
Search Trees with Relaxed Balance

and Near-Optimal Height

Rolf Fagerberg1, Rune E. Jensen2, and Kim S. Larsen3

1 BRICS, Department of Computer Science, University of Aarhus, Ny Munkegade,
building 540, DK-8000 Århus C, Denmark, rolf@brics.dk.

2 ALOC Bonnier A/S, Buchwaldsgade 35, DK-5000 Odense C, Denmark,
runej@aloc.dk.

3 Department of Mathematics and Computer Science, University of Southern
Denmark, Main Campus: Odense University, Campusvej 55, DK-5230 Odense M,

Denmark, kslarsen@imada.sdu.dk.

Abstract. We introduce the relaxed k-tree, a search tree with relaxed
balance and a height bound, when in balance, of (1 + ε) log

2
n + 1, for

any ε > 0. The rebalancing work is amortized O(1/ε) per update. This is
the first binary search tree with relaxed balance having a height bound
better than c · log

2
n for a fixed constant c. In all previous proposals, the

constant is at least 1/ log
2
φ > 1.44, where φ is the golden ratio.

As a consequence, we can also define a standard (non-relaxed) k-tree with
amortized constant rebalancing per update, which is an improvement
over the original definition.

Search engines based on main-memory databases with strongly fluctuat-
ing workloads are possible applications for this line of work.

1 Introduction

The k-trees [7] differ from other binary search trees in that the height can be
maintained arbitrarily close to the optimal ⌈log2 n⌉ while the number of rebal-
ancing operations carried out in response to an update remains O(log n). The
price to be paid is that the size of each rebalancing operation (the number of
nodes which must be inspected) grows as we approach ⌈log2 n⌉. More precisely,
one can show that to obtain height less than (1 + ε) log2 n + 1, rebalancing
operations have size Θ(1/ε) in [7].

Thus, using k-trees, a trade-off between search time and rebalancing time
becomes an option; the more interesting direction being the scenario where up-
dates are infrequent compared with searches. Under such circumstances, it may
be beneficial to spend more time on the occasional updates in order to obtain
shorter search paths.

Search engines pose a particular search/update problem. Searching is domi-
nant, but when updates are made, they often come in bursts because keywords
originate from large sites. Equipping search trees with relaxed balance has been
proposed as a way of being able to adapt smoothly to this ever-changing scenario.

Relaxed balance is the term used for search trees where updating and rebal-
ancing have been uncoupled, most often through a generalization of the basic
structure. The uncoupling is achieved by allowing rebalancing after different
updates to be postponed, broken down into small steps, and interleaved.

The challenge for the designers of these structures is to ensure and be able
to prove efficient rebalancing in this more general structure. If that problem is
overcome, then the benefit is the extra flexibility. During periods with heavy
updating, rebalancing can be decreased or even turned completely off to allow
a higher throughput of updates as well as searches. When the update burst is
over, the structure can gradually be rebalanced again. Since a search engine is in
constant use, it is important that this rebalancing is also carried out efficiently,
i.e., using as few rebalancing operations as possible.

Besides search engines, the flexibility provided by relaxed balance may be
an attractive option for any database application with strongly fluctuating work
loads.

Relaxed balance has been studied in the context of AVL-trees [1] starting
in [10] and with complexities matching the ones from the standard case in [6].
The height bound for AVL-trees in balance is 1

log
2
φ log2 n > 1.44 log2 n. In the

context of red-black trees [4], relaxed balance has been studied starting in [8,
9] with results gradually matching the standard case [11] in [3, 2, 5]. The height
bound for red-black trees in balance is 2 log2 n. A more thorough introduction to
relaxed balance as well as a comprehensive list of references can be found in [5].

In this paper, we first develop an alternative definition of standard k-trees.
The purpose of this is both to cut down on the number of special cases, and
to pave the way for an improved complexity result. Based on this, a relaxed
proposal is given, and complexity results are shown. The complexity results are
in the form of upper bounds on the number of rebalancing operations which
must be carried out in response to an update.

