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Abstract

In amortized analysis of data structures, it is standard to assume that

initially the structure is empty. Usually, results cannot be established

otherwise. In this paper, we investigate the possibilities of establishing

such results for initially non-empty multi-way trees.
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Introduction

An (a, b)-tree [8] is a search tree, where each node, except the root, has at least
a and at most b children. Here, a and b are integers such that a ≥ 2 and
b ≥ 2a− 1.

B-trees [3] is a special case of an (a, b)-tree, where usually b = 2a− 1 or b = 2a,
and b is chosen such that each node fits into a block, where the block size is
often defined by a disk. The importance of B-trees in database systems and other
applications where external memory efficiency is a high priority is well known,
but (a, b)-trees are also of significant importance in theoretical computer science.
The results concerning o(log n) searching and o(n log n) sorting on word RAM’s
[4], for instance, depend heavily on (a, b)-trees; see [1], for example.

Significant time in search trees is spend on rebalancing the structure after up-
dates; in the case of (a, b)-trees when the number of children would otherwise
decrease below a or beyond b. In the worst-case, rebalancing is more expensive
than searching because two or three nodes are involved in the process on each
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layer, as opposed to only one node for searching. However, by allowing some
flexibility regarding the number of children of nodes, the hope is that rebalanc-
ing is infrequent. By requiring that b ≥ 2a, a formal guarantee can be obtained
in that rebalancing can be proven to be amortized O(1) [5]. Thus, k updates will
give rise to at most O(k) rebalancing operations when starting with an initially
empty tree.

Amortized results are usually established using a potential function, and most
often in data structure results, there is a very direct interpretation of the po-
tential function, where the value of the function at a given point in time can be
accounted for by specific nodes in the structure which are in some sense critical
with regards to the balance conditions. In fact, quite often, the potential func-
tion is defined as the sum of contributions coming from the individual nodes in
the structure. This means that not alone does the amortization proof assume
that the starting structure is empty, the results would simply usually not hold
otherwise.

However, there are certain guidelines for setting up amortization results, which
are partly due to mathematical necessecity. One is that potential is usually
accumulated gradually as a structure deteriorates. For (a, b)-trees, this means
that one would expect that the potential would be high for nodes of extreme
degrees, and low, or possibly zero, for other nodes. This is what we aim to take
advantage of. If it is possible to create an initial tree where all nodes (except
maybe a constant number) have (sufficiently) non-extreme degrees, then it may
have zero (or constant) potential, and this would mean that the amortization
results which hold when starting with an empty structure would also hold when
starting with this type of initial tree.

This makes it interesting to determine for which a and b, a number of keys can
be arranged in an (a, b)-tree such that almost no nodes have extreme degrees,
and to be able to specify the construction. We solve this problem, and give
examples of applications.

We assume familiarity with (a, b)-trees, their rebalancing operations, and ter-
minology [8].

Trees with Nodes of Non-Extreme Degrees

An (a, b)-tree for constants a ≥ 2 and b ≥ 2a − 1 is a multi-way search tree,
where the following holds:

• The root has between 2 and b children.

• Every non-root node has between a and b children.

• The leaves are all stored at the same depth.

We consider building (a, b)-trees using nodes with degrees in a small sub-range
D = {d1, . . . , d2} of the possible degrees {a, . . . , b}, where a < d1 and d2 < b.
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In particular, we focus on bounding the number of extreme nodes, i.e., nodes
with degrees outside the sub-range D.

In this exposition, we use Leaf-oriented trees which store all items in the leaves
while all keys in internal nodes are routers used only to guide searches. In
particular, the routers in internal nodes need not be copies of keys present in
the leaves.

The degree of a node is the number of children for internal nodes and the number
of items stored for leaves. To simplify the presentation, we let the term pointers

denote children when we are referring to internal nodes, and items when we are
referring to leaves, respectively.

We define the size of an (a, b)-tree to be the number of items n stored in the
tree. Let Tn be an (a, b)-tree of size n and let h denote the height of Tn. Let
u be a node in Tn and let d(u) denote the degree of u. Let ℓi denote the set of
nodes on level i, i.e., at a distance i from the root. Let ni denote the number
of nodes on level i. Thus, n0 = 1 and ni =

∑

u∈ℓi−1

d(u) for i ≥ 1. With regards

to the total number of keys, nh = n, since Tn is leaf-oriented. Finally, let
E(Tn) = {u ∈ Tn | d(u) 6∈ D}, i.e., E(Tn) is the set of extreme nodes.

Positive results

Theorem 1 If |D| ≥ 2, then for all constants a and b satisfying a ≥ 2 and
b ≥ 2a− 1 and for all n, there exists an (a, b)-tree Tn such that |E(Tn)| ∈ O(1).

Proof The proof is by induction. Let d, d+ 1 ∈ D.

Assume n < d2. Since a and b are constants, so are d and d2. However, any
legal (a, b)-tree representing at most a constant number of pointers on the lowest
level uses at most a constant number of nodes and the result follows.

