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Data structures with relaxed balance differ from standard structures in

that rebalancing can be delayed and interspersed with updates. This gives

extra flexibility in both sequential and parallel applications.

We study the version of multi-way trees called (a, b)-trees (which includes

B-trees) with the operations insertion, deletion, and group insertion. The

latter has applications in for instance document databases, WWW search

engines, and differential indexing. We prove that we obtain the optimal

asymptotic rebalancing complexities of amortized constant time for inser-

tion and deletion and amortized logarithmic time in the size of the group

for group insertion. These results hold even for the relaxed version.

This is an improvement over the existing results in the most interesting

cases.
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1. INTRODUCTION

We focus on the type of multi-way trees usually referred to as (a, b)-trees [13, 23],

and in particular, we adopt the relaxed (a, b)-trees [19]. In the context of search

trees, “relaxed” is the term used when a structure is generalized in such a way

that updating may be carried out independent of rebalancing which can be carried

out later, possibly in small steps. In the context of B-trees [3], this approach

was discussed first in [27], followed by complexity results in [19], and a study of

variations with other properties in [14].

1A preliminary version of this paper appeared in the Proceedings of the Twentieth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, ACM Press, 2001,
pp. 93–101.

2Supported in part by the Danish Natural Sciences Research Council (SNF) and in part by the
Future and Emerging Technologies programme of the EU under contract number IST-1999-14186
(ALCOM-FT).
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The paper [17] contains a fairly complete reference list to the work on relaxed

structures in general. In brief, a relaxed version of AVL-trees [1] was introduced

in [27, 28] with complexity results matching the standard results [24] in [18]. A

relaxed version of red-black trees [9] (see also [2]) was introduced in [26] with com-

plexity results gradually matching the standard results [30] in [6, 5, 17]. Another

variant is described in [11]. Finally, a general result for creating relaxed struc-

tures can be found in [20], and performance results from experiments with relaxed

structures can be found in [4, 10].

The disadvantage of relaxation is that the strict control on search path lengths is

loosened (temporarily). The advantage of relaxed structures is flexibility. Since re-

balancing can be delayed and carried out in small steps interspersed with updates,

they give extra possibilities for control, both with regards to trade-off between time

spent on updating and time spent on rebalancing in a single processor scenario, but

also with regards to concurrency control. Note also that a relaxed structure can

always be used as a standard structure simply by deciding to carry out all rebal-

ancing operations due to an update immediately. Thus, an asymptotic complexity

result carries over from the relaxed to the standard case.

In this paper, we consider group update operations, where a number of keys must

or may be inserted or deleted at the same time. These operations, in particular

group insertion, have renewed interest because of applications in WWW search en-

gines or document databases using inverted index techniques [7, 8], in differential

indexing when a very large disk-based index is supplemented by a main memory

so-called differential index [16], in on-line index construction [25], or in other appli-

cations where a large number of keys must or can be brought into the main index

at the same time, while allowing concurrent use of the system. Structures with

relaxed balance are well suited for concurrent applications of this nature because

newly inserted elements are available immediately after the actual update. Rebal-

ancing can be done later, possibly by a background process, for instance when the

search frequency drops.

For red-black trees [9] and height-valued trees [21] (an AVL-tree variant), relaxed

variants have been studied in [12, 22] where an entire tree of new keys to be inserted

can be brought into the tree as one update. For both structures, the upper bound

derived on the number of rebalancing operations required to balance the tree again

is O(log n+ log2 m), where n is the size of the main index and m is the size of the

tree which is inserted.

Group updates in B-trees have been considered in [29] based on [27]. The focus

in [29] is on searching and the necessary concurrency control. There is no new

bound on the number of operations, so the best bound one can give on the basis

of [27] is O(m loga n), where a is the degree of the nodes. However, if many updates

go to the same leaves, the performance will be correspondingly better. As a remark

regarding notation, since the base for the logarithm can be quite large for multi-

way trees, we leave the constant in when stating the asymptotic performance, even

though formally this does not signify anything since O(log2 n) = O(logc n) for any

constant c.