It is worth noting that the alternative definition of k-trees, which is the
starting point for the relaxed definition, also gives rise to an improved complexity
result for the standard case: in addition to the logarithmic worst-case bound,
rebalancing can now be shown to use amortized constant time as well.

2 K-Trees

The k-trees of [7] are search trees where all external nodes have the same depth
and all internal nodes are either unary or binary. The trees are leaf-oriented,
meaning that the external nodes contain the keys of the elements stored, and
the internal nodes contain routers, which are keys guiding the search. Binary
internal nodes contain one key, unary internal nodes contain no keys. To avoid
arbitrarily deep trees, restrictions are imposed on the number of unary nodes:
on any level of the tree, the first k nodes to the right of a unary node should (if
present) be binary. As this does not preclude a string of unary nodes starting at
the root, it is also a requirement in [7] that the rightmost node on each level is
binary.

It is intuitively clear that a larger value of k gives a lower density of unary
nodes, which implies a smaller height for a given number n of stored keys.
The price to be paid is an increased amount of rebalancing work per update—
more precisely, one can show that with the proposal of [7] a height bound of
(1 +Θ(1/k)) log2 n+ 1 can be maintained with O(k log n) work per update.
Thus, k-trees offer a tradeoff between the height bound and the rebalancing
time, and furthermore allow for height bounds of the form c · log2 n + 1, where
the constant c can be arbitrarily close to one.

While the possibility of such a tradeoff is a very interesting property, the
k-trees of [7] also have some disadvantages. One is that, unlike red-black trees,
for example, they do not have an amortized constant bound on the amount of
rebalancing work per update. As a counterexample, consider a series of alter-
nating deletions and insertions of the smallest key in a complete binary tree of
height h, having 2h − 1 binary nodes. Since the tree does not contain any unary
nodes, it is a valid k-tree for any k, and it is easy to verify that the rebalancing
operations described in [7] will propagate all the way to the root after each up-
date. Another disadvantage is the lack of left-right symmetry in the definition of
k-trees in [7], forcing operations at the rightmost path in the tree to be special
cases. This approximately doubles the number of operations compared with the
number of essentially different operations.

We therefore propose an alternative definition of k-trees. This definition will
allow us to add relaxed balance using a relatively simple set of rebalancing
operations, for which we can prove an amortized complexity of O(1) per update.
Additionally, this enables us to define a new non-relaxed k-tree with the same
complexity, simply by deciding to rebalance completely after each update. This
is an improvement of the result from [7].

Our basic change is in the way the density of unary nodes is kept low. On
each level in the tree, except the topmost, we divide the nodes into groups of
Θ(k) neighboring nodes. Thus, a group is simply a contiguous segment of a given
level. The groups are implemented by marking the leftmost node in each group,
using one bit. Furthermore, in each group, we allow two unary nodes, contrary
to the original proposal [7] which considers unary nodes one by one. Intuitively,
this is what gives the amortized constant rebalancing per update. The top of the
tree is managed differently, as the levels are too small to contain a group.

Definition 1. For any integer k ≥ 2, a symmetric k-tree is a tree containing

unary and binary nodes, where all external nodes have the same depth. The

topmost 1+⌈log k⌉ levels consist of binary nodes only. In level number 2+⌈log k⌉
from the top, there is at least one binary node. On the rest of the levels in the

tree, the internal nodes are divided into groups of neighboring nodes. Each group

contains at least 2k nodes and at most 4k nodes. In each group, at most two of

the nodes are unary.

We call level number 2 + ⌈log k⌉ the buffer level. For the number S of nodes
in the buffer level, we have 2k ≤ S = 2⌈log k⌉+1 < 4k.

The tree is turned into a search tree by storing elements in the external nodes
and routers in the binary internal nodes in accordance with the usual in-order

ordering. Searching proceeds as in any binary search tree, except that unary
nodes (which contain no keys) are just passed through.