Now assume n ≥ d2. We show how to represent n pointers on the lowest level.

Let k1 = n mod d. Now using k1 nodes with degree d+ 1 and k2 = n−(d+1)·k1

d

nodes with degree d, we obtain a representation of n pointers using no extreme
nodes. Let n′ denote the number of pointers to be represented on the level
above, then n′ = k1 + k2 < n and the result follows by induction. ✷

Since we use a constant number of nodes with degree d+1 on each layer in the
induction step, we immediately have the following corollary.

Corollary 1 If D = {d}, then for all constants a and b satisfying a ≥ 2 and
b ≥ 2a−1 and for all n there exists an (a, b)-tree Tn such that |E(Tn)| ∈ O(log n).

Negative results

Theorem 2 If |D| = 1, then for all constants a and b satisfying a ≥ 2 and
b ≥ 2a − 1, there exists infinitely many n such that for all (a, b)-trees, Tn,
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|E(Tn)| ∈ Ω( logn
log logn

).

Proof For a fixed height h, we can choose to have every extreme node on at
most h different levels. Each extreme node can have at most b − a different
degrees. Therefore, at most (h(b− a))f different trees can be represented using
at most f extreme nodes. A tree of size N or smaller has height at most loga N .
The number of different trees of height at most loga N and with at most f

extreme nodes is at most

log
a
N

∑

h=1

(h(b−a))f ≤ loga N(loga N(b−a))f = logf+1
a N · (b−a)f ≤ (c loga N)f+1,

where c = b− a. Given N ∈ N, to represent all trees with sizes n ∈ {0, . . . , N},
we must have (c loga N)f+1 ≥ N , leading to f ∈ Ω( logn

log logn
). ✷

Consider the applications of potential functions for showing (a, b)-trees to have
amortized constant time behavior. Such potential functions typically have their
minimum for degrees in the range from 2a − 1 to b

2 , since nodes of degree

approximately b
2 and 2a− 1 are the result after splits and fusions, respectively.

If b ≥ 4a, then the ranges [a; 2a − 1] and [ b2 ; b] do not overlap and we would

expect to have all degrees from 2a− 1 to b
2 available to construct non-extreme

trees, making Theorem 1 applicable.

When b < 4a, there might be exactly one degree available to construct non-
extreme trees, since the potential is usually build up gradually from there
towards a and b. Under these conditions we show that when D = {d} and
b < 2d − 1, there exist infinitely many n such that the bound in Corollary 1 is
the asymptotically best possible.

Let Ni = di+1 −
∑i

j=0 d
j , i ≥ 0. Some simple properties of these numbers Ni

are expressed below:

Proposition 1 The numbers Ni have the properties that Ni = dNi−1 − 1, for
i ≥ 1, and Ni ≡d −1, for i ≥ 0. ✷

We define a minimum extreme tree as a tree Tn having a minimum number of
extreme nodes among all trees of size n. Note that such a tree cannot have
extreme nodes of degrees less than d and greater than d on the same level.

For a tree Tn, we define the number pi of extreme pointers on level ℓi as the
total number of pointers missing or in excess in extreme nodes. Formally, if
D = {d}:

pi =
∑

u∈E(Tn)∩ℓi

|d− d(u)| .

Theorem 3 Assume that D = {d} and that we have constants a and b satis-
fying a ≥ 2 and b ≥ 2a− 1. If b ≤ 2d− 1, then for all N there exists an n > N

such that E(Tn) ∈ Ω(log n) for all (a, b)-trees Tn.
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Proof Let Tn be a minimum extreme tree. If E(Tn) ∩ ℓi = ℓi for any i ≥
log log n, we are done, since then E(Tn) ∈ Ω(log n). In the following, we assume
that E(Tn) ∩ ℓi 6= ℓi, when i ≥ log log n.

The proof is in two parts. First we show that trees of a certain class contain
as few extreme nodes as any minimum extreme tree. Then we show that there
exists n > N for all N , such that trees in this class have at least one extreme
node on every level, except maybe for the first log log n levels.

We define a canonical extreme tree to be an extreme tree having pi ≤ d− 1 for
all i > log log n.

Claim: Given a Tn, there exists a canonical extreme tree T ′

n

such that |E(T ′

n)| ≤ |E(Tn)|.

If Tn is a canonical extreme tree, the claim follows by letting T ′

n = Tn. Other-
wise, we construct T ′

n by repeatedly applying the following exchange argument:

Consider a level i with i greater than log log n in Tn and pi ≥ d. Assume that
the extreme nodes on this level all have degrees greater than d. Since, by the
restriction on b, any extreme node contains at most d − 1 extreme pointers,
we can reduce the number of extreme nodes on this level by at least one by
adding a non-extreme node of degree d. When a node is added to level i, the
number of extreme nodes on level i − 1 is increased by at most one. Thus,
|E(T ′

n)| ≤ |E(Tn)|. The case where all extreme nodes have degrees less than d

is analogous.