In this paper, we define a relaxed multi-way structure where the number of

rebalancing operations carried out in response to the insertion of a tree of size m

is the optimal OA(loga m) and insertion and deletion become OA(1). Note that we
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use the notation OA(f(n)) to mean amortized O(f(n)). These results also imply a

relaxed binary structure with the same complexities (the logarithm now base 2).

We now remark on the definition of what a group insertion algorithm is (the

discussion for group deletion is similar). We study the core problem of moving m

keys in between two neighbor keys in the main index. However, if one considers

the problem of moving m arbitrary keys in, they first have to be divided up into

groups (via a search procedure). This can be done for our structure exactly as it

has been done in [12, 22, 29]. The difference between our approach and the earlier

ones lie in the rebalancing after the insertion of a whole tree, which is the focus in

the main part of our paper.

For group insertion of m arbitrary keys into the (non-relaxed) structures consid-

ered in [12, 22], a bound of O(log n+
∑p

i=1
log2 mi) is stated, assuming that there

are p locations where trees of sizes m1, . . . ,mp are inserted. Our corresponding

result for the same operation would be OA(
∑p

i=1
loga mi).

2. RELAXED (A,B)-TREES

Partly for comparison and partly because a standard (a, b)-tree will be the ideal

state for a relaxed (a, b)-tree, we give the definition here. Terminology which carries

over to the relaxed case will not be repeated.

We consider leaf-oriented (a, b)-trees which means that all keys are kept in the

leaves. Internal nodes contain routers, which are of the same type as the keys and

often copies of some of these. The purpose of the routers is to guide the searches

to the correct leaves. The term leaf-oriented, which is usually used when discussing

relaxed data structures, corresponds to B+-trees [3] versus internal B-trees.

Leaf-oriented trees are often the choice in large database-oriented applications.

Thus, we assume that the leaves contain the keys and references to the actual data

associated with the keys. For uniformity, these references are referred to as children

just like the references from internal nodes.

2.1. Standard (a,b)-Trees

If a ≥ 2 and b ≥ 2a− 1, then an (a, b)-tree can be defined as a multi-way search

tree fulfilling the following structural invariant:

• The root has at most b children and at least 2 children.

• All other nodes have at most b children and at least a children.

• All leaves have the same depth.

Additionally, an (a, b)-tree must fulfill the following search tree invariant: Each

internal node u with m children (pointers to subtrees) stores m− 1 distinct routers

in increasing order k1, k2, . . . , km−1. Let k0 = −∞ and km = ∞. Then all keys in

the range [ki, ki+1), 0 ≤ i ≤ m− 1, in the subtree of a node u are stored in the ith

subtree of u.

The number of children of a node is often referred to as the degree of the node.

2.2. Relaxed (a,b)-Trees

First we relax the invariants from the standard case such that updates can legally

be performed without immediate subsequent rebalancing. Removing all require-

ments would of course accomplish this. However, as usual we are interested in being
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able to rebalance efficiently at some later time, which means that some non-trivial

invariant must be maintained. In order to express the new structural invariant,

we introduce the following: Every node has a tag, which is a non-positive integer.

This is also commonly referred to as the weight of the node. We define the relaxed

depth, rd(u), of a node u as follows:

rd(u) =

{

t(u), if u is the root

rd(p(u)) + 1 + t(u), otherwise

where t(u) denotes the tag of u, and p(u) denotes the parent of u.

Only the structural invariant is altered:

• All nodes have at most b children.

• All leaves have the same relaxed depth.

Of course, by definition, an internal node must have at least one child.

Now, if a node in a relaxed (a, b)-tree has a property different from what it could

have in a standard (a, b)-tree, we refer to this as a conflict: A tag value different

from zero is referred to as a weight conflict. If the tag is zero, but the node as fewer

than a children, this is an underfull conflict, and the node is called underfull. In the

special case of the root, that node is underfull (and there is an underfull conflict)

only if it has fewer than 2 children, i.e., one child.

To finish the degree terminology regarding nodes, a node with degree zero is

called empty and a node with degree b is call full.

The intuition regarding tag values is that they measure the distance from where a

node is located in the tree compared with where it ought to be. More concretely, if

a node u has tag value t < 0, then all the descendants of u, the leaves in particular,

are |t| levels too far from the root compared with nodes which are not in the subtree

of u. Thus, u should be moved |t| levels closer to the root to fix the problem.