To add relaxed balance, we must allow insertions and deletions to proceed
without immediate rebalancing, and therefore must relax the structural con-
straints of Definition 1. To achieve this, we allow nodes of degree larger than
two, and allow an arbitrary number of unary nodes in a group. To keep the
actual trees binary, we use the standard method [4] of representing i-ary nodes
by binary subtrees with i− 1 nodes, indicating the root of each subtree by one
bit of information, traditionally termed a red/black color.

We define the black depth of a node as the number of black nodes (including
itself, if black) on the path to the root. The black level number i consists of all
black nodes having the black depth i. Note that for any node, the number of
black nodes below it on a path to an external node is the same for all such paths.
We call this number the black height of the node.

Definition 2. For any integer k ≥ 2, a relaxed k-tree is a tree containing unary

and binary nodes, where nodes are colored either black or red. The root, the unary

nodes and the external nodes are always black. All external nodes in the tree have

the same black depth. In the topmost 1 + ⌈log k⌉ black levels there are no unary

nodes, and no node has a red child. In black level number 2 + ⌈log k⌉, there is

at least one binary node. On the rest of the black levels in the tree, the internal

nodes are divided into groups of neighboring nodes, with each group containing

at least 2k nodes and at most 4k nodes.

A relaxed k-tree is a standard (symmetric) k-tree if all nodes are black, and
no group contains more than two unary nodes. It turns out that in our relaxed
search trees, we also need to allow empty external nodes, i.e., external nodes
with no elements. Later in this paper, we give a set of rebalancing operations
which can turn a relaxed k-tree with empty external nodes into a standard k-tree
without empty external nodes, and we give bounds on the number of operations
needed for this.

3 Height Bound

By the height of a tree we mean the maximal number of edges on any path from
the root to an external node. We now show that the height of symmetric k-trees
is just as good as that of the original version in [7].

Theorem 1. The height of a symmetric k-tree with n external nodes is bounded

by logα n+ 1, where α = 2− 1/k.

Proof. On any level, except the buffer level, at most two out of each 2k nodes
are unary. It follows that the number of nodes for each new level, except the
buffer level, increases at least by a factor of 2(1− 1/k)+ 1/k = 2− 1/k = α. For
the buffer level, the number of nodes does not decrease. Hence, a tree of height
h contains at least αh−1 external nodes. ⊓⊔

Using the identity logα(x) = log2(x)/ log2(α), this height bound may be
stated in a more standard way as c·log2 n + 1. Examples of values of c attainable
by varying k are shown in Table 1.

k 2 3 4 5 6 7 8 9 10 20 50 100

c 1.71 1.36 1.24 1.18 1.14 1.12 1.10 1.09 1.08 1.038 1.015 1.007

Table 1. Corresponding values of k and c.

The asymptotic relationship between k and c is as follows:

Corollary 1. In symmetric k-trees, the height is bounded by

(1 +Θ(1/k)) log2 n+ 1.

Proof. This follows from Theorem 1 by the identity logα(x) = log2(x)/ log2(α)
and the first order approximations

log2(1 + ε) = 0 + ε/ ln 2 +O(ε2),
1/(1− ε) = 1 + ε+O(ε2).

⊓⊔

4 Operations

As mentioned above, a search operation proceeds as in any binary search tree,
except that unary nodes are just passed through.

An insert operation starts by a search which ends in an external node v. If
v is empty, the new element is placed there. Otherwise, a new external node
containing the new element is made. In that case, if the parent of v is unary, it
is made binary, and the new external node becomes a child of the binary node.
The key of the new element is inserted as router in the binary node. If the parent
of v is binary, a new red binary node is inserted below it, having v and the new
external node as children and the key of the new element as router.

→ or → or → or →

Fig. 1. The insert operation.

A delete operation first searches for the external node v, containing the ele-
ment to be deleted. If the parent of v is unary, the leaf becomes empty. Otherwise,

→ or → or →

Fig. 2. The delete operation.

v is removed, and the binary parent is made unary (discarding the router in it),
in case it is black, and is removed completely, in case it is red.

