
Natural Computing manuscript No.
(will be inserted by the editor)

DNA-Templated Synthesis Optimization

Bjarke N. Hansen · Kim S. Larsen · Daniel Merkle · Alexei Mihalchuk

Received: date / Accepted: date

Abstract In chemistry, synthesis is the process in which a
target compound is produced in a step-wise manner from
given base compounds. A recent, promising approach for
carrying out these reactions is DNA-templated synthesis,
since, as opposed to more traditional methods, this approach
leads to a much higher effective molarity and makes much
desired (sequential) one-pot synthesis possible. With this
method, compounds are tagged with DNA sequences and
reactions can be controlled by bringing two compounds to-
gether via their tags. This leads to new cost optimization
problems of minimizing the number of different tags or strands
to be used under various conditions. We identify relevant op-

A conference version of this paper was presented at DNA23 [10]. This
paper differs substantially from the conference version: We provide
proof of all theorems and have added a section on brute-force com-
putation using integer linear programming. Furthermore, we present
an empirical evaluation for the inference of DNA-templated programs
with respect to different optimization criteria and we employ a large
set of synthesis plans in order to analyze the solution space of the un-
derlying optimization question. The second and third authors were sup-
ported in part by the Danish Council for Independent Research, Natural
Sciences, grants DFF-1323-00247 and DFF-7014-00041.

B. N. Hansen
Department of Mathematics and Computer Science, University of
Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

K. S. Larsen
Department of Mathematics and Computer Science, University of
Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
E-mail: kslarsen@imada.sdu.dk
ORCID: 0000-0003-0560-3794

D. Merkle
Department of Mathematics and Computer Science, University of
Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
Tel.: +45 6550 2322
E-mail: daniel@imada.sdu.dk

A. Mihalchuk
Department of Mathematics and Computer Science, University of
Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

timization criteria, provide the first computational approach
to automatically inferring DNA-templated programs, and ob-
tain efficient optimal and near-optimal results, and also pro-
vide a brute-force integer linear programming approach for
complete solutions to smaller instances.

Keywords DNA-Templated Synthesis · Optimization ·
Trees · Graphs · Cheminformatics

Mathematics Subject Classification (2000) 68 · 92 ·
68W40 · 92E10

1 Introduction

The first time DNA was used to execute an algorithm in
order to solve a combinatorial optimization problem dates
back to 1994. In [1], Adleman demonstrated how a small
instance of the Hamiltonian Path Problem could be solved
using DNA sequences. Since then, DNA nanotechnology
has been used as a powerful tool for a wide variety of re-
search and engineering questions. Examples include poly-
hedral mesh rendering, where DNA sequences are designed
such that they fold into predefined complex 3-dimensional
structures [3], and design of DNA-based molecular motors
that can be used to transport cargo molecules [20].

Appealing features of DNA-based designs is their pro-
grammability, the inherent concurrency, the predictability,
and the fact that DNA sequences are relatively cheap and
easy to synthesize. The number of new approaches utilizing
DNA-based chemistry as a source for the discovery and the
design of novel drug-like molecules has increased rapidly
in recent years [8]. Most major pharmaceutical companies
have already started utilizing this technology.

DNA-based chemistry approaches include a method re-
ferred to as DNA-templated organic synthesis [14], where
the goal is to synthesize an organic compound in a step-wise

2 Bjarke N. Hansen, Kim S. Larsen, Daniel Merkle, Alexei Mihalchuk

manner. In an individual step of a synthesis plan [13], either
two compounds are combined (affixation reaction) or a sin-
gle compound is modified (cyclization reaction). This infor-
mation can be captured in a rooted unary-binary tree, though
often cyclization reactions can be ignored from a combina-
torial point of view, making the tree binary. Chemists are
aiming at efficient synthesis (the yield of all reactions and
therefore the yield of the overall process should be high) and
(sequential) one-pot synthesis (for instance, avoiding com-
plicated separation and purification processes based on con-
taminating compounds that require subsequent extraction of
a specific product from a mixture of compounds).

In DNA-templated synthesis, the base compounds are
“tagged” with DNA sequences. These tags are used to bring
the compounds in close vicinity (and thereby react). This is
done by adding a complementary DNA strand, called an in-
struction strand, which is a concatenation of the complemen-
tary strands of the two tags that are attached to the base com-
pounds. In contrast to classical synthesis approaches, DNA-
templated synthesis allows for much lower concentrations of
reactants due to the tagging, which leads to a dramatically
increased effective molarity. We refer to [14] and [9] for in-
depth reviews and specifically [15] and [12] for examples of
successful, non-trivial, multi-step DNA-templated molecule
syntheses.

The synthesis tree together with a specification of how to
tag the base compounds and according to which topological
ordering of the tree the reactions should be carried out de-
fines a so-called DNA-templated program. While high-level
formalisms for DNA computational structures have been in-
vestigated before [17,4], there are no prior attempts to au-
tomatically inferring DNA-templated programs based on a
given synthesis tree.

In [2], graph rewriting techniques have been used for
verifying correctness of given DNA-templated programs, but
programs neither were automatically inferred nor optimiza-
tion questions answered. With careful choice of tagging and
topological ordering, it is possible to use the same tags and
strands repeatedly, which leads to the optimization prob-
lems we consider. To avoid unintended interference, tags and
strands that should be different must be some minimum edit
distance away from each other. If one uses too many differ-
ent tags or strands, these must be made longer in order to
obtain this, leading to higher production costs.

Another cost stems from the tagging of chemical com-
pounds, which is a somewhat sophisticated chemical proce-
dure. Designing specific DNA sequence strands for tags re-
quires solving optimization problems which consider ther-
modynamic and kinetic features. Any additional potential
tag interaction increases the complexity. While it is inter-
esting to minimize the use of different tags and strands in
general, it is also interesting just to minimize the number of
different tags used on the base compounds. Specifically in

situations where a wet-lab design fails, it is favorable to be
able to limit the specific failure reason. This error-finding
could be easier in cases where only a few different tags are
used.

We present i) optimal or near-optimal methods for mini-
mizing the number of strands, ii) a somewhat more involved
method for minimizing the number of strands and subsidiar-
ily the number of tags, iii) a method for minimizing the num-
ber of strands when only two different tags are allowed on
base compounds, but longer programs using blocking are
allowed, iv) a generic ILP formulation of the optimization
problems, and, finally, v) an empirical evaluation.

The techniques considered before the ILP formulation
are specialized, targeted at particular optimization criteria,
and they are very efficient in terms of runtime complexity
(close to linear time), enabling us to solve the problems be-
ing addressed for any size problem which could meaning-
fully be considered in practice.

In contrast, the ILP formulation is much more flexible
and one can in principle make variations, optimizing for a
(weighted) combination of different goals, etc. On the neg-
ative side, ILP is an NP-hard problem, so the runtime com-
plexity of whichever ILP solver is used is exponential time
on worst case instances for ILP. Our instances may not be
the hardest, but in general, it is not easy to determine the
runtime complexity of concrete ILP instances. Since flexi-
bility is sometimes desirable, we include an example of how
this method can be employed, such that this is an option for
problems small enough that the execution time is not pro-
hibitive.

2 Modeling DNA-Templated Synthesis

The goal of this section is to present a model for DNA-
templated synthesis such that we can work with these is-
sues in a combinatorial manner. We identify some basic op-
erations and restrictions on how these can be applied, with
the goals in mind. We would like to emphasize that we do
not make any simplifying assumptions, preventing our solu-
tions from leading to programs that can be realized chem-
ically. However, there could be other choices of computa-
tional units and goals, and our focus is on presenting an ini-
tial model that is as simple as possible while still capturing
the fundamental chemical intricacies. Our description will
lead to a definition of the input, available operations, con-
straints, and a number of optimization objectives.