We proceed to the description of the operations on relaxed (a, b)-trees. In the

following sections, we define the notation used in the illustrations of the operations,

and we give additional explanation of any conditions which cannot be (or is not)

given in these illustrations. Part of the purpose of the illustrations is to have these

as easy visual reference in the proofs to follow, so we have made an attempt not

to clutter them with obvious information which can be given once (in the sections

below).

In general, the top-most node before an operation is carried out is physically the

same node as the top-most node after the operation is carried out, such that the

reference in its parent remains valid.

When we say that a number i of pointers are divided up as evenly as possible

(into two nodes), we mean that one node receives ⌊i/2⌋ pointers and the other

⌈i/2⌉. When i is odd, it is not important for the results in this paper which node

receives the most.

2.2.1. Update Operations

Any update operation is preceded by a search for the correct location. The

searching is facilitated by the search tree invariant and proceeds exactly as in all

multi-way search trees. In the discussion of insertion and deletion below, we assume

that we have already located the correct leaf.
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In the illustrations, Greek letters are used to denote a (possibly empty) collection

of pointers. If α is such a collection of pointers, we let |α| denote the number of

pointers in the collection α. We do not explicitly show the keys or routers. The tags

of the nodes are shown as superscripts to the right of the nodes. Single pointers

are denoted by an x in the leaves and by a dot in the internal nodes.

α
0 −→ α x

0

FIG. 1. Insertion of x: |α| < b.

α
0

−→
α1

0 α2

0

−1

FIG. 2. Insertion of x: |α| = b, αx = α1α2.

Insertion: There are two possibilities. Either the correct leaf for the insertion

is full or it is not. If the leaf is not full, the new key is just added to that leaf.

Even though this is not apparent in the illustration, we assume that keys are kept

in sorted order. If the leaf is full, all the existing keys together with the one to be

inserted are divided as equally as possible into two groups α1 and α2. All the keys

in α1 are smaller than any key in α2.

α x
0 −→ α

0

FIG. 3. Deletion of x.

Deletion: If present, the correct key (which could be in any location in the leaf)

is found and removed.

α β
0

−→
α

0
Root of T ′

t
β

0

−1

FIG. 4. Insertion of T ′: t = −h(T ′).

Group Insertion: The node marked “Root of T ′,” is the root of an entire standard

(a, b)-tree T ′. It is a requirement that all the keys in T ′ lie between the largest key

in α and the smallest key in β. The tree T ′ is build by the algorithm from the

set of keys which is to be inserted at that location. Given a number of keys m, an

(a, b)-tree containing these m keys can be build in many different ways. We use this

freedom to build the tree with as few extreme nodes as possible, where an extreme

node is a node with exactly a or exactly b children. This problem is investigated in

great detail in [15]. Here, the following will suffice. Choose an integer d such that
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a < d < b. This can always be done when a ≥ 2 and b ≥ 2a. Now create leaves

with d keys in each until at most a+ b keys have not been placed in a leaf. There

are then at least a + b + 1 − d ≥ a + 2 and at most a + b keys left which can be

placed in one or two leaves containing at least a and at most b keys each. We now

have a collection of nodes containing all keys. Recursively build layers of internal

nodes on top of each other until one tree is formed. Each layer is constructed in

the same manner such that all, except at most two nodes at each layer, have degree

d. Since the tree will have height O(loga m), the number of extreme nodes will also

be O(loga m).

2.2.2. Rebalancing Operations

Very informally, the collection of rebalancing operations is chosen in a problem-

oriented manner as the smallest collection having the property that all problem

types can be treated and eventually removed. We introduce each operation sepa-

rately below.

γ
−1

α β
t

−→
α γ β

t

FIG. 5. Absorption: |α|+ |β|+ |γ| ≤ b.

Absorption: In order to prevent immediate propagation of pointers all the way

to the root when nodes become overfull, a local extra layer, marked with a −1,

may be introduced. When the pointers in such a node can fit in the parent node,

possibly at a later time, the problem can be resolved by an absorption.