In the following, we restrict our attention to canonical extreme trees, since they
are as good as any minimum extreme tree by the argument above.

Claim: If ni = Ni − c1, then level i must contain at least one
extreme node and ni−1 = Ni−1 − c2 for c1, c2 ∈ {0, 1}.

The first part follows immediately since Ni ≡d −1. Recall from the definition
of D = {d1, . . . , d2} that d1 > a, so d > 2. For the second part, we consider
two cases. First, if level i contains nodes with degrees less than d, we have
1 + c1 extreme pointers in at least one and at most two extreme nodes. Thus,

ni−1 = Ni−c1+(1+c1)
d

= Ni+1
d

= Ni−1.

Second, if level i contains nodes with degrees greater than d, we have d− 1− c1
extreme pointers in at least one and at most d − 1 − c1 extreme nodes. Thus,

ni−1 = Ni−c1−(d−1−c1)
d

= Ni+1−d
d

= Ni−1 − 1.

Since this is true for every level, except maybe the first log log n, we have that
|E(Tn)| ∈ Ω(log n). ✷

Internal (a, b)-trees

Until now the trees considered have been leaf-oriented. We now discuss the
results for internal trees. In an internal tree all keys are items, and thus only a
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fraction of the items are stored in the leaves.

All of the results hold for internal trees as well, exactly as stated in the theorems,
only the proofs are different. However, one general argument can establish the
results based on the proofs for the leaf-oriented case.

The important observation is that the constructions in the proofs are based only
on the number of leaves, and we can handle any number of these.

A given number of items give rise to a certain number of leaves in the leaf-
oriented case and another number of leaves in the internal case, but these two
number are only a constant factor apart. This is because exactly n − 1 router
keys must be used to distinguish n locations.

Since the results are asymptotic and in the asymptotic expressions, the loga-
rithm is applied to all occurrences of n, we obtain the same asymptotic results,
as O(log n) = O(log(cn)), for any constant c.

Example Applications

In this section, we give a few examples of where our results give new possibilities.
The number of applications of (a, b)-trees is enormous, so we are well aware that
this collection of examples is not exhaustive. We also find it very likely that
many more (a, b)-tree based structures, capable of exploiting these results, will
be designed in the future.

Standard (a, b)-trees

Standard (a, b)-trees with b ≥ 2a were proven to have amortized constant re-
balancing in [5, 8]. However, a simpler proof can be given using the potential
function

Φ(T ) = min(T ) + 2max(T ),

where min(T ) and max(T ) are the number of nodes in the tree T with degree a

and b, respectively.

Using this potential function, it is easily seen that rebalancing is amortized
constant. We only need to consider splits and fusions, since the remaining
possible operations are applied at most once per update.

Since b ≥ 2a, splitting a node with b+ 1 children yields at most one node with
a children and incurs a potential drop of one. Similarly, a fusion between two
nodes, one with a− 1 children and one with a children, decreases the potential
by one as well.

Clearly, a tree with at most a constant number of nodes of extreme degrees
would have constant potential, and the amortization results would hold also
from that starting point.
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Several similar potential functions and results, to which the results of this paper
can be applied, can be found in [6].

Multi-way trees with group updates

In [7], results are obtained which primarily show that group insertions into a
so-called relaxed (a, b)-tree can be performed efficiently in the amortized sense.
Again, the assumption is that the start state is the empty tree. The potential
function is a sum of contributions from each node in the tree. The contribution
from a node u is defined as

Φ(u) =







































3, t(u) = 0, d(u) < a

1, t(u) = 0, d(u) = a

2, t(u) = 0, d(u) = b

3, t(u) = −1, d(u) ≤ 2
5, t(u) = −1, d(u) > 2
12(|t(u)| − 1) + 5, t(u) < −1
0, otherwise (t(u) = 0, a < d(u) < b)

where d(u) denotes the degree of u. If u is the root, Φ(u) is defined similarly,
except that the constant 2 is substituted for a. A non-zero value of t(u) is used
to denote that the descendants of the node u are not at the correct level, so
t(u) = 0 denotes the normal situation.

Thus, building an initial tree with non-extreme degrees would provide a tree,
where t(u) = 0 for all nodes, and we would fall into the last case in the definition
above.

Buffer trees

In [2], the buffer tree is developed, aimed at minimizing I/O traffic for algo-
rithms in general. A buffer tree has an (a, b)-tree as its basic structure, but
in addition, all nodes are equipped with a buffer, which is used to postpone
updates until many can be carried out at the same time. Again, amortized
results are obtained, assuming that the initial tree is empty. Formulating the
proof from [2] in terms of a potential function, it can be viewed as a sum of
contributions from the individual nodes, and the contribution from the nodes
can be viewed as being composed of a contribution to pay for later standard
(a, b)-tree rebalancing and a contribution to pay for emptying buffers. Thus,
by building an initial tree with non-extreme degree nodes and empty buffers, a
tree with potential zero is obtained.
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