Fundamental to the rebalancing operations on k-trees is the observation [7]
that the position of unary nodes may be moved horizontally in the tree by
shifting subtrees. In Fig. 3, the position of the unary node on the left is moved
six nodes to the right. Letters denote subtrees.

a b c d e f g h i j k l

→

a b c d e f g h i j k l

Fig. 3. The slide operation.

We call this operation a slide operation, and we use it to move the positions
of unary nodes horizontally among the black nodes of the same black depth.

Note that for a slide involving i neighboring nodes, it is necessary to redis-
tribute some keys to keep the in-ordering of the keys in the tree. The keys in
question are contained in the binary nodes among the nodes involved in the slide,
as well as in the least common ancestors of each of the consecutive pair of nodes
involved in the slide. This is at most 2i− 1 keys in total. Excluding the time for
locating these least common ancestors, the slide can be performed in O(i) time.
We address the question of the time for locating these common ancestors later.
In [7], this question is not considered at all.

A relaxed k-tree may contain two kinds of structural problems which keep
it from being a standard (symmetric) k-tree: red binary nodes and groups con-

taining more than two unary nodes. Additionally, it may contain empty external

nodes. We now describe the set of rebalancing operations which we use to remove
these three problem types.

We only deal with red binary nodes having a black parent. If the parent of
the red node is unary, we use a contract operation, which merges the node and
the parent into a black binary node.

→

Fig. 4. The contract operation.

If the parent is binary, we first check if there is a unary node in its group.
If so, we use the slide operation to make the parent unary, and then perform a
contract operation.

If the parent is binary, and there is no unary node in its group, we apply
the following operation, which makes the parent red and the node itself black.
Furthermore, if the sibling is red, the operation makes it black. Otherwise, the
operation inserts a unary node above the sibling:

→ or → or →

Fig. 5. The split operation.

We call this operation a split operation, since it corresponds to the splitting of
an i-ary node (i ≥ 3) in a formulation with multi-way nodes instead of red/black
colors.

For a group containing more than two unary nodes, we use the merge oper-
ation from Fig. 6 which merges two unary siblings into a black binary node. If
the parent is black, it is converted to a unary node. If it is red, it is removed.

→ or →

Fig. 6. The merge operation.

Note that by using the slide operation within a group, we can decide freely
which nodes within the group should be the unary ones. Note also that since
the group contains at least four nodes (as k ≥ 2), there will be at least two
neighboring nodes which have parents belonging to the same group on the level
above. Using the slide operation within that group, we can ensure that if it
contains any binary node at all, it will be the parent of the two neighboring
nodes. Thus, only if this group on the level above does not contain any binary
nodes will we not be able to perform a merge operation on a group containing
more than two unary nodes.

We note that split and merge operations will make the number of nodes in
the affected group increase, respectively decrease, by one. To keep the group
sizes within the required bounds, we use a policy similar to that of B-trees,
i.e., a group which reaches a size of 4k + 1 nodes is split evenly in two, and

a group which reaches a size of 2k − 1 nodes will either borrow a node from
a neighboring group, or, if this is not possible because no neighboring group
of more than 2k nodes exist, will be merged with a neighboring group. This
entails simply setting, removing, or moving a group border, i.e., a bit in a node.
When borrowing a node from a neighboring group containing fewer than two
unary nodes, we ensure that the borrowed node is binary, by first using a slide
operation, if necessary. The maintenance of group sizes is performed as part of
the split and merge operations.

Regarding empty external nodes, we note that these will always be children
of black nodes; they are created that way, and no operation changes this. If the
parent of the empty external node is binary, we remove the external node and
make the parent unary. If the parent is unary, but a binary node exist in its
group, we use the slide operation to make the parent binary, and then proceed
as above. Only if the parent’s group does not contain any binary nodes will we
not be able to remove the empty external node.

→

Fig. 7. The removal of an empty external node.