γ
−1

α β
0

−→
δ1

0
δ2

0

−1

FIG. 6. Split: |α|+ |β|+ |γ| > b, αγβ = δ1δ2.

Split: When the pointers in such an extra local node cannot fit in the parent, a

split is performed, propagating the problem node towards the root. The pointers

in αγβ are divided as evenly as possible into two groups δ1 and δ2.

γ 0
δ ε

0

α β
t

−→
γ δ

0
ε

0

α β
t

FIG. 7. Sharing: |γ| < a, |γ|+ |δ|+ |ε| ≥ 2a (symmetric in children).

Sharing: When a node has fewer than a children, it may be possible to solve

the problem by sharing with a sibling, provided that the total number of children

among the two nodes is at least 2a. There are two symmetric variants of this
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operation: either the left or the right sibling is underfull. The pointers in the two

nodes are divided up as evenly as possible.

γ 0
δ

0

α β
t

−→
γ δ

0

α β
t

FIG. 8. Fusion: |γ| < a, |γ|+ |δ| < 2a (symmetric in children).

Fusion: If a node has fewer than a children and neither of its at most two siblings

have enough to share, then the pointers are moved to a sibling node, and the empty

node and the reference to it in its parent are removed. There are two symmetric

variants of this operation: either the left or the right sibling is underfull.

γ
t<−1

α β
0

−→
α

0 γ
t+1

β
0

−1

FIG. 9. Penetration.

Penetration: A node with tag value smaller than −1 is the root of a tree which

has been inserted by a group insertion. In order to reestablish the standard (a, b)-

tree invariants, the node should be moved closer to the root of the tree until its

tag value becomes zero. This is done one layer at a time, possible creating other

problems on the way.

α
t2

t1Root

−→
α

0Root

FIG. 10. Redundant Root Elimination.

Redundant Root Elimination: If the root of the tree has only one child, the root

is redundant and can be removed just as in a standard (a, b)-tree. Since layers are

measured relative to the root of the tree, the root cannot be placed at an incorrect

layer. Thus, non-zero tag values at the root can simply be removed.

α
t<0Root −→ α

0Root

FIG. 11. Root Weight Elimination: |α| ≥ 2.

Root Weight Elimination: This operation simply removes non-zero tag value at

the root in the case where redundant root elimination cannot be applied.

3. CORRECTNESS

There are some important points regarding correctness:
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• If one of the operations is applied to a relaxed (a, b)-tree, then the resulting

tree is again a relaxed (a, b)-tree.

• Leaves always have tag values zero.

Though it would be quite space consuming to go through every operation re-

garding these properties, they are very simple to check because they can be verified

separately for each operation. We omit these details.

Of course, the first property must hold if the set-up should be meaningful at all.

The second property, along with the definition of the update operations, ensures

that updates can always be made.

The next important aspect is as to whether the collection of operations suffice

to rebalance the tree. The following theorem establishes that the collection is

complete.

Theorem 3.1. If there is a conflict in a relaxed (a, b)-tree, then one of the re-

balancing operations can be applied.

Proof. Assume first that the root has a conflict. Since there are no restrictions on

the root operations, either Redundant Root Elimination or Root Weight Elimination

can be applied.

Now assume that the root does not have a conflict. Let u be a top-most node

with a conflict, i.e., a node closest to the root. We note that it has a parent, and

that the parent does not have a conflict. Thus, we can assume that the parent has

tag value zero.

If there is a top-most conflict which is a weight conflict, we choose such a conflict

to deal with next. Absorption and Split cover all cases when the tag value is −1,

and Penetration can be applied if the tag value is smaller.

We may now assume that the top-most conflict is an underfull node and that

none of its siblings has a weight conflict. Thus, the conflict node and its sib-

lings have tag values zero. Clearly then, Sharing and Fusion cover all cases.

Of course, this is merely one aspect of the question as to whether the collection

of operations suffice to rebalance the tree.

Theorem 3.1 leaves the question unanswered as to whether the rebalancing pro-

cess will ever terminate (if the updating terminates). This question is answered

affirmatively in the next section.