From a chemist, we get a synthesis tree, which we as-
sume is binary, where the leaves represent compounds. We
refer to these as the base compounds. The tree can be inter-
preted as a recipe in the following manner. Each leaf of the
tree represents an existing base compound. Now, we bring
compounds to react in an order respecting the tree structure.

DNA-Templated Synthesis Optimization 3

Thus, first the compounds corresponding to two leaves are
made to react, resulting in a new compound, which we refer
to as an intermediate compound, and we represent it by the
parent node of the two interacting compounds represented
by its children. We keep going until we reach the root, and
have at that point produced our final target compound. The
order of combining the compounds should simply be a topo-
logical ordering of the tree. We draw the trees with the root
at the bottom, as it is usually done for synthesis trees.

We detail the operations below. Our textual description
is complete and self-contained, but it might be helpful to
refer to the appendix for an example program, and the op-
erations are summarized in Table 1. In order for two com-
pounds to react, they must be in close proximity, and two
compounds do not react if they are distant enough. To obtain
proximity, the compounds are equipped (tagged) with DNA
sequences, and the compound is at one of the two ends of
the sequence, i.e., either at the 5’-end or the 3’-end of the
sequence. We refer to such a DNA sequence on a compound
as a tag and choose an orientation so that we can refer to the
left and right ends of a tag. In our illustrations, tagged com-
pounds will always be depicted such that the 5’-end corre-
sponds to the right end of a tagged sequence, and the 3’-end
corresponds to the left end of a tagged sequence. Assume x
and y are the tags of compounds X and Y , respectively, and
X is at the right end of x and Y at the left end of y. If we add
the complementary strand of the concatenation of x and y,
denoted xy, x and y will attach to the x-part and y-part of xy,
respectively, bringing X and Y close together and the reac-
tion of X and Y takes place. We refer to such a strand as an
instruction strand and the process as a react operation. In-
struction strands are always depicted such that the 5’-end of
the strand corresponds to the left end of a sequence, and the
3’-end corresponds to the right end of a sequence. Consis-
tent with the common arrow notation for DNA, the 3’-end
of tags and strands will be depicted with an half-arrow in
all figures. In the above, and in the rest of the paper, when
we refer to a strand, it can always be thought of as the con-
catenation of two tags. The intermediate compound result-
ing from a react operation will be tagged with either x or y
in a deterministic fashion decided by the compounds, i.e.,
along with the synthesis tree, a chemist will tell us, for ev-
ery internal node, which of the two tags from the child nodes
will be the tag of the produced intermediate compound. We
say that the node inherits the tag from the child in question
and we may use a bold edge to indicate this. This annotated
tree forms our input from the chemist. Note that the com-
pounds and what they become when they react is not im-
portant to us; only the tags (and how they are attached) and
strands are relevant to our computation.

Concatenated DNA strands are denoted as the sequence
of the corresponding strand variables, where the string rep-
resentation of the concatenation of variables is always given

from left to right (which is not necessarily from the 5’-end
to the 3’-end), i.e., xy denotes the complementary strand for
the strand xy.

After a reaction has been carried out using the xy instruc-
tion strand, a complementary release strand, xy, is added to
release the compound, and, thus, prepare for further reac-
tions.

We disallow simultaneous releases, since they lead to a
low overall yield as we explain now. Releasing two com-
pounds using xy implies that one released compound must
be tagged with an x and the other with a y. Otherwise (that
is, if both compounds have the same tag), we cannot con-
trol subsequent operations. But this implies the presence of
free-flowing y strands and x strands from the first and sec-
ond reactions, respectively. These may attach to any later xy
strand, resulting in a reduced overall yield.

A final chemical possibility we shall use as an opera-
tion in one section is the ability to temporarily block a com-
pound. A compound tagged with a strand x can be blocked
by adding a strand xy or yx, and can be released again in the
same manner as described above.

We use blocking in Section 3, but otherwise simply de-
lay the release of compounds while working on others, with
the aim of producing a program for sequential one-pot syn-
thesis. Compounds, corresponding to the leaves of our input
tree, may be added gradually, but we do not allow ourselves
to produce compounds corresponding to subtrees separately
and add them later.

From a practical perspective it should be mentioned that
a blocking operation requires additional blocking strands to
be added during the one-pot synthesis. In a real-world set-
ting, the correct molarity of strands to be added needs to
be chosen such that the amount of added blocking strands
of a certain type will indeed block all tagged compounds
that should be blocked, but also such that no blocking strand
is unused, as this might lead to subsequent unwanted in-
ferences. In order to circumvent this precision requirement,
it might be desirable to completely avoid the use of block-
ing. Furthermore, even though blocking theoretically leads
to inert waste, it might be favorable to reduce the amount of
waste created by blocking, as it might interfere in an unex-
pected manner in a practical setting.

Our computational choices are the following. Given the
annotated synthesis tree, we must decide on tags for the
leaves and a topological ordering, including when to add,
when to release, and in one algorithm also when to block
and which strand to block with. Recall that given tags on
the leaves, the annotation determines the tags on internal
nodes. Since we most often use delayed release to avoid in-
terference, we will frequently label internal nodes with the
instruction strand, i.e., the sequence of two tags. The tag at-
tached to the intermediate compound produced at that node
is always one of the tags the strand consists of, and which

4 Bjarke N. Hansen, Kim S. Larsen, Daniel Merkle, Alexei Mihalchuk

one it is, is determined by the inheritance information pro-
vided by the chemist.

In summary, a program is a sequence of operations (tag,
react, release, block), where the operation tag attaches a
specified tag to a base compound, react combines two inter-
mediate compounds, release releases the resulting interme-
diate compound, and block blocks a compound. To be chem-
ically feasible, left and right input compounds to any react
operation must have the compound placed to the right and
left, respectively, the react operations must form a topolog-
ical ordering of the tree, compounds (unreleased as well as
possibly blocked) must be released (unblocked) before they
are used again, any block operation must use a strand match-
ing the compound tag to the left or right, all unreleased (and
blocked) compounds in the pot at any given time must be
unreleased (and blocked) with unique (at the time) strands,
and if there are compounds in the pot with the same tag, all
but one must be unreleased or blocked.

This is implied by the above, but just for emphasis, we
cannot use strands of the form xx in a controlled process, so
if we use τ different tags, we have at most τ(τ−1) different
strands at our disposal.

We illustrate some of these restrictions now, using the
smallest possible interesting synthesis trees. First note that
because compounds are at one end of a tag, we cannot have
an unreleased compound with an ab strand while using ba
at the root of the other subtree. This is because when we re-
lease using ab, then (without loss of generality) the released
compound is tagged with a and the compound is at the right
end. Thus, later, it must react with a compound tagged with
a b where the compound is at the left end. Thus, the strand
from that subtree would have to have the form xb for some
x; see Fig. 1.

aa or bb �

baab

�

abab

Fig. 1 Illustration of disallowed strand assignments. Left: Using
strands ab and ba for two children requires the parent to be assigned
either the strands aa or bb, which will result in a reduced overall yield,
as with a probability of 50%, the corresponding compounds do not
get in close proximity and therefore will not react. Right: Assume one
subtree is already computed and the compound has to be unreleased
with the complementary strand ab. The corresponding unrelease needs
to make the waste inert with a or b, depending on which tag is now
flowing freely in the pot. However, due to the disallowed simultaneous
release of the other subtree, the release operation of the last of the two
subtrees would accidentally make tagged compounds inert.

The reader may have wondered if the reverse sequence
of x is any different from x in a pot, or if xy could interfere
with yx. Starting with the latter, breaking the sequences into

their nucleotides, α1α2 · · ·αnα
β1β2 · · ·βnβ

is different from
β1β2 · · ·βnβ

α1α2 · · ·αnα
, and they are not the reverse of each

other. Obviously, x cannot be distinguished from its reverse
sequence in a pot. However, compounds are attached to one
of the ends, so everything has an orientation.