For problems immediately below the buffer level, special root operations ap-
ply. If the problem is a red node, we use the contract operation, and as usual
use a slide to make the parent of the red node unary, if necessary. However,
if no unary node exists in the buffer level, this is not possible. In that case, a
new buffer level consisting entirely of unary nodes is inserted above the previ-
ous buffer level. We then use the split operation to move the red node past the
previous buffer level, and then use a contract operation on the new buffer level
to remove the red node. Note that this maintains the invariant that the buffer
level should contain at least one binary node.

Conversely, if a merge operation removes the last binary node of the buffer
level, we first check if any of the unary nodes in the buffer level has a red child.
If so, we perform a contract operation on that node. If this is not possible, we
remove the nodes in the current buffer level (these are all unary), and let the
black level below be the new buffer level. As the merge operation introduced a
binary node on this level, the invariant that the buffer level should contain at
least one binary node is maintained.

Note that the black height of the tree can only change via a root operation.
It is clear from inspection that the update and rebalancing operations do not

violate the invariant that all external nodes have the same black depth. The set
of rebalancing operations is also complete in the following sense:

Lemma 1. On any relaxed k-tree which is not a standard symmetric k-tree
without empty external nodes, at least one of the rebalancing operations can be

applied on the tree.

Proof. A rebalancing operation can always be performed at the topmost red
node and at the topmost group which contains more than two unary nodes. If
no group with more than two unary nodes exists, an empty external node can
always be removed. ⊓⊔

5 Complexity Analysis

The number of rebalancing operations per update is amortized constant:

Theorem 2. During a sequence of i insertions and d deletions performed on

an initially empty relaxed k-tree, at most 6i + 4d rebalancing operations can be

performed before the tree is in balance.

Proof. The number of removals of empty external nodes clearly cannot exceed
d. To bound the rest of the operations, we define a suitable potential function
on any relaxed k-tree T . Let the unary potential of a group be |u − 1|, where
u denotes the number of unary nodes in the group. Denote by Φ1(T) the sum
of the unary potential of all groups in T (the buffer level does not constitute
at group, and neither do the levels above it). Denote by Φ2(T) the number of
red nodes in T , by Φ3(T) the number of groups in T containing 2k nodes, and
by Φ4(T) the number of groups in T containing 4k nodes. Define the potential
function Φ(T) by

Φ(T) = 3 · Φ1(T) + 6 · Φ2(T) + 1 · Φ3(T) + 2 · Φ4(T).

By a lengthy inspection it can be verified that all rebalancing operations,
including any necessary group splitting, merging or sharing, will decrease Φ(T)
by at least one. We analyze one case to give the flavor of the argument, and
leave the rest to the full paper. Consider the case of the split operation depicted
in the middle of Fig. 5. As the group of the top node in the operation does not
contain any unary nodes before the operation, the added unary node after the
operation reduces Φ1(T) by one. The number of red nodes do not change, so
neither does Φ3(T). The group size increases by one, hence Φ4(T) may grow by
one, or the group may have to be split (if the size of the group raises to 4k+1).
In the latter case, the sizes of the new groups will be 2k and 2k+1, which makes
Φ3(T) grow by one while reducing Φ4(T) by one, and the new groups will contain
zero and one unary node, respectively, which will make Φ1(T) grow by one (for
a total change of zero). By the weights of Φ1(T), . . . , Φ4(T) in Φ(T), this gives a
reduction of Φ(T) of at least one in all cases.

By inspection, it can also be seen that each insert operation increases Φ(T)
by at most six, and that each delete operation either increases Φ(T) by at most
three, or does not change Φ(T), but introduces an empty external node, the
removal of which later increases Φ(T) by at most three. As Φ(T) is zero for the
empty tree and is never negative, the result follows. ⊓⊔

The proof above may be refined to give the following:

Theorem 3. During a sequence of i insertions and d deletions performed on an

initially empty relaxed k-tree, at most O((i + d)(6/7)h) rebalancing operations

can be performed at black height h before the tree is in balance.