4. COMPLEXITY

As already mentioned, searching and the actual updating is carried out as in [12,

22], for instance; with regards to searching, also as in [29]. We focus on the subse-

quent rebalancing. We derive the amortized rebalancing complexity of the update

operations using the potential function technique [31].

Our aim is to show that rebalancing due to a single update (insertion or deletion)

is OA(1) and that rebalancing due to an insertion of a tree of size m is OA(logm).

By definition, this means that if we start with an empty structure and carry out k

single updates and p group insertions of trees of sizes m1, . . . , mp, then the total

worst-case rebalancing complexity is O(k +
∑p

i=1
logmi).
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We define a so-called potential function Φ from our structures into the integers,

and show that a simple update will increase Φ with at most O(1), that a group

insertion of a tree of size m will increase Φ with at most O(logm), and that any

rebalancing operation will decrease Φ. More formally, increasing Φ with at most

O(f) means that if an update changes a structure T to T ′, then max(Φ(T ′) −

Φ(T ), 1) ∈ O(f), whereas decreasing Φ means that Φ(T ′) < Φ(T ). Since Φ will

be defined such that it is always non-negative and initially zero, this will give the

desired bound on the rebalancing.

First we define the potential Φ(u) of a node u. The potential of a tree is then

merely the sum of the potentials of all the nodes in the tree. We use the notation

c(u) to denote the number of children of u.

Φ(u) =











































3, t(u) = 0, c(u) < a

1, t(u) = 0, c(u) = a

2, t(u) = 0, c(u) = b

3, t(u) = −1, c(u) ≤ 2

5, t(u) = −1, c(u) > 2

12(|t(u)| − 1) + 5, t(u) < −1

0, otherwise

The “otherwise” case covers nodes u where t(u) = 0 and a < c(u) < b.

If u is the root, Φ(u) is defined similarly, except that we substitute the constant

2 for a.

There is no guaranteed recipe for defining a potential function. It is an integrated

part of the proof and strongly linked to the exact definition of updating and rebal-

ancing operations. However, there are guidelines and standard techniques which

often work, at least partially.

Rebalancing after one deletion, for instance, may take time Ω(loga n), if all nodes

on the search path to the update location, and their siblings, have degree a. Thus,

in order to show that the update gives rise to only OA(1) rebalancing, there must be

Ω(loga m) potential in the tree which is released as a consequence of the rebalancing

operations. This is the motivation for giving nodes u with t(u) = 0 and c(u) = a a

non-zero potential.

If an extra pointer must be inserted into a node u with c(u) = b, then the node

must be split, and if b = 2a, this gives rise to one node with c(u) = a. This is the

reason why the potential of a node with c(u) = b must be larger than the potential

of a node with c(u) = a.

The remaining cases are for real problems of imbalance. When these are resolved,

some of them may create nodes with c(u) = a or c(u) = b or even other real problems

of imbalance, and their larger potentials reflect this. Thus, to some extent, the

potential of the nodes correspond to the relative difficulty of solving the different

problems of imbalance.

It is well-known that even though (a, b)-trees can be defined if just b ≥ 2a − 1,

the best complexities are only obtained if b ≥ 2a [13]. Naturally, since we might

just use plain insertion and deletion, this property carries over.
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Theorem 4.1. If b ≥ 2a, then starting from an empty (a, b)-tree, the num-

ber of rebalancing operations is OA(1) in response to an insertion or deletion and

OA(loga m) in response to a group insertion of another (a, b)-tree of size m ≥ 2.

Proof. In this proof, we make many references to the illustrations in the ap-

pendix. Some terminology shortens the proof significantly: We use P for parent to

refer to the top node of an operation. Similarly, for children, we use L, C, and R for

left, right, and center, respectively. A subscript of “1” refers to a node before the

operation is carried out and a subscript of “2” refers to a node after the operation

is carried out.

Below, we prove that every rebalancing operation decreases the potential. Thus,

the number of rebalancing operations which can be carried out is bounded by the

increase in potential due to the update operations.

Insertion and Deletion alter a constant number of nodes and do not introduce

tag values smaller than −1. Thus, by definition of the potential function, these

operations increase the potential by at most a constant.

