialized version of
the notion of redundancy.

Definition last_red (n:nat) (C:CN) := ∃ C' c, redundant n C' c ∧ C = (C' ++ c :: nil).

Lemma last_red_dec : ∀ n C, {last_red n C} + {~last_red n C}.

Fixpoint filter_nred (n:nat) (R:list CN) := match R with
| nil ⇒ nil
| (C :: R' ) ⇒ match last_red_dec n C with

| left _ ⇒ filter_nred n R'
| right _ ⇒ C :: filter_nred n R'

end end.

Definition OGenerate (R:list CN) (n:nat) := filter_nred n (Generate R n).

Theorem OGenerate_complete : ∀ R n, size_complete R n →
(∀ C, In C R → ~sorting_network n C) → size_complete (OGenerate R n) n.

The extracted code for these functions essentially coincides with their Coq defini-
tion, since they use no proof terms, and matches the pseudo-code in [11].

With regards to the runtime complexity, Generate is O(|R|), i.e., linear in the size
of the set of networks it is applied to. However, the constant hidden in the asymptotic
notation is fairly large, as each network in R gives rise to (n2) new networks, and for
each of these networks, a redundancy test is made for the latest added comparator.
This is as hard as deciding the NP-complete problem of whether a network is defective
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without the latest added comparator. Since we use an exhaustive approach of up to 2n

tests of all inputs, even for our small n = 9, this becomes a large constant.

The pruning step. For the pruning step, we need to work with the untrusted oracle.
We define an oracle to be a list of subsumption triples (C,C' , pi), with the intended
meaning that C subsumes C' via the permutation pi.4 For efficiency reasons, the log
files record permutations as their output on the set [n], so for example the transposition
over [4] exchanging 0 and 2 would be represented as 2, 1, 0, 3. Since we do not trust
the oracle, we need to test that these lists represent valid permutations. We show that
the property of a list of natural numbers corresponding to a permutation on [n] is
decidable, and define a function make_perm to translate lists of natural numbers into
(syntactic) permutations, and show that the resulting object satisfies permutation if the
original list corresponds to a permutation.

Variable n:nat.
Variable l:list nat.

Definition pre_perm := NoDup l ∧ all_lt n l ∧ length l = n.

Lemma pre_perm_dec : {pre_perm} + {~pre_perm}.

Lemma pre_perm_lemma : pre_perm → permutation n (make_perm l).

Thus, our checker is able to get a list of natural numbers from the oracle, test
whether it corresponds to a permutation, and in the affirmative case use this informa-
tion.

One might wonder why we did not represent permutations uniformly throughout
the whole formalization. The reason for not doing so is that we have two distinct ob-
jectives in mind. While formalizing results, we are working with an unknown number
n of channels, and it is much simpler to represent permutations by only explicitly
mentioning the values that are changed, as this allows for uniform representations of
transpositions and the identity permutation. Also, computing the inverse of a permu-
tation is very simple with the finite function representation, but not from the compact
list representation given by the oracle. When running the extracted checker, however,
we are concerned with efficiency. The oracle provides information on millions of sub-
sumptions, so it is of the utmost importance to minimize its size.

Using the oracle, we define the pruning step as follows.

Function Prune (O:Oracle) (R:list CN) (n:nat) {measure length R} : list CN :=
match O with
| nil ⇒ R
| cons (C,C' , pi) O' ⇒ match (CN_eq_dec C C') with

| left _ ⇒ R
| right _ ⇒ match (In_dec CN_eq_dec C R) with

| right _ ⇒ R
| left _ ⇒ match (pre_perm_dec n pi) with

| right _ ⇒ R
| left A ⇒ match (subsumption_dec n C C' pi' Hpi) with

| right _ ⇒ R
| left _ ⇒ Prune O' (remove CN_eq_dec C' R) n

end end end end end.

4 Technically, we are formalizing just the oracle data: the result of the oracle (a computer
program), rather than the program itself (which we do not want to formalize). We deliberately
blur the distinction between these concepts in this section.
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We comment on the terms used in the successive match statements. In (CN_eq_dec C C')
we check that C and C' are not the same network. In (In_dec CN_eq_dec C R) we check
that C occurs in the list R (where CN_eq_dec is used for checking equality between C and
the members of R). In (pre_perm_dec n pi) we verify that pi represents a valid permuta-
tion. Finally, in (subsumption_dec n C C'pi' Hpi) we verify that the required subsumption
actually holds. For legibility, we write pi' for the actual permutation generated by pi
and Hpi for the proof term stating that this is indeed a permutation.