Finally, to give a clean initial presentation, we do not
consider the option of adding multiple strands simultane-
ously. Allowing this would not add expressive power and
for most problems where the objective is to use for smallest
number of different strands, it is counter-productive. How-
ever, in a lab, it could be desirable to know when this is an
option, since this could speed up the process. One could also
lift the restriction of sequential one-pot synthesis. However,
since this would lead to a multi-criteria problem, we prefer
to focus on the cleaner sequential one-pot problem.

Some of the algorithms in this paper and graphical il-
lustrations of the chemical processes can be inspected via a
prototype implementation [11].

3 Minimizing the Number of Tags

In this section, our objective is to minimize the number of
tags used on base compounds (the leaves), and as our second
priority, we want to minimize the total number of tags used.

It turns out that, with appropriate blocking, it is always
possible to arrive at a program using only two tags on base
compounds, and clearly, for any two sibling leaves with the
same parent, the tags must be different. We refer to the two
tags as a and b. Using the following recursively defined
function,

⌈
MNT(ROOT,0,0)

2

⌉
will compute the minimum num-

ber of additional tags needed to block intermediate com-
pounds when the basic compounds are tagged using only
a and b.

In the formula below, computing the number of addi-
tional tags for a tree t, we let ta and tb denote the subtrees of
t, where ta, respectively tb, denotes the subtree representing
the compound tagged with an a, respectively b.

We keep track of tags used in strands together with a
and with b separately, using ca and cb as counters. Now, we
define MNT(t,ca,cb) to be

max(ca,cb) if t is a leaf

min

max

(
MNT(ta,ca,cb),

MNT(tb,ca +1,cb)

)
,

max
(

MNT(ta,ca,cb +1),
MNT(tb,ca,cb)

)
 otherwise

We discuss correctness and the derived program in the
following. The DNA program example in Appendix B is de-
signed to demonstrate many features at once, and also shows
how blocking can be employed. First, we decide arbitrarily

DNA-Templated Synthesis Optimization 5

tag y a
A

react b
B

+ a
A

+
b a

y
b a

b
C

a

release
b a

b
A

a
+

ab
+ y b

A

+
b a

ab +

block b
A

+
b c

y
b c

b
A

Table 1 Operations of a DNA-templated program: note, that i) the tag operation allows for attaching the compound to the left or right end of the
tag, ii) the inheritance for the react operation is given as input from the chemist, iii) the release operation assumes an addition of complementary
tags in order to handle waste, iv) the blocking operation can bind the tagged compound to the left or right part of the added strand.

between a and b for the final tag on the target compound
that the root represents. If we use only the two tags a and b
on base compounds, then we can determine all tagging re-
cursively, since the chemist has informed us, for each node
in the subtree, from which child we inherit the tag, i.e., if a
node has a given tag, then a specific child of that node must
have the same tag, and then the other child must be given the
other tag (of the two tags a and b).

Since compounds have one of only two tags, any reac-
tion involves both tags, so anything else in the pot must be
blocked. In algorithms to be presented later, leaving them
unreleased can also be an option, but in this particular case
with only two tags on compounds, this would lead to the
disallowed simultaneous release; see the earlier Fig. 1.

As a consequence, for any node with two non-leaf sub-
trees, we must decide which subtree to synthesize first, and
then block while we work on the other subtree. In the subtree
we synthesize first, we must block other compounds (corre-
sponding to subtrees) recursively. We find the best subtree to
block using the minimization in the formula above. The first
entry in the minimization corresponds to first synthesizing
and then blocking the subtree ta. This requires no further re-
sources while synthesizing that subtree, but while later syn-
thesizing tb, the compound from ta must be blocked using a
tag that has not been used for blocking subtrees on the way
from the root to this node. Actually, when using some tag x
to block a, for instance, this can be done (unconstrained) as
ax or xa. Thus, each such tag x can be used twice, which ac-
counts for the fraction 1

2 in the final result,
⌈

MNT(ROOT,0,0)
2

⌉
.

The best values can be computed using dynamic pro-
gramming. If the tree is of height h, then each of the vari-
ables a and b in the expression can take on at most h dif-
ferent values, so if the tree has size n, then O(nh2) is an
upper bound on the number of values to be computed and
each value in a given node can be computed in constant time
from values in the node’s subtrees, so O(nh2) is also an up-
per bound on the computation time. A program can easily
be extracted from the computed values by simply checking

if the various minima are obtained from the left or right. An
example program is shown in the appendix.

4 Minimizing the Number of Strands

In this section, we consider the problem when it is undesir-
able to use blocking, so that is disallowed, and our objec-
tive is to minimize the number of strands used. We allow
for an arbitrary number of tags. As any instruction strand
requires a unique complementary release strand, they will
not be counted separately. It turns out that it is necessary
and sufficient to use S (t)−1 different strands, where S (t)
is the (Horton-)Strahler number [19] of the synthesis tree t.
Referring to the previous section, where we restricted our-
selves to only using two different tags on base compounds,
the Strahler number many strands would not in general be
sufficient. The result in this section is accomplished without
using blocking.

Definition 1 The Strahler number S (t) of a binary tree t is
defined as follows: If t is a leaf, then S (t) = 1, and if t has
two subtrees tl and tr, then

S (t) = max(min(S (tl),S (tr))+1,max(S (tl),S (tr)))

S (t) is also referred to as the register number, i.e., the min-
imum number of registers required for evaluating a given
arithmetic expression. The first algorithmic approach to this
seems to be from [6], with extensions and variations contin-
uing in many different directions, inspired by compiler op-
timization problems, considered in [16,18,7], among other
texts.

Proposition 1 The number of different strands needed to
treat a binary synthesis tree t, in the worst case, to facil-
itate a sequential one-pot synthesis equals the number of
registers needed to evaluate an arithmetic expression with
black-box operators.

Proof At all times, in the worst case, all compounds in the
pot other than the interacting pair must be blocked in order
to prevent unwanted reactions.

6 Bjarke N. Hansen, Kim S. Larsen, Daniel Merkle, Alexei Mihalchuk

a2b (4)

a1b (3)

a3b (2)

a3b (2)

a1b (3)

a3b (2)

a3b (2)

a1b (2)

a1b (2)

a2b (3)

a1b (3)

a2b (2)a1b (2)

a2b (2)

a2b (2)

s1

s2

s2

s2s3

s3

s4s3

s1

s2

s2s3

s1

s2s1

Fig. 2 Top: Illustration of the labeling algorithm that uses S (t)− 1
many strands a1b,a2b, Note that this is only one of the possible la-
belings, since strands are simply chosen from an available set, though
we have consistently chosen the smallest indexed ai available. The
Strahler number is given in parenthesis. Bottom: Illustration of the la-
beling algorithm for complete binary trees: s1,s2, . . . is an antipath of
strands, inheritance of tags is illustrated by bold lines.

Each blocked compound needs a different strand. When
the compound is unblocked, that strand can be reused.

For arithmetic expressions, we use the term black-box
operators to indicate that no algebraic properties can be uti-
lized, such as associativity or other properties which might
enable one to rewrite the arithmetic expression to one with
a different parser tree than the original.

Thus, the situation is symmetric. Each temporary value
that has been computed must be stored in a register. When
the value is used as an argument to the parent operation, the
register can be reused. ut

We are given a synthesis tree and information regarding
from which child a node inherits its tag. To explain the tag-
ging, it is easiest for us first to reorder the subtrees so that
tags are inherited from subtrees according to a specific pat-
tern. By a layer in a tree, we denote all the nodes of the same
distance from the root. Given the synthesis tree, we order the
subtrees such that when considering any layers from the left
to the right, the tag is inherited alternately either from the
left or from the right child, and we start by inheriting from
the left; see bold edges in Fig. 2.

