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Abstract

The idea of relaxed balance is to uncouple the rebalancing in search
trees from the updating in order to speed up request processing in
main-memory databases. This paper defines the first relaxed binary
search tree with amortized constant rebalancing using only standard
single or double rotations.

1 Introduction

The idea of relaxed balance is to uncouple the rebalancing in search trees
from the updating in order to speed up request processing in main-memory
databases. The motivation is two-fold: If search and update requests for
a search tree come in bursts (possibly from several external sources), the
search tree may occasionally not be able to process the requests as fast as
it might be desirable. For this reason, it would be convenient to be able
to “turn off” rebalancing for a short period of time in order to speed up
the request processing. However, when the burst is over, the tree should be
rebalanced again, while searching and updating still continues at a slower
pace, so preferably rebalancing should still be efficient.

The other motivation comes from using search trees on shared-memory ar-
chitectures. If rebalancing is carried out in connection with updates, either
top-down or bottom-up, this creates a congestion problem at the root in

*This work was carried out while the author was visiting the Department of Computer
Sciences, University of Wisconsin at Madison. Supported in part by SNF (Denmark), in
part by NSF (U.S.) grant CCR-9510244, and in part by the ESPRIT Long Term Research
Programme of the EU under project number 20244 (ALCOM-IT).



particular, and all the locking involved would seriously limit the amount of
parallelism possible in the system. See earlier papers on relaxed balance for
more details.

Uncoupling the rebalancing from the updating can help in these situations,
but of course, if rebalancing is postponed for too long, the tree can become
completely unbalanced, which is also the reason why it is challenging to
prove the complexity results for them.

We give a brief account of the work done in relaxed balancing. The idea
of uncoupling the rebalancing from the updating was first mentioned in [8],
and the first partial result, dealing with insertions only, is from [12]. The
first relaxed version of AVL-trees [1] was presented in [18] and proofs of
complexity for the rebalancing, matching the complexity from the sequen-
tial case, was obtained in [13]. A different AVL-based version with some
especially nice properties was treated in [22, 17]. The first relaxed version of
B-trees [3] is also from [18] with proofs of complexity matching the sequential
ones in [14, 15]. Since [14, 15] really treat (a,b)-trees [11], they also provide
proofs for 2-3 trees [10, 2], as well as for (a,b)-trees with other choices of a
and b. A relaxed version of red-black trees [8] was introduced in [19] and
complexities matching the sequential case were established in [6, 7] and [4, 5]
for variants of the original proposal. In [22], some of these early results are
surveyed. In [20, 16], it is shown how a large class of standard search trees
can automatically be equipped with relaxed balance. In [9], a version of
red-black trees based on these general ideas is presented.

Now we turn to the subject of this paper. In [5], in addition to a number
of other topics, the authors prove that it is possible to implement relaxed
balance in a binary search tree in such a way that rebalancing becomes
amortized constant. This is, in our opinion, one of the most important
results in the world of relaxed balance. For practical reasons because it
shows that very few rebalancing operations are carried out in the worst case,
and because in the parallel application, rebalancing will almost always take
place very close to the leaves, and will therefore very rarely interfere with
requests entering through the root. For theoretical reasons, it is important
because the red-black tree is one of the search trees with most properties.
It has worst-case logarithmic time rebalancing, amortized constant time
rebalancing, and worst-case constant number of restructuring operations per
update, so in that sense it is more advanced