Proof. The idea of the proof is to define a potential functions Φh(T) for h =
0, 1, 2, 3, . . ., where Φh(T) is defined as Φ(T) in the proof above, except that it
only counts potential residing at black height h. By inspection, it can be verified
that a rebalancing operation at black height h always decreases Φh(T) by some
amount ∆ ≥ 1, and that, while it may increase the value of Φh+1(T), it will
never do so by more than 6∆/7. As the Φh(T)’s are initially zero and are never
negative, this implies the statement in the theorem. The details will appear in
the full paper. ⊓⊔

Theorem 4. If n updates are made on a balanced relaxed k-tree containing N
keys, then at most O(n log(N + n)) rebalancing operations can be made before

the tree is again balanced.

Proof. The problems in a non-balanced tree consist of red nodes and excess
unary nodes in groups. Assigning to each such problem a height equal to the
black height of its corresponding node, it can be verified that each rebalancing
operation which does not reduce the number of problems will increase the height
of some problem by one, and that no rebalancing operation will decrease the
height of any problem.

Problems arise during updates at black height zero, and each update intro-
duce at most one problem. Thus, if n updates are performed on an initially
balanced tree T , the number of update operations cannot exceed n times the
maximum black height of T since the start of the sequence of updates.

To bound this maximum height, we recall that the black height of the tree
can only increase during root operations. Specifically, if the black height of the
tree reaches some value h, then there has been a root operation at black height
h − 1. It is easily verified that the value of Φ(T) for a balanced tree T is linear
in the number of keys N in the tree. During the n updates, this value may only
grow by O(n), by the analysis in the proof of Theorem 2. By an argument similar
to that in the proof of Theorem 3, the maximum black height since the start
of the sequence of updates is O(log7/6(N + n)), which proves the theorem. The
details will appear in the full paper. ⊓⊔

6 Comments on Implementation

In the previous section, we have been concerned with the number of operations
which have to be carried out, and we have discussed configurations in the tree
at a fairly abstract level. In order to carry out each operation efficiently, it is
necessary to be able to find other nodes at the same level, to find least common
ancestors, and to locate problems in the tree.

First, we note that by maintaining parent pointers and level links between
the black nodes sharing the same black height, all rebalancing operation can be

performed in O(k) time, when not counting the time to find the necessary least
common ancestors during a slide operation. The same is true for a group resizing
operation.

We now discuss how to find the necessary least common ancestor (LCA) of
a neighboring pair of black nodes participating in a slide operation.

One approach is heuristic: simply search upwards for each of these LCAs. The
worst case time for this is poor (the search may take time proportional to the
height of the tree for each LCA), but should be good on average in the following
sense: If on some level i in a complete binary tree we consider k neighboring
nodes, then the LCAs of these k nodes will reside in at most two subtrees with
roots at most ⌈log(k)⌉ levels above i, except that one of the LCAs may reside
higher (it could be the root of the entire tree). If by δ we denote the difference
between i− ⌈log(k)⌉ and the level of this singular LCA, then it is easily verified
that the expected value of δ over all possible start positions of the k neighboring
nodes on level i is O(1). As the parts of the two subtrees residing above level i
may be traversed in O(k) time, the time for a randomly placed slide involving
k nodes is expected O(k) in a binary tree. As a k-tree is structurally close to a
binary tree (especially for large k), we therefore believe that the time for finding
the LCAs during a slide is not likely to be a problem, unless during the use of a
relaxed k-tree we allow the tree to become very unbalanced before rebalancing
again.

Another approach is to maintain explicit links from every black node to the
two LCAs between itself and its two black neighbors, allowing each LCA to be
found in constant time during a slide operation. These links then have to be
updated for the black nodes on the leftmost and rightmost path on the subtrees
exchanged between neighboring black nodes during a slide. Assuming that the
black nodes on such a left- or rightmost path can be accessed in constant time
per node, this gives a time for a slide involving k neighboring nodes which is
proportional to k times the black height at which the slide takes place. However,
as

∑∞
h=1 h(6/7)

h = O(1), Theorem 3 implies that the amortized rebalancing
work is still O(k) per update.