Now, we explain how we label each node in our syn-
thesis tree, excluding the leaves that contain the base com-
pounds. For the labeling, we use the set

I = {a1b,a2b,a3b, . . .} .

This set contains strands that have pairwise different tags
as their first parts (ai) and identical tags as their second
parts (b).

Recursively for a subtree t of the synthesis tree with
ordered children as described above, we first compute the

subtree with the larger Strahler number. In case of identi-
cal Strahler numbers, we choose the left subtree first. The
strand assignment is done as follows: In case the subtrees
have identical Strahler numbers, the subtree computed first
will require a strand for the release operation. This strand
cannot be used for any operation in the other subtree. If the
Strahler numbers are different, this constraint will not apply.
However, in all cases, neighboring operations need to use
different strands. During the recursion, we keep track of the
set of forbidden strands (this set grows by one element for
the right subtree in the case of identical Strahler numbers)
and the sibling reaction strand. Note that the constraint for
the sibling reaction only applies to the sibling reaction. The
pseudo-code is given in Alg. 1 and an illustration with an
example of the labeling for a tree with Strahler number 4 is
given in Fig. 2 (Top). With regards to the number of strands,

Algorithm 1 Strahler Number Strands
Given: Synthesis tree t . ordered children according to text
description

Set A = {a1b,a2b, . . . ,aS (t)−1b} . A: set of strands with
|A|= S (t)−1
1: function ASSIGNSTRAND(Tree t, Set F, Strand sibling) . F :

forbidden strands
2: tl , tr ← LeftSubtree(t),RightSubtree(t)
3: if both tl and tr are base compounds (leaves) then
4: choose strand s from A \ (F ∪{sibling})
5: else if one of tl and tr is a base compound (a leaf) then
6: tx← argmaxti∈{tl ,tr}S (ti) . tx is the non-leaf tree
7: s← ASSIGNSTRAND(tx, F,)
8: else
9: if S (tl)> S (tr) then

10: s← ASSIGNSTRAND(tl , F,)
11: ASSIGNSTRAND(tr , F, s)
12: else if S (tl)< S (tr) then
13: sr ← ASSIGNSTRAND(tr , F,)
14: s← ASSIGNSTRAND(tl , F, sr)
15: else . S (tl) = S (tr)
16: s← ASSIGNSTRAND(tl , F,)
17: ASSIGNSTRAND(tr , F ∪{s}, s)
18: assign s to t
19: return s
20: ASSIGNSTRAND(t, ∅,)

it is clear that the forbidden set F grows with the Strahler
number, so if it was not for the temporary restriction given
by the sibling, we use S (t)− 1 strands. Recall that a leaf
(with a compound) has Strahler number one, so the small-
est subtree we assign a strand to has Strahler number two.
With regards to the restriction, when the number of avail-
able strands is at least two, the temporary restriction does
not matter, since we still have a strand we can choose. Thus,
the only possible problem is when we recur from a tree with
Strahler number three to smaller subtrees. If the subtrees
have different Strahler numbers, there is no problem, since
the restriction is imposed on the smaller one. If they have

DNA-Templated Synthesis Optimization 7

the same Strahler number, the sibling restriction coincides
with the growing forbidden set, so only one strand option
disappears, and the one required strand can be found.

With regards to efficiency, we assume the Strahler num-
bers are computed first and stored in the nodes. In other
words, we are not thinking of S (t) as a recursive func-
tion, which would lead to repeated recomputation of Strahler
numbers for subtrees.

With regards to chemical feasibility, siblings have differ-
ent strands by construction, and b has its compound at the
left and the compound coming from the right subtree will
always be tagged with b. The opposite holds for the ais, so
the strands listed in the internal nodes indicate instruction
strands fulfilling all requirements.

The upper bound just given is the interesting one. The
lower bound that S (t)− 1 different strands are necessary
follows directly from the equivalent result for arithmetic ex-
pressions [7]; it is simply a matter of having to store at least
that many intermediate results.

Strahler examples, as the ones produced in this section,
can be found in [11].

5 Complete Binary Trees

The two problems of minimizing the number of strands used
(Section 4) and minimizing the number of tags used under
the constraint that all base compounds are tagged by one out
of two tags (Section 3) can both be solved optimally in an
efficient manner. In this section, we restrict the topology of
the synthesis plan to complete binary trees and present an
approach that minimizes the overall number of strands as
well as bounds the overall number of tags to the optimal,
possibly plus one. We accomplish this without using block-
ing.

The approach will employ so-called antipaths [5], which
is a sequence of adjacent edges in a digraph, where every
visited edge has opposite direction of the previously visited
edge; and we will need some further restrictions defined be-
low.

Definition 2 Given a digraph, let u1,u2,u3, . . . be vertices
representing a path in the equivalent undirected graph (ig-
noring orientation of edges). The vertices are not necessarily
distinct, but for any i, ui 6= ui+1. An antipath in a digraph is
a finite sequence of directed edges (ui,u j) having one of the
following forms:

(u1,u2),(u3,u2),(u3,u4), . . . or (u2,u1),(u2,u3),(u4,u3), . . .

That is, every second time repeating the origin of the edge
and every second time the destination of the edge.

An antipath is called return-free if for any two succes-
sive edges (u,v) and (u′,v′), {u,v} 6= {u′,v′} and non-overlap-
ping if no edge is used twice.

One can view the above as the well-known concept of
Eulerian paths in undirected graphs, generalized to antipaths
in a directed setting.

In our construction, we need return-free, non-overlap-
ping antipaths as long as possible (each edge will correspond
to a strand) from digraphs with as few vertices as possible
(each vertex will correspond to a tag).

Theorem 1 In a complete digraph Gn = (V,E) over n ≥ 2
vertices, the length of a longest return-free, non-overlapping
antipath is n(n−1) if n is odd and n(n−2)+1 if n is even.

Proof Since n(n− 1) is the number of edges in a complete
digraph, no non-overlapping antipath can be longer. For the
even case, we can show a smaller upper bound: An antipath
may have a start and an end vertex, but, due to the definition
of an antipath, every vertex internal to the path (that is, not
the start or end vertex) must appear as the origin vertex an
even number of times and as the destination vertex an even
number of times. Since, for n even, a vertex has an odd num-
ber n− 1 of neighbors, each internal vertex can appear as
the origin at most n−2 times and as the destination at most
n−2 times. Thus, the total number of times vertices appear
as origin or destination is at most n ·2(n−2)+2, where the
additive term of two accounts for the fact that if the start and
end vertex of the antipath are different, then each of them
can appear one time extra as origin or destination, respec-
tively. Since an edge consists of two vertices, the number of
edges is at most half of the number above, i.e., n(n−2)+1.

Having established the upper bounds, we show that it is
indeed possible to construct antipaths of those lengths.

The proofs are by induction in n and we start with odd
n. For n = 3,

V = {u,v,w}, (u,v),(w,v),(w,u),(v,u),(v,w),(u,w)

is a return-free, non-overlapping antipath of length six. This
matches the upper bound.