All these tests have to be passed in order for the subsumption to be processed.
The soundness of the pruning step uses all these facts, together with the subsumption
lemma, and further requires (i) that the input set R contain only standard networks;
(ii) that R contain no networks with redundant comparators; and (iii) that all networks
in R have the same size.

Theorem Prune_complete : ∀ O R n, size_complete R n →
(∀ C, In C R → standard n C) →
(∀ C C' c C' ' , In C R → C = C'++ c::C'' → ~redundant n C' c) →
(∀ C C', In C R → In C' R → length C = length C') →
size_complete (Prune O R n) n.

Note the universal quantification on O: this result holds regardless of whether the oracle
provides correct information or not – hence the “untrusted” qualification of the oracle
in our approach. This implementation is simpler than the pseudo-code in [11], as the
oracle allows us to bypass all search steps – both for permutations and for possible
subsumptions.

With regards to the runtime complexity, Prune is O(|O| · |R|), since it implements
a tail-recursive traversal of the oracle O, where each element is potentially located in
the set of networks R via a linear scan. Potentially, at the cost of a more complicated
correctness proof, the domain of all networks could be equipped with a (natural) total
ordering, R could be organized as an efficient search structure, such as a balanced binary
search tree, for instance, and the time complexity could be reduced to O(|O| · log|R|).
However, as explained earlier, at this stage we are interested in formalizing a simple
checker, which we later optimize.

Linking everything together. We now define the iterative generate-and-prune algorithm
and prove its correctness. Here we deviate somewhat from the algorithm presented
in [11], as we have to provide the oracle; we also specify the number of iterations. Our
implementation receives two natural numbers as input (the number of channels n and
the number of iterations m) and returns one of three possible answers: (yes n k), meaning
that a sorting network of size k was found and that no sorting network of smaller size
exists; (no n m R H1 H2 H3), meaning that R is a set of standard (H3) comparator networks
of size m (H2), with no duplicates (H1); or maybe, meaning that an error occurred. The
proof terms in no are necessary for the correctness proof, but they are all removed in
the extracted checker. Since they make the code complex to read, we abbreviate them
to �.

Inductive Answer : Set :=
| yes : nat → nat → Answer
| no : ∀ n k:nat, ∀ R:list CN, NoDup R → (∀ C, In C R → length C = k) →

(∀ C, In C R → standard n C) → Answer
| maybe : Answer.

Fixpoint Generate_and_Prune (n m:nat) (O:list Oracle) := match m with
| 0 ⇒ match n with
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| 0 ⇒ yes 0 0
| 1 ⇒ yes 1 0
| _ ⇒ no n 0 (nil :: nil) ���
end

| S k ⇒ match O with
| nil ⇒ maybe
| X:: O' ⇒ let GP := (Generate_and_Prune n k O') in

match GP with
| maybe ⇒ maybe
| yes p q ⇒ yes p q
| no p q R ���⇒ let GP' := Prune X (OGenerate R p) p in

match (Exists_SNW_dec p GP' _) with
| left _ ⇒ yes p (S q)
| right _ ⇒ no p (S q) GP' ���

end end end end.

In the case of a positive answer, the network constructed in the original proof is guaran-
teed to be a sorting network; therefore we do not need to return it. Note the elimination
over Exists_SNW_dec, which states that we can decide whether a set contains a sorting
network.

Lemma Exists_SNW_dec : ∀ n l, (∀ C, In C l → channels n C) →
{∃ C, In C l ∧ sorting_network n C} + {∀ C, In C l → ~sorting_network n C}.

The correctness of the answer is shown in the two main theorems, covering the
cases where the answer is (yes n k) and (no n m R ���). Again, these results quantify
universally over O, thus holding regardless of whether the oracle gives right or wrong
information.

Theorem GP_yes : ∀ n m O k, Generate_and_Prune n m O = yes n k →
(∀ C, sorting_network n C → length C ≥ k) ∧
∃ C, sorting_network n C ∧ length C = k.

Theorem GP_no : ∀ n m O R HR0 HR1 HR2,
Generate_and_Prune n m O = no n m R HR0 HR1 HR2 →
∀ C, sorting_network n C → length C > m.