Group Insertion adds an unbounded number of nodes m to the tree. However,

since the tree T ′, which is added, is a standard (a, b)-tree constructed such that

there are at most O(loga m) extreme nodes, the potential for all other nodes in T ′

is zero. In addition, there is a potential increase due to the nodes directly involved

in the operation, i.e., the nodes shown in Fig. 4. The node C2 gives rise to a

potential increase proportional to the height of the tree T ′, which is O(loga m),

whereas the other nodes only give rise to a constant potential increase. Thus, the

total is O(loga m).

The operations and the potential function were designed to accomplish what we

prove now, namely that any rebalancing operation decreases the potential:

Absorption: By removing the −1 node, the potential drops at least 3. Now,

assume first that t = 0. If P2 is underfull, then P1 was also underfull, since a

−1 node has degree at least one. Thus, the maximal increase will occur if |α| +

|β| + |γ| = b. This increase is 2, so there is a total drop of at least 1. If instead

t = −1, then the potential for P2 can increase compared with P1 if the degree of

P1 was at most 2. Again, this increase is at most 2. If t < −1, then the potential

of P2 equals that of P1. Thus, in all cases, there is a total decrease in potential of

at least 1.

Split: C1 must have degree at least 2; otherwise we cannot have |α|+ |β|+ |γ| > b.

Assume that the degree of C1 is 2. Then the degree of P1 is b. Thus, the potential

before the operation is 3 + 2 = 5. Since |α|+ |β|+ |γ| > b ≥ 2a, at most one of L2

and R2 can have degree as small as a. Thus, the potential after the operation is at

most 3+1 = 4. Now assume that the degree of C1 is at least 3. Thus, its potential

is 5. The same argument as before applies to the situation after the operation, so

we get a total drop in potential of at least 1.

Sharing: This operation has two symmetric variants, which can be treated simul-

taneously. One of L1 and R1 is underfull and has a potential of 3. Afterwards, L2

and R2 both have degree at least a and less than b, so the potential of each node

is at most 1. Thus, the potential decreases with at least 1.
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Fusion: This operation has two symmetric variants, which can be treated simul-

taneously. The potential of P1 can increase with at most 2. This happens in the

case where t = 0 and the degree of P1 is a. Thus, we must show that the potential

at the level below decreases by at least 3. Now, an underfull node is removed which

decreases the potential by 3. The remaining child of P2 has possibly had its degree

increased. However, since its degree is less than 2a ≤ b, the potential of that node

cannot increase.

Penetration: The potential of C2 is 12 smaller than C1; also if t+ 1 = −1. The

potential of P2 is 5 and the potential of L2 and R2 is at most 3 for each of them.

This is a total of 11. Thus, the potential decreases.

Redundant Root Elimination: Clearly, the potential of C1 cannot increase, and

since P1 is underfull, removing this nodes decreases the potential.

Root Weight Elimination: The number of pointers in the node is at least two. By

inspecting the potential function (recalling that for the root, a is replaced by the

value 2 in the definition of the potential), it follows that with at least 2 pointers,

a node with a negative tag always has a strictly larger potential than a node with tag

zero. Thus, the potential decreases.

This result is asymptotically optimal. Clearly, no operation can take time less

than a constant, so the asymptotic complexity of insertion and deletion cannot be

improved.

Regarding the complexity of group insertion, choose a path which from every

node follows a pointer located roughly in the middle of the node. If we insert a tree

of height h at the resulting leaf, at least h − 1 nodes in the original tree must be

split. This imposes a lower bound of Ω(loga m) on the operation.

5. ADDITIONAL OPERATIONS

Note that in Theorem 4.1, we could have taken insertion to mean “any modi-

fication of a leaf such that the number of elements increase while the search tree

invariant is preserved.” Clearly, as it appears from the proof of that theorem, this

more general operation would also be OA(1). Similarly, deletion could be taken to

mean “any modification of a leaf such that the number of elements decrease while

the search tree invariant is preserved,” and this operation would also be OA(1).