For the induction step, assume the result holds up to
some n, and assume we add the vertices u′ and v′ to Gn to ob-
tain Gn+2. Choose a maximum cardinality matching in Gn.
It will contain n− 1 vertices, that is (n− 1)/2 pairs, since
the graph is complete. Since n is odd, exactly one vertex,
x, is not part of the matching. For each pair, (u,v), in the
matching, we replace the edge (u,v) in the antipath by the
following:

(u,u′),(v,u′),(v,v′),(u,v′),(u,v),(u′,v),(u′,u),(v′,u),(v′,v)

This adds eight edges per pair, or four edges per ver-
tex. This results in a return-free, non-overlapping antipath
in Gn+2. Since, by induction, all edges are included in the
antipath for Gn, by these transformations, all new edges, ex-
cept edges between the two new vertices u′ and v′, are added
to the antipath. To include also the two new edges, we take

8 Bjarke N. Hansen, Kim S. Larsen, Daniel Merkle, Alexei Mihalchuk

the unique vertex x not included in the matching and con-
nect x, u′, and v′ as in the base case, adding 6 = 4+2 edges,
which can be inserted anywhere in the antipath where x is
visited (choosing the right orientation). By this construction
and the induction hypothesis, the constructed path has length
n(n−1)+4n+2 = (n+2)(n+1).

For the case of n even, assume first that n = 2 and V =
{u,v}. Then (u,v) is a return-free, non-overlapping antipath
of length one. For the induction step, assume the result holds
up to some n. Again, we choose a maximal matching of n/2
pairs of vertices, but now in such a way that all pairs be-
longing to the matching are connected by an edge which is
included in the antipath. We extend the induction hypothesis
to show that such a matching exists (this is no longer trivial,
since not all edges are present in the antipath as it was the
case for the odd case). For each pair, (u,v), in the matching,
we perform the same transformation as above. For the new
complete matching, we choose one pair (u,v) in the match-
ing for Gn, and define the matching for Gn+2 to be the same,
except that (u,v) is removed and (u,u′) and (v,v′) are added.
By this construction and the induction hypothesis, the con-
structed path has length n(n− 2)+ 1+ 4n = (n+ 2)n+ 1.

ut

As in all the other sections, we are given a synthesis tree
and information regarding from which child a node inherits
its tag. We reorder subtrees with regards to inheritance as in
the previous section.

Separate from the tree structure, assume that we let each
tag that we use represent a vertex in a digraph. Thus, a di-
rected edge in the digraph is an ordered pair of tags, which
we can interpret as a strand. We choose a longest antipath
s1,s2,s3, . . . in such a digraph, writing them as si for the ith
strand. The number of tags (equal to the number of vertices
in the digraph) we use depends on how long an antipath we
need for the construction below. We emphasize that the pur-
pose of the antipath from digraph is only to generate strands
for the synthesis tree such that the tags used in the strands
have certain properties. Thus, the antipath in the digraph
is just strand production machinery for the synthesis tree,
which has otherwise no relation to the digraph and antipath.

First, we explain how we label each node in our syn-
thesis tree, excluding the leaves that contain the base com-
pounds. The root is labeled s1 and, for ease of the definition
below, artificially assume that the root has a parent, and that
we moved left to get to the root. Moving from the root to-
wards a leaf, we label each node with the same label as its
parent (below it in our illustrations) if we move in the same
direction as from the grandparent to our parent, and we label
it with the next label (index one larger) if we change direc-
tion; see Fig. 2 (Bottom). Afterwards, the base compounds
in the leaves can be tagged in the obvious manner, tagging
the left (right) leaf with the left (right) part of its parent’s
strand.

From the labeled synthesis tree, we can define the pro-
gram recursively. For a given node, we first compute the sub-
tree, the root of which has the strand with the smallest index,
leaving it unreleased while the other subtree is computed, af-
ter which the first subtree is released and the instruction of
the node is carried out.

We now argue that the labeling algorithm produces a
chemically feasible program. With regards to the reactions,
due to the definition of the inheritance, a simple inductive
argument establishes that at any node, the two input com-
pounds stem from the left-most and right-most leaves of the
subtree of which the node is the root. Thus, the compounds
are tagged with the correct orientation for a reaction. With
regards to the interference, the definition of the program ex-
plicitly states that the subtree, the root of which is labeled
with the smallest indexed strand is computed first, and by
the labeling algorithm, that strand is not used in the other
subtree. Thus, no release operation can unintendedly release
more than one compound.

Properties of the labeling of the complete binary tree de-
pend on the properties of the strands, which in turn are pro-
duced via antipaths in a complete directed graph. We em-
phasize that the tree and the complete digraph are separate
entities, and when we talk about antipaths, this is only with
respect to the digraph used for the strand construction.

Theorem 2 The labeling algorithm uses the minimal num-
ber of strands and at most one more than the minimal num-
ber of tags.

Proof A complete binary tree of height h has Strahler num-
ber h+1, so we know from Proposition 1 and the discussed
results on arithmetic expression evaluation that h is the op-
timal number of strands. The maximal number of direction
changes from the root to the level next to the leaves is h−1,
so, since the root is labeled s1, the maximal label index is
1+(h−1) = h.

Assume that it is somehow possible to make a program
using the optimal number of tags τ . Observe that we can
make at most τ(τ−1) different strands from τ tags, so if τ

is the optimal number tags, this must mean that this hypo-
thetical program uses at most τ(τ−1) strands.

If we allow for τ +1 tags in our program, we know from
Theorem 1 that an antipath of length at least (τ+1)(τ−1)+
1 exists in the complete digraph used for the construction
of strands. Since we use the optimal number of strands and
(τ +1)(τ−1)+1≥ τ(τ−1) for any positive integer τ , the
theorem follows. ut

We remark that the construction is actually optimal also with
regards to the number of tags in many cases. In fact, for all
heights up to 25, we know that we are optimal, except for
the heights 10–12. An example argument that the method is
optimal for height 13 (in fact, the same argument works up

DNA-Templated Synthesis Optimization 9

to height 20) goes as follows. We know we need 13 different
strands. With 4 tags, we can make only 4 · 3 = 12 different
strands, so 5 tags are necessary for any program, and with 5
tags we can find antipaths of lengths up to 5 ·4 = 20. Simi-
larly, for height 9 (in fact, down to height 7), we need 4 tags
to have enough strands, and with 4 tags, we can make an-
tipaths of lengths up to 4 ·2+1 = 9. It is the slightly limited
lengths of antipaths for an even number of tags that prevents
us from extending this optimality argument throughout the
range 10–12.

Finally, the algorithm runs in linear time. The recursive
definition of the longest antipath one can extract from the
theorem is constructive and easily implemented in linear
time in the number of strands needed for the synthesis tree
algorithm, the labeling is a linear-time pre-order traversal,
and the extraction of the program is a linear-time depth-first
traversal.

6 Brute Force Approach

In this section, we present a generic approach to minimizing
the total number of tags used. It is generic in the sense that
we base it on some interference information, which could
come from any topological order of the synthesis tree, and
blocking could be allowed, disallowed, or used in some loca-
tions. This represents an example of what we could optimize
for; we could just as well use it to optimize for the number
of strands used.

This is the main point of this approach, where we use
develop an Integer Linear Program (ILP). The methods de-
scribed earlier are targeted at specific problems. They are ex-
tremely efficient, but if one wants to implement a small vari-
ation, the development of a correct and efficient algorithm
may have to start from scratch. In contrast, ILP-solvers may
not solve specific problems quite as efficiently as a targeted
solution. However, they are fairly efficient, and have flexi-
bility as their major advantage. One can easily add further
constraints, such as, for instance, that a specific unbound tag
should never be in the pot at the same time as another spe-
cific tag.

We explain how to create an ILP from the interference
information. Given a synthesis tree, choosing a topological
ordering determines the order in which compounds must be
brought to react. Given such a sequence of react operations,
we can additionally choose to add blocking. The brute force
approach exhaustively enumerates all topological orders of
a synthesis tree, and all optional insertions of blockings at
all locations. This is of course potentially much more time-
consuming than the specific approaches from earlier sec-
tions, but on the other hand doable for synthesis trees that
are relatively small.