So, we must be able to traverse only the black nodes on the left- and rightmost
paths mentioned above. For every black node, we keep all its immediate red
descendants (those forming a single node in a formulation with multi-way nodes
instead of red/black colors) in a doubly linked list. The list is ordered (the list
may be seen as adding in-order links to all red connected components of the tree),
and the front and rear of the list is pointed to from the black node rooting the red
connected component. Using these front and rear pointers, it is now possible to
jump from black to black level during a traversal of right- and leftmost paths, as
assumed above. Furthermore, it can be verified that these list can be maintained
during update and rebalancing operations, including slides.

Finally, locating problems in the tree is complicated by the main feature of
relaxed balance, namely that the rebalancing is uncoupled from the updating.
Hence, an update operation simply ignores any problem which arises as a con-
sequence of the update. To be able to return to these problems later, a problem

queue can be maintained. For problems discovered during an update, a pointer
is stored in the queue. One pointer per group suffices. Since update and rebal-
ancing operations may remove other problems, it is convenient to be able to
remove problems from the queue. Thus, each group must have a back-pointer
into the problem queue. Rebalancing operations start by dequeuing a pointer,
which is then followed, and the appropriate rebalancing operation is performed.
Rebalancing operations should also insert new pointers when they move prob-
lems upwards in the tree, unless the receiving group is already in the queue.
Note that when a problem is added to the tree, it can be verified in O(k) time
whether the affected group has a problem already.

Acknowledgment

The first and third author were partially supported by the IST Programme of
the EU under contract number IST-1999-14186 (Alcom-FT). The third author
was partially supported by the Danish Natural Science Research Council (SNF).

References

1. G. M. Adel’son-Vel’skĭı and E. M. Landis. An Algorithm for the Organisation of
Information. Doklady Akadamii Nauk SSSR, 146:263–266, 1962. In Russian. English
translation in Soviet Math. Doklady, 3:1259-1263, 1962.

2. Joan Boyar, Rolf Fagerberg, and Kim S. Larsen. Amortization Results for Chromatic
Search Trees, with an Application to Priority Queues. Journal of Computer and

System Sciences, 55(3):504–521, 1997.
3. Joan F. Boyar and Kim S. Larsen. Efficient Rebalancing of Chromatic Search Trees.

Journal of Computer and System Sciences, 49(3):667–682, 1994.
4. Leo J. Guibas and Robert Sedgewick. A Dichromatic Framework for Balanced

Trees. In Proceedings of the 19th Annual IEEE Symposium on the Foundations of

Computer Science, pages 8–21, 1978.
5. Kim S. Larsen. Amortized Constant Relaxed Rebalancing using Standard Rotations.

Acta Informatica, 35(10):859–874, 1998.
6. Kim S. Larsen. AVL Trees with Relaxed Balance. Journal of Computer and System

Sciences, 61(3):508–522, 2000.
7. H. A. Maurer, Th. Ottmann, and H.-W. Six. Implementing Dictionaries using

Binary Trees of Very Small Height. Information Processing Letters, 5(1):11–14,
1976.

8. Otto Nurmi and Eljas Soisalon-Soininen. Uncoupling Updating and Rebalancing
in Chromatic Binary Search Trees. In Proceedings of the Tenth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, pages 192–198,
1991.

9. Otto Nurmi and Eljas Soisalon-Soininen. Chromatic Binary Search Trees—A Struc-
ture for Concurrent Rebalancing. Acta Informatica, 33(6):547–557, 1996.

10. Otto Nurmi, Eljas Soisalon-Soininen, and Derick Wood. Relaxed AVL Trees, Main-
Memory Databases and Concurrency. International Journal of Computer Mathe-

matics, 62:23–44, 1996.
11. Neil Sarnak and Robert E. Tarjan. Planar Point Location Using Persistent Search

Trees. Communications of the ACM, 29:669–679, 1986.