A standard operation in dictionary implementations is the join operations (also

sometimes referred to as merge, meld, or union) which takes two dictionaries as

arguments and combines them into one. It is always assumed that all keys in one of

the dictionaries are smaller than all keys in the other. Assume that the dictionaries

have sizes n1 and n2. Then by performing a group insertion of the smaller into the

larger, in the left-most or right-most leaf, as appropriate to preserve the search tree

invariant, we obtain a relaxed join operation with complexity OA(logmin{n1, n2}).

Another standard operation is the split operation (on dictionaries; not on (a, b)-

tree nodes) which given a key value produces two dictionaries; one with all the keys

smaller than or equal to the given key and another with the rest. By first searching

in T for the given key value and using group insertion to insert a “fake” root with a

small enough tag value t (|t| should be larger than the height of T ), then this fake

root will eventually make its way up to become a child of the root at which point

the left-most and right-most pointers in the root can be used to form the desired
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trees. A special mark must be put on the fake root and the operations modified

such that no other operation than split can be applied to such a marked child of

the root.

For group deletion, if all deletions regarding any particular leaf are carried out

at the same time, the time to rebalance after the deletion of m elements located in

p ≤ m leaves become OA(p) instead of OA(m).

The proofs of the sections above is the place to start if one considers altering

the collection of rebalancing operations. After a radical change, it is of course

necessary to verify all properties again. However, if operations are only generalized,

the collection is of course still sufficient. One example of a possible generalization is

the following: In the fusion operations, allow L1, R1, and C2 to have non-zero, but

identical, tag values. With this generalization, a slightly different potential function

can be used to obtain the same asymptotic results. However, it is important to

note that a generalization is not necessarily an improvement and can lead to worse

performance. In fact, in the worst scenario, a generalization could lead to infinite

loops. For the safe generalizations, where the same asymptotic results can obtained,

experiments can be used to decide on the exact collection.

6. CONCLUDING REMARKS

Using colors or techniques as in [2], (2, 4)-trees can be represented as binary trees,

where small parts of the tree of height zero or one represent nodes of degree up

to four. By interpreting all the rebalancing operations in that representation, we

immediately obtain that a relaxed binary tree with all the same properties exists,

i.e., rebalancing after insertion and deletion is OA(1) and rebalancing after group

insertion is OA(logm), where m is the size of the tree which is inserted.

This improves on previous results for binary search trees which were obtained for

AVL-trees in [22] and red-black trees in [12], both claiming a rebalancing complexity

in this case of O(log n+log2 m), where n is the size of the tree in which the update

is carried out. Of course, the result from [12, 22] is a worst-case result, whereas ours

is amortized time. This means that if one considers any one operation in isolation,

we cannot claim a good worst-case bound. We can of course claim O(n), since no

more than O(n) potential can be accumulated in the tree. However, in practice, it

is the complexity of carrying out (long) sequences of operations which is interesting.

Additionally, our amortization proof is given in the traditional manner, assuming

that the starting state is an empty tree. However, it is of course also interesting to

discuss which results hold when starting with an initially nonempty structure. One

interesting point is that as soon as Ω(n) operations have been carried out, then

these operations can “pay” for the potential which should be present in the tree.

Thus, after that point, all the asymptotic amortized results are valid. In principle,

this holds whenever Ω(n) operations have been performed, independent of what the

actual constant is, so it could be 1

1000
n operations, for example. In practice, this

constant should probably be closer to one before reasonable run-time constants can

be guaranteed.

This discussion assumes that the initial nonempty tree has been built completely

independent from the intended use. By inspection of the potential function used in

this paper, one observes that if all nodes have a number of children strictly between

the extreme values of a and b, then the potential of the whole tree is zero. Thus, all
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the amortized results hold immediately. In fact, it is also unproblematic to allow

for instance a constant number of extreme nodes. Trees with such properties can

be constructed for all except very small values of a and b [15].

When choosing the values for a and b, b is naturally defined to match the block

size. Choosing a subsequently such that 2a = b is natural, but any smaller a (larger

than 2) is allowed and will result in a structure with the properties established in

this paper. Clearly, choosing a large results in the best space utilization guarantee

and the best maximum height guarantee, whereas choosing a smaller will decrease

the number of rebalancing operations which must be carried out. Thus, small a’s

should be considered only in fairly dynamic environments.
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