All such programs, obtained from a specific topologi-
cal ordering and optionally inserted blockings, give rise to

some requirements of the form “xy must be different from
x′y′”, where x,y,x′,y′ are tags and the concatenation of two
tags are unreleased instruction strands or blockings. And, as
discussed earlier, this requirement boils down to the require-
ment that x must be different from x′ or y must be different
from y′. In addition, for all strands xy used in the program,
we must have that x is different from y.

Of the n nodes in the synthesis tree, some are leaves,
containing a tagged compound. Some compounds may be
equipped with the same tag, but, in total, there are no more
tags on compounds than there are leaves. Similarly, we may
use a tag for blocking at any internal node. Again, some of
these may be identical and could also be identical to leaf
tags. However, n is an upper bounds on the number of tags
used. We can write down our interference information in
terms of these tags, letting (i, j,k, l) ∈ I denote that the con-
catenation of the ith and jth tags must be different from
the concatenation of the kth and lth tags. Similarly, for all
strands in our program formed as the concatenation of tags i
and j, we let (i, j) ∈ S.

We can now formulate the ILP. As accounted for in the
above, there are n potentially different tags, but it may be
possible to make some of them identical, depending on the
interference information. One way to think of this is that we
have n place holders and we have to place a tag in each.
One tag may be placed in several different place holders,
provided that we do not violate an interference constraints.
We use binary variables vit and vit = 1 if and only if the ith
place holder gets the tag t. The place holder, i, range over
V = {1, . . . ,n}. We also use the set T = {1, . . . ,n}. Even
though T = V , we use T to emphasize when we range over
concrete tags given to place holders. The ILP is given in
Fig. 3.

minimize vmax (1)

s.t. ∑
t∈T

vit = 1 ∀i ∈V (2)

∑
t∈T

ut ≤ vmax (3)

∑
t∈T

vit ≤ |V | ·ut ∀i ∈V (4)

vit + v jt ≤ 1 ∀(i, j) ∈ S,∀t ∈ T (5)

vit + v jt ≤ 1+ zi jkl ∀(i, j,k, l) ∈ I,∀t ∈ T (6)

vkt + vlt ≤ 1+(1− zi jkl) ∀(i, j,k, l) ∈ I,∀t ∈ T (7)

vit ∈ {0,1} ∀i ∈V,∀t ∈ T (8)

zi jkl ∈ {0,1} ∀(i, j,k, l) ∈ I (9)

ut ∈ {0,1} ∀t ∈ T (10)

Fig. 3 An integer linear programming solution for a given topological
ordering.

10 Bjarke N. Hansen, Kim S. Larsen, Daniel Merkle, Alexei Mihalchuk

We want to minimize the number of different values t
that are used. If and only if a t-value is used at least once,
ut is forced to become 1, and we can count these ut ’s. Con-
straint (2) makes sure that each place holder is assigned a
tag. Constraints (5), (6), and (7) implement the interference
information, where the latter two use a standard formula-
tion for ensuring that one out of two constraints hold. The
remaining constraints define domains.

7 Empirical Results

7.1 Different Optimization Criteria

In order to illustrate the influence of the different optimiza-
tion criteria, we choose a random synthesis tree t with 37
input compounds (leaves) and Strahler number S (t) = 4.
The synthesis tree is depicted in Appendix B. According to
Section 3, it is always possible to find a DNA-templated pro-
gram which uses only two different tags on the compounds.
This approach will lead to a DNA-templated program with
168 instructions. The program itself, as well as a visualiza-
tion of all the states of the sequential one-pot synthesis after
execution of each of the instructions, can be inspected at
http://cheminf.imada.sdu.dk/dna/. As S (t) = 4, at
least three different strands are needed for the synthesis. As
two tags are not enough to create three different strands, a
trivial lower bound for the overall number of tags is three.

A naı̈ve approach in order to find short DNA-templated
programs is to tag each of the input compounds with a differ-
ent tag. This will obviously lead to no interference and there-
fore to the shortest possible program. By this approach, we
found a program with 109 instructions, using 37 tags. In a
practical setting, using unique tags on all compounds likely
leads to a more complicated sequence design problem, as
there are many more potential but unwanted interferences.

In order to find short DNA-templated programs that use
a small number of overall tags, we enumerated all possible
depth-first search traversals of the given tree. Each traversal
leads to a topological order which in turn is used as input for
the ILP approach as presented in Section 6, in order to find
an optimal number of tags for the given topological order.
Obviously, this approach is only feasible if the given synthe-
sis tree is relatively small, as the number of different depth
first search traversals grows exponentially. For the specific
example tree, we found a program of optimal length that
uses 25 different tags, and no other program with only 109
instructions using fewer tags. Similarly, we optimized with
respect to the overall number of tags as a first optimization
criterion and the length as a second optimization criterion.
This lead to a program of length of 142 using three tags. A
summary of these results is given in Table 2.

When optimizing for the overall number of strands, we
showed in Section 4 that an optimal result will always be

found by recursively completing one subtree before start-
ing the computation for its sibling subtree. We remark that
we found examples where this strategy might lead to sub-
optimal solutions with respect to the optimal number of over-
all tags, i.e., it was only possible to find an optimal number
of tags by alternating the instructions needed for the synthe-
sis of two sibling subtrees.

7.2 Synthesis Plans with Strahler Number S (t) = 6

In order to empirically analyze the possible sets of strands
which can be used in order to perform a specific synthe-
sis successfully, we randomly created approximately 3 mil-
lion synthesis trees with Strahler number S (t) = 6. In this
section, we focus on programs with an optimal number of
strands. According to Section 4, it is necessary and suffi-
cient to use 5 strands for trees with S (t) = 6. Note that a set
of strands can naturally be represented as a directed graph
G = (V,E) without loops. In G, the vertices in V correspond
to the set of tags, and the strands correspond to the edges in
E, as a strand is a ordered pair of two tags. Of all the synthe-
sis trees, 99.21% could be solved with 3 tags (and 5 strands),
which corresponds to the trivial lower bound for the number
of tags. The remaining 0.79% of all the synthesis trees (cor-
responding to 23,780) needed 4 tags (while still using the
optimal number of 5 strands). It is easy to infer that there
are 37 non-isomorphic directed graphs without self-loops
with |V |= 4 and |E|= 5. Equivalently, there are 37 different
strand sets to be considered. Out of those 37 only 13 could
be successfully employed in order to solve at least one of
the 3 million synthesis plans. The 13 non-isomorphic graphs
corresponding to these strand sets are depicted in Fig. 4 and
in Appendix C. Only 9 of the 13 strand sets were used in or-
der to solve at least one of the synthesis trees which needed
4 tags. For any choice of one of the 13 strand sets, it could
either not at all solve any synthesis trees requiring 4 tags,
or it could solve more than approximately 20,000 synthesis
trees; details are given in Appendix C. Interestingly, only 2
of the 13 strand sets could be used to solve all of the 23,780
synthesis trees that needed 4 tags (depicted with a red border
in Fig. 4).

8 Concluding Remarks

We have considered optimizations problems from DNA-tem-
plated synthesis. After having developed an appropriate mod-
eling framework, we have focused on automatically infer-
ring DNA-templated programs with various optimization cri-
teria in mind. We have presented optimal and near-optimal
methods for minimizing the number of tags and/or the num-
ber of strands, and demonstrate how integer linear program-

http://cheminf.imada.sdu.dk/dna/

DNA-Templated Synthesis Optimization 11

First OC Second OC Algorithm Tags on Compounds Tags overall Strands overall Length

Tags on Compounds Tags overall Section 3 2 3 3 168
Length — Naı̈ve 37 37 36 109
Length Tags overall All traversals + ILP 25 25 36 109
Tags Length All traversals + ILP 3 3 6 142

Table 2 A comparison of inference of DNA-templated programs for the example synthesis tree given in Appendix B according to different
optimization criteria (OC); entries in bold signify the optimal values.