The next step is extracting Generate_and_Prune (and everything it depends on) to
Haskell, using the extraction mechanism. The result is a file Checker.hs containing
among others a Haskell function

generate_and_Prune :: Nat → Nat → (List Oracle) → Answer

In order to run this extracted certified checker, we have written an interface that calls
function generate_and_Prune with the number of channels, the maximum size of the
networks, and the list of the oracle information, and then prints the answer. For conve-
nience, the oracle information is stored in a compact human-readable file format, with
the networks and permutations essentially being stored as sequences of whitespace-
separated integers. The interface not only parses this format, but also includes conver-
sion functions from Haskell integers to the extracted naturals and a function imple-
menting the oracle, as well as a definition of Checker.Answer as an instance of the type
class Show for printing the result. The main function of the Haskell front-end reads as
follows.

main = do
(n:k:_) ← getArgs
os ← mapM file_to_oracle (file_names (read n) (read k))
let nn = int_to_nat (read n)
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kk = int_to_nat (read k) in
print Checker.generate_and_Prune nn kk (list_to_List os)

It is important to recall that we do not need to worry about soundness of almost
any function defined in the interface, as the oracle is untrusted. For example, a wrong
conversion from natural numbers to their Peano representation does not impact the
correctness of the execution (although it definitely impacts the execution time, as all
subsumptions become invalid). We only need to worry about the function printing the
result, but this is straightforward to verify.

This extracted checker was able to validate the proofs of optimal size up to and
including n = 8 in around one day – roughly the same time it took to produce the orig-
inal proof, albeit without search. This already required processing more than 300 MB
of proof witnesses for the roughly 1.6 million subsumptions. To the best of our knowl-
edge, it constitutes the first formal proof of the results in [20]. These experiments also
suggested that this extracted checker would take around 20 years to verify the case of
n = 9.

4.3 Optimizing the extracted checker

In order to be able to address the case of 9 inputs in a realistic time frame, the checker
described above needs to be optimized in various ways. Rather than presenting this
optimization process in detail, we focus on three aspects that illustrate the gains we
obtain.

The three optimizations we consider are: changing data structures to reduce mem-
ory footprint; improving algorithms underlying decidability proofs; and reimplementing
Prune in a more efficient way. In all three cases, we show that we can motivate, per-
form, and evaluate the changes described from a purely local perspective, i.e., without
regard for the context in which they are used. This illustrates the modularity of our
development.

Changing data structures. One of the main limitations of running the extracted checker
is its memory consumption. In particular, profiling reveals that half of the memory is
being used just to represent natural numbers, due to the unary representation of these
in Coq. There are several workarounds to overcome this limitation; since our formaliza-
tion essentially uses natural numbers as labels, we opted for extracting them to native
Haskell integers (following a suggestion by Pierre Letouzey) rather than optimizing
their Coq representation. In principle, this could break soundness of extraction, but
the fact that the only operations we use are successor and predecessor on the closed
set {1, . . . , 9} makes this a non-issue. Given that in general Haskell objects are stored
on the heap, the fact that Haskell’s memory management avoids duplication of small
integers by storing them only once on the heap, which has dramatic benefits for mem-
ory consumption. In particular, this means that explicitly defining the set {1, . . . , 9} as
a set with nine constants and extracting it would increase the memory requirements.

Additionally, we can halve the memory consumption by representing comparators
in a more efficient way: the set of all comparators is countable and, thus, a bijection
to N can be used to represent them as a single natural number. This has the added
effect of also removing the memory overhead of the constructor for pairs. As luck
would have it, the bijection ϕ(i, j) = 1

2 j × (j − 1) + i happens to map very nicely to
the function all_st_comps described earlier, since the comparator (i, j) is exactly the



Formally Proving Size Optimality of Sorting Networks 25

ϕ(i, j)-th element of all_st_comps n (as long as i, j < n). We can then compute ϕ−1

by means of a look-up in this list, and Haskell’s caching effects ensure that there is no
measurable performance loss.

In practice, this requires no changes to the formalization of the theory, and only
minor ones to Generate and Prune. We define a type OCN (simply as list nat) and a
mapping OCN_to_CN : nat → OCN → CN, guaranteed to generate a standard comparator
network when all its arguments are in the right ranges, and we prove that this map-
ping is a bijection under that hypothesis. We then define a complete set of optimized
comparator networks by replacing R with (map (OCN_to_CN n) R) in the only place where
it occurs in the original definition.

Generate now works by adding all natural numbers between the 0 and n(n−1)
2 ,

where n is the number of channels, to all the optimized comparator networks.

Fixpoint Generate (R:list OCN) (n:nat) : list OCN :=
match R with
| nil ⇒ nil
| cons C R' ⇒ (add_to_all (till_n' (length (all_st_comps n))) C) ++ Generate R' n
end.

Reproving the key lemma Generate_complete is then simply a matter of unfolding
the definition of OCN_to_CN and adding a few rewriting steps in the previous proofs,
and this can be done almost mechanically. Adapting OGenerate is even simpler: in the
definition of filter_nred, we replace the subterm (last_red_dec n C) with the term
(last_red_dec n (OCN_to_CN n C)), and all previous proofs still go through.

Finally, the definition of Prune needs to use decidability results on equality over OCN
(rather than over CN), but again the changes are completely straightforward.

We point out that there were no changes to the original formalization of the theory
of sorting networks, but only to the proofs of soundness of Generate_and_Prune – and
these were very localized, not affecting the top-level structure of the proofs.

Reproving decidability results. As we mentioned at the beginning of the previous sec-
tion, our checker often relies on decidability results in the original formalization, which
get extracted to Haskell functions evaluating the computational part of those results.
We focus on one such result, which yields a function that is straightforward to op-
timize using simple computer science techniques: the subsumption check. Recall that
subsumption_dec states that subsumption is decidable. This Coq term gets extracted to
Haskell as

subsumption_dec :: Int → Cn → Cn → Permut → Bool
subsumption_dec n c c' p =
all_in_dec (bin_seq_eq_dec n) (apply_perm p n) (outputs c n) (outputs c' n)

where (outputs c n) computes the list of all outputs of c, (apply_perm p n) applies
the permutation p to this list, and all_in_dec checks that all of its elements are in
(outputs c' n).

The lists of outputs contain 2n elements, as they are built simply by computing
the output of the network for each input and storing it, without sorting or removing
elements. The naive approach of checking for each element in one set containment
in the other is quadratic in 2n, so the overall complexity is O

(
22n

)
. If, however, we

sort and merge the two sets or store the values of one set in a data structure suited for
searching – such as balanced binary search trees – we immediately reduce this bound to
O (n× 2n); this also makes it immediately natural to eliminate duplicates, lowering the
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number of stored values, as the first comparators in comparator networks tend to halve
the number of outputs. (Empirical observations show that, for 9 inputs, 10-comparator
networks already have as few as 80 outputs on average, rather than 29 = 512.)

Again, the interesting aspect is that we can incorporate this optimization into the
checker with very few changes to the formalization. The biggest work is defining a type
of binary search trees (since, unfortunately, no formalization of them seems to exist
with an arbitrary type T as parameter). Using these, we define an alternative notion of
subsumption, prove that it coincides with the old one, and reprove decidability of the
old notion by reducing to the new one. This guarantees that none of the remainder of
the development needs to be changed, but the algorithm extracted is now the optimized
one.

Definition opt_outputs C n := list_to_BTree _ (bin_seq_compare _) (outputs C n).

Definition subs_opt (n:nat) (C C':comparator_network) (P:permut) (HP:permutation n P) :=
∀ s:bin_seq n, BT_In s (opt_outputs C n) → BT_In (apply_perm P s) (opt_outputs C' n).

Lemma subs_opt_to : ∀ n C C' P HP, subs_opt n C C' P HP → subsumption n C C' P HP.

Lemma subsumption_to_opt : ∀ n C C' P HP, subsumption n C C' P HP → subs_opt n C C' P HP.

Lemma subs_opt_dec : ∀ n C C' P HP, {subs_opt n C C' P HP} + {~subs_opt n C C' P HP}.

Lemma subsumption_dec : ∀ n C C' P HP,
{subsumption n C C' P HP} + {~subsumption n C C' P HP}.

Each of these proofs is less than ten lines long; the impact, however, is a substantial
reduction of the time spent validating the information provided by the oracle.

Exploiting the oracle. The asymptotically dominating step in our algorithm is Prune,
whose execution time depends linearly both on the size of the oracle and on the size
of the set to be pruned. We observed earlier that we could reduce the dependency on
the latter to a logarithmic one; however, we can do even better.

Essentially, each Prune step needs to do three things.

1. Check that all subsumptions are valid.
2. Remove all subsumed networks.
3. Check that all networks used in subsumptions are kept.

Each subsumption in step 1 is checked individually, so this step scales linearly in
the number of networks. The other two steps can be significantly improved.