Fig. 4 Shown are the 13 of the 37 non-isomorphic graphs G = (V,E)
without self-loops for |V |= 4 and |E|= 5. These are the only graphs for
which the corresponding strand sets could be successfully employed
for at least one of a large set of randomly generated synthesis trees.
Only two of the 13 strand sets could be used to solve all of the 23,780
synthesis trees that needed at least 4 tags (red border).

ming solvers can be employed to consider all possible DNA-
templated programs for small problem instances.

Directly related to the questions we consider, it would
be interesting to settle the near-optimality issue for com-
plete binary trees, where we have provably optimal results
for heights up to 25, except for heights 10–12. It may be
necessary to loosen the constraint of using antipaths for the
labeling slightly, but it requires great care to still ensure cor-
rectness. Also in relation to the complete binary tree algo-
rithm, solutions could be used as the basis for solutions for
trees that are not complete. For instance, adding long paths
to a complete binary tree need not result in a higher cost
in terms of number of tags and strands. It seems that for
trees in general, the largest induced complete binary tree is
the key to the cost and a formal extension from complete
binary trees to trees in general exploiting this kernelization-
like idea would be nice.

Based on the empirical evaluation it seems obvious to
analyze the different optimization criteria in more detail. For
instance, our results show strong empirical support for the
hypothesis that the 13 graphs depicted in Fig. 4 correspond
exactly to the only strand sets of that size that can be used
successfully in the case S (t) = 6. Interestingly, these 13

graphs can also be created in an iterative manner by adding
edges to a graph with 4 vertices, where any edge after the
first must share either the head or tail of an already existing
edge. We hypothesize that successful strand sets can be char-
acterized in such a manner. The length of a inferred program
is another important optimization criterion. Besides finding
trivial solutions which use a very large number of tags, it
would be interesting to find efficient approaches for the au-
tomatic inference of Pareto-optimal solutions when consid-
ering several optimization criteria.

A quite different direction is to explore concurrency. Us-
ing more tags and strands than the bare minimum, some
subtrees may become independent and even one-pot synthe-
sis could allow for concurrency. Trade-off results between
concurrency maximization and tag/strand set minimization
would be interesting.

References

1. L. M. Adleman. Molecular computation of solutions to combina-
torial problems. Science, 5187:1021–1024, 1994.

2. J. L. Andersen, C. Flamm, M. M. Hanczyc, and D. Merkle. To-
wards optimal DNA-templated computing. International Journal
of Unconventional Computing, 11(3–4):185–203, 2015.

3. E. Benson, A. Mohammed, J. Gardell, S. Masich, E. Czeizler,
P. Orponen, and B. Högberg. DNA rendering of polyhedral
meshes at the nanoscale. Nature, 523:441–444, 2015.

4. L. Cardelli. Two-domain DNA strand displacement. In 6th Work-
shop on Developments in Computational Models, volume 26 of
Electronic Proceedings in Theoretical Computer Science, pages
47–61, 2010.

5. D. de Werra and C. Pasche. Paths, chains, and antipaths. Networks,
19(1):107–115, 1989.

6. A. P. Ershov. On programming of arithmetic operations. Doklady
Akademii Nauk, 118(3):427–430, 1958.

7. P. Flajolet, J. C. Raoult, and J. Vuillemin. The number of reg-
isters required for evaluating arithmetic expressions. Theoretical
Computer Science, 9(1):99–125, 1979.

8. R. A. Goodnow Jr, C. E. Dumelin, and A. D. Keefe. DNA-encoded
chemistry: enabling the deeper sampling of chemical space. Na-
ture Reviews Drug Discovery, 16:131–147, 2017.

9. K. Gorska and N. Winssinger. Reactions templated by nucleic
acids: More ways to translate oligonucleotide-based instructions
into emerging function. Angewandte Chemie International Edi-
tion, 52(27):6820–6843, 2013.

10. B. N. Hansen, K. S. Larsen, D. Merkle, and A. Mihalchuk. DNA-
Templated Synthesis Optimization. In 23rd International Con-
ference on DNA Computing and Molecular Programming (DNA),
volume 10467 of Lecture Notes in Computer Science, pages 17–
32. Springer, 2017.

12 Bjarke N. Hansen, Kim S. Larsen, Daniel Merkle, Alexei Mihalchuk

11. B. N. Hansen and A. Mihalchuk. DNA-Templated Computing.
Master’s thesis, University of Southern Denmark, Denmark, 2015.
http://cheminf.imada.sdu.dk/dna/ [Accessed October 30,
2017].

12. Y. He and D. R. Liu. A sequential strand-displacement strategy
enables efficient six-step DNA-templated synthesis. Journal of
the American Chemical Society, 133(26):9972–9975, 2011.

13. J. B. Hendrickson. Systematic synthesis design. 6. Yield analy-
sis and convergency. Journal of the American Chemical Society,
99:5439–5450, 1977.

14. X. Li and D. R. Liu. DNA-templated organic synthesis: Nature’s
strategy for controlling chemical reactivity applied to synthetic
molecules. Angewandte Chemie International Edition, 43:4848–
4870, 2004.

15. W. Meng, R. A. Muscat, M. L. McKee, P. J. Milnes, A. H. El-
Sagheer, J. Bath, B. G. Davis, T. Brown, R. K. O’Reilly, and
A. J. Turberfield. An autonomous molecular assembler for pro-
grammable chemical synthesis. Nature Chemistry, 8:542–548,
2016.

16. I. Nakata. On compiling algorithms for arithmetic expressions.
Communications of the, 10(8):492–494, 1967.

17. A. Phillips and L. Cardelli. A programming language for compos-
able DNA circuits. Journal of the Royal Society Interface, 6(Suppl
4):S419–S436, 2009.

18. R. Sethi and J. D. Ullman. The generation of optimal code for
arithmetic expressions. Journal of the ACM, 17(4):715–728, 1970.

19. A. N. Strahler. Hypsometric (area-altitude) analysis of erosional
topography. Bulletin Geological Society of America, 63:1117–
1142, 1952.

20. S. F. J. Wickham, J. Bath, Y. Katsuda, M. Endo, K. Hidaka,
H. Sugiyama, and A. J. Turberfield. A DNA-based molecular mo-
tor that can navigate a network of tracks. Nature Nanotechnology,
7:169–173, 2012.

Appendix A: DNA Program Example

We consider an example synthesis tree with four base compounds. The
actual names of the compounds is not used in any of our algorithms,
but for illustration, assume the base compounds are A, B, C, and D.
Furthermore, we assume that the tagged compound A reacts with the
tagged compound B (A+B→ E), and that E will have the tag of B.
The complete assumptions are

A+B→ E, E will inherit the tag of B
C+D→ F , F will inherit the tag of C
E +F → X , X will inherit the tag of E

and we demonstrate one possible program computing the target com-
pound X as a sequential one-pot synthesis.

We first tag the base compounds A at the left end of the tag a and
B at the right end of the tag b. The tag a (respectively b) is depicted as
a red (respectively blue) line in the following.

1 tag(A, a, left)

2 tag(B, b, right)

The state is as follows:

a
A

b
B

We add the complementary strand ba in order to bring A and B in close
vicinity and they react to produce E. In this process, A loses its tag.

3 react(ba)

a
A

b
B

b a

y

b a

b
B

a
A

y

b a

b
E

a

We release the produced tagged compound E with the strand ba and
E is now tagged with b. The tag a is now unattached and we add the
complementary tag a such that in the subsequent operations, it can be
ignored.

4 release(ba)

b a

b
E

a ab

y

b a

ab

︸ ︷︷ ︸
inert

b
E

︸ ︷︷ ︸
inert

Since they are no longer relevant, we will not depict the inert
strands in the following.

In order to avoid unintended interference, we block the tagged
compound E with a strand bc (c shown in orange).