Step 2 can be optimized substantially by delaying the removals until all subsump-
tions have been read. Thus, we reprogram our oracle to provide the networks to be
removed in exactly the same order as they are generated in our checker. An inspection
of the definition of Generate shows that this order is the lexicographic order on the
sequence of integers representing the comparators; by pre-processing the oracle infor-
mation accordingly, we can remove all subsumed networks in one single pass over the
whole set. Then we can use the following function remove_all to complete step 2 in
linear time, where we use the fact that l is a subsequence of w (so, when x and y are
different, y is smallest).

Variable A:Type.
Variable A_dec : ∀ x y : A, {x = y} + {x <> y}.

Fixpoint remove_all (l w:list A) := match l,w with
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| nil, _ ⇒ w
| _, nil ⇒ w
| x:: l' , y:: w' ⇒ match (A_dec x y) with

| left _ ⇒ remove_all l' w'
| right _ ⇒ y :: remove_all l w'

end end.

Applying similar ideas to step 3 cannot be done directly, however, since sorting the
oracle information on the subsumed networks yields an unsorted sequence of subsuming
networks. Instead, we begin by observing that, rather than checking that the subsuming
networks are kept at each step, we can check that they are present in the final (reduced)
set, R', the size of which, in the most time-consuming steps, is only around 5% of the
size of the original one. This requires some care, as we explain below. We begin by
evaluating the practical impact of such a change.

The number of subsumed networks is bounded by |O|, so by using a balanced binary
search tree for storing the subsuming networks, we may eliminate duplicates as we go
along, and complete the process in time O(|O| log|R'|). Additionally, we can afterwards
retrieve an ordered sequence of the networks in R' in O(|R'|). Theoretically, we could
do even better. What is demanded of the storage structure for R' is fast insertion,
and ordered retrieval in linear time after all insertions. Since we have an upper bound
on the universe size, U (all possible bitstrings representing a network of at most 25
comparators), we could use a van Emde Boas tree [18] instead, and the time for one
insertion improves to O(log logU). Since there are only 37 different comparators over
9 inputs, one can be represented using 6 bits, and, thus, a network can be represented
using 150 bits. This means that log logU < 8, so the time is really O(|O|).

The benefit of such optimizations has to be weighed against the added complexity
and ensuing challenges in reproving the correctness of the algorithms. Thus with the
goal of a formal verification in mind, a good enough solution allowing to reap the
main part of the potential benefits is often preferable. Consequently, in the Coq code
below, we simply use a binary search tree without a balancing scheme. This rather
simple optimization has proved sufficient in significantly reducing the runtime of the
extracted proof checker.

The formalized definitions for the improved pruning step now look as follows. The
function run_oracle receives information from the oracle, checking that all subsump-
tions are valid (step 1), and stores the networks to be removed in a list (keeping their
order) and those justifying the subsumptions in a binary tree (which also removes
duplicates). Then oracle_test performs the test in step 3. The definition of Prune com-
bines the three steps: it first applies run_oracle (step 1), then removes all subsumed
networks using remove_all (step 2), and finally checks that all the necessary networks
are present (step 3).

Definition Oracle := list (OCN ∗ OCN ∗ (list nat)).
Definition BTree := BinaryTree OCN.

Fixpoint run_oracle (n:nat) (O:Oracle) : bool ∗ (BTree ∗ (list OCN)) := match O with
| nil ⇒ (true,(nought,nil))
| (C,C' , P) :: O' ⇒ match (pre_permutation_dec n P) with

| right _ ⇒ (false,(nought,nil))
| left A ⇒ match (subsumption_dec n (OCN_to_CN n C) (OCN_to_CN n C')

(make_permutation P)
(pre_permutation_lemma _ _ A)) with

| right _ ⇒ (false,(nought,nil))
| left _ ⇒ let (b,Tl) := (run_oracle n O') in let (T,l) := Tl in
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(b,( BT_add OCN_compare C T,C'::l))
end end end.

Fixpoint oracle_test (F:BTree) (R:list OCN) := match F with
| nought ⇒ true
| _ ⇒ match R with

| nil ⇒ false
| C' :: R' ⇒ let (C,F') := (BT_split F nil) in match (OCN_eq_dec C C') with

| left _ ⇒ oracle_test F' R'
| right _ ⇒ oracle_test F R'

end end end.

Definition Prune (O:Oracle) (R:list OCN) (n:nat) : list OCN :=
match (run_oracle n O) with
| (false,_) ⇒ R
| (true,XY) ⇒ let (X,Y) := XY in

let R' := remove_all OCN_eq_dec Y R in
match (oracle_test X R') with
| false ⇒ R
| true ⇒ R'

end end.