5 block(bc)

b c

b
E

We proceed with the base compounds C and D in a similar manner.
Note that C is tagged with a and D is tagged with b, i.e., adding them
to the pot in the beginning would have led to unintended interference.
By adding ba, the tagged compounds C and D react to produce F , and
D loses its tag.

http://cheminf.imada.sdu.dk/dna/

DNA-Templated Synthesis Optimization 13

6 tag(C, a, left)

7 tag(D, b, right)

8 react(ba)

b c

b
E

a
C

b
D

b a

y

b c

b
E

b a

b a
F

We then release the tagged compound F using the strand ba and
pacify the tag b.

9 release(ba)

b c

b
E

a
F

b a

ab

The blocked tagged compound E is released with the strand bc.

10 release(bc)

b c

cb b
E

a
F

Finally, the tagged compounds E and F are brought in close vicin-
ity using the strand ba, producing X , and F loses its tag.

11 react(ba)

b
E

a
F

b a

y

b a

b
X

a

In the very last step, the target compound is released using strand
ba, which finalizes the synthesis.

12 release(ba)

b a

b
X

a ab

y

b
X

b a

ab

The only non-inert tag is the tag attached to compound X , which
makes it chemically easy to extract the compound from the pot. The
synthesis required three different tags and two different strands (and
their corresponding complementary tags and strands).

The given example also illustrates the minimization of the num-
ber of tags for blocking, when assuming that only two tags on the
compounds are used (see the definition of MNT) and the number of
tags for blocking is to be minimized. Without loss of generality, we
choose the goal compound X to be tagged with b. Given that deci-
sion, and given that we have restricted ourselves to using only two
different tags on the compounds, there are no further choices for tag-
ging: The tagging of all nodes in the tree is simply inferred as follows.
The nodes A, C, and F need to be tagged with an a, and B, D, and
E with a b. In this example, the subtree of the root X correspond-
ing to A+B→ E is synthesized before the subtree corresponding to
C +D→ F . As we need to block the result of the former synthesis,
we need an additional tag for blocking for the subtree E. With respect
to the definition of MNT, this corresponds to the recursive calcula-
tions for the inference max(MNT(E,0,0),MNT(F,1,0)) (the choice to
synthesize the subtree C +D→ F first would, in this specific exam-
ple, lead to the same overall result). This leads to the following base
cases for the leaves: MNT(A,0,0) = 0 and MNT(B,0,0) = 0, and for
the other subtree MNT(C,1,0) = 1 and MNT(D,1,0) = 1. Obviously,
MNT(E,0,0) = 0 and MNT(F,1,0) = 1, leading to MNT(X ,0,0) =
min(max(MNT(E,0,0),MNT(F,1,0)), . . .) = 1. Thus, only one addi-
tional tag is needed for blocking.

Appendix B: Example Tree used for Empirical Evalua-
tion

Figure 5 shows the example tree used for the empirical evaluation.

Appendix C: Details for Empirical Evaluation

In order to perform an empirical evaluation of the possible sets of
strands which can be used in order to perform a specific synthesis suc-
cessfully, we randomly created 2,999,928 synthesis trees with Strahler
number S (t) = 6, using the following recursive process: If the Strahler
number s does not correspond to just one node (a leaf), then we create a
node and generate its subtrees as follows. With probability 2/3, we re-
cursively generate two subtrees, both of which have Strahler numbers
s− 1. With probability 1/3, we let one subtree have Strahler number
s and choose uniformly at random between the Strahler numbers one
through s− 1 for the other subtree. In all cases, the ordering of the
subtrees (left or right) are decided upon uniformly at random.

14 Bjarke N. Hansen, Kim S. Larsen, Daniel Merkle, Alexei Mihalchuk

73
1

b

65
1

b

68
1

b

67
1

a

R29

66
2

a

R30

64
2

b

71
1

b

70
1

a

R31

69
2

a

R32

63
3

b

72
1

a

R33

62
3

b

18
1

b

21
1

b

20
1

a

R16

19
2

a

R17

17
2

b

28
1

b

27
1

b

26
1

b

25
1

a

R18

24
2

a

R19

23
2

a

R20

22
2

a

R21

16
3

b

36
1

b

37
1

a

R6

35
2

b

43
1

b

48
1

b

49
1

a

R1

47
2

b

50
1

a

R2

46
2

b

45
1

a

R3

44
2

a

R4

42
2

b

41
1

b

40
1

a

R0

39
2

a

R5

38
3

a

R7

34
3

b

60
1

b

61
1

a

R11

59
2

b

57
1

b

58
1

a

R9

56
2

b

55
1

b

54
1

a

R8

53
2

a

R10

52
3

a

R12

51
3

a

R13

33
4

b

32
1

b

31
1

a

R14

30
2

a

R15

29
4

a

R22

15
4

b

14
1

b

12
1

b

13
1

a

R25

11
2

b

10
1

b

9
1

b

8
1

a

R23

7
2

a

R24

6
2

a

R26

5
3

a

R27

4
3

a

R28

3
4

a

R34

2
4

a

R35

1
4

a

Fig. 5 Example synthesis tree used for the empirical evaluation with
different optimization criteria as also visualized at http://cheminf.
imada.sdu.dk/dna/. The coloring of the nodes is chosen according
to the optimization of the number of tags on compounds, bold edges
indicate tag inheritance, the left and right end tagging is indicated by
the small circles to the left and right, respectively, of the large circles,
which represent the compounds. The DNA-templated program, which
uses 2 tags on the compounds (here red and blue) and 3 tags overall,
has a length of 168 instructions. The DNA-templated program itself, a
visualization of the sequence of state changes for the sequential one-
pot synthesis, as well as statistical information can also be found via
the before-mentioned URL. The shortest possible DNA-templated pro-
gram, which can easily be found by tagging all 37 input compounds
with a different tag, has a length of 109 instructions. By an exhaustive
enumeration of all tree traversals and employing the ILP-based brute
force approach for each of the traversals, a program of length 109 was
found that uses the minimum 25 tags for that program length.

Of the 37 possible strand sets which use 4 tags, only 13 were able
to solve at least one synthesis plan. 23,780 of all the synthesis plans
could not be solved with a strand set based on 3 tags (and 5 strands),
but required 4 tags (and 5 strands). Only 9 of the 13 strand sets could
be used to solve at least one of the 23,780 synthesis plans and 2 of the
9 strand sets could be used for all 23,780 synthesis plans; see Fig. 4
and the details given in Table 3.

Strand set k
{ab,ac,ad,bc,bd}{ab,ac,ad,bc,bd}{ab,ac,ad,bc,bd} 23780
{ab,ac,ad,bd,cd} 23769
{ab,ac,ad,bd,db} 22161
{ab,ac,ad,cd,db} 22161
{ac,ad,bc,bd,cd}{ac,ad,bc,bd,cd}{ac,ad,bc,bd,cd} 23780
{ac,ad,bd,ca,cd} 22106
{ac,ad,bd,cd,dc} 21874
{ac,ad,ca,cb,cd} 21796
{ad,bc,bd,ca,cd} 22106
{ac,ad,bd,da,dc} 0
{ac,ad,bd,db,dc} 0
{ac,ad,cd,db,dc} 0
{bc,bd,ca,cd,da} 0

Table 3 Shown are the 13 out of the 37 possible strand sets with 4 tags,
that could be used for at least one of the 2,999,928 synthesis plans. k
out of the 23,780 synthesis plans were solved with the corresponding
strand set.

http://cheminf.imada.sdu.dk/dna/
http://cheminf.imada.sdu.dk/dna/

	Introduction
	Modeling DNA-Templated Synthesis
	Minimizing the Number of Tags
	Minimizing the Number of Strands
	Complete Binary Trees
	Brute Force Approach
	Empirical Results
	Concluding Remarks