Yet again, we find that these changes are completely modular: reproving the cor-
rectness of Prune requires proving correctness of its auxiliary functions, which can be
done mostly by adapting the old proofs. The correctness results for the checker then
remain unchanged, and their proofs require only minor tweaking, with trivial changes
that require no deep insights.

The optimization of step 3 requires further changes to the oracle. The implementa-
tion of Prune now fully prunes the set and checks that the networks used for subsump-
tion are present in the final set; this is however not true of the data obtained from the
original proof in [11]. There are often chains of subsumptions C1 � C2 � . . . � Cn,
which pose no problem for the original algorithm, but would now result in a false neg-
ative result; consider C2, for example, which is used to remove C3, but which is itself
removed by C1. Using the transitivity of subsumption, we can replace such chains by
“reduced” subsumptions C1 � C2, C1 � C3, . . . , C1 � Cn; once again, this requires
pre-processing the oracle information, identifying such chains and computing adequate
permutations for the new resulting subsumptions, which is only possible due to the
offline nature of the oracle.

For completeness, we summarize this process, which is reminescent of topological
sorting. In the pre-processing, we define a labeled graph whose nodes are comparator
networks, and where there is an edge between C′ and C labeled by π if C �π C′. Since
subsumed networks occur at most once in a triple in the oracle, this graph can be viewed
as a forest, where, in each tree, C would be a parent of C′ if C �π C′. For each tree,
we can now start with the root and move towards the leaves, composing permutations
(starting with the identity permutation) that are found on the path towards any node
– internal as well as leaves. This enables us to create a mapping from networks Ci
to pairs (C1, π), where C1 is the root of Ci’s tree and π is the composition of all the
permutations on the path from C to Ci. Finally, in a sweep of the oracle information,
the mapping is used to create the “reduced” subsumptions.

After completing these optimizations, our checker was able to verify the original
proof of optimality of 25 comparators for sorting 9 inputs in 163.8 hours, or just
under one week, compared to the 18 CPU years required to obtain the result in the
first place [11]. The original proof was generated by a Prolog program consisting of
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approximately 100 clauses (1000 lines, or 35 KB), and produced 70 million proof
witnesses corresponding to 27 GB of oracle data. This data was pre-processed in a
few hours, as described above, by a Java program (288 lines, or 11 KB). The full
Coq formalization consists of 6838 lines of code, including 102 definitions and 405
lemmas, with a total file size of 206 KB. The extracted Haskell program is only around
650 lines of Haskell code, or 16 KB, and interacts with the oracle by means of an
interface program (53 lines, or 1.6 KB), also written in Haskell.

5 Concluding Remarks

We have presented a formal verification of the computer-generated proof of optimality
of 25 comparators for sorting 9 inputs. We have shown that a straightforward appli-
cation of standard verification strategies is not able to succeed at this task, and we
proposed a successful alternative approach that capitalizes on optimizing the data pro-
vided by an oracle to guide the proof. Furthermore, we have exemplified how previous
knowledge of all the information that will be provided by the oracle is instrumental
in significantly reducing both execution time and asymptotic complexity of the formal
proof.

Concretely, we reduced the original time complexity of O(|O| · |R|), where O is the
oracle and R is a parameter of the problem of size comparable to the size of O, to
O(|O| log|R'|), where R' is about 5% of the size of R, or even to time O(|O|). Practically,
our checker was able to verify the original proof of optimality of 25 comparators for
sorting 9 inputs in 163.8 hours, or just under one week, compared to an estimate of
20 years using the initial formalization.

The approach taken in this work is described in detail in the context of the Coq
theorem prover. The choice of Coq naturally dictates some design decisions, in particu-
lar the use of program extraction. Other theorem provers may allow for other decisions
regarding the integration of untrusted oracles (e.g. in ACL2, one might use meta-rules
to integrate oracle data). However, we believe that the general idea of starting with a
simple formalization, which is successively optimized in lock step with the oracle data,
has great potential benefits regardless of the actual theorem prover used.

Although we have focused on one case study, the characteristics that make this
approach successful can be found in many other problems regarding formal verification
of large-scale computer-generated proofs. Furthermore, the types of optimization we
performed are based on generic (and rather basic) computer science techniques, rather
than on intrinsic properties of our problem. Case in point, using a similar approach
we have very recently completed a full formal verification of the proof of the Boolean
Pythagorean Triples conjecture [25], which required verifying billions of cases using
200 TB of proof witnesses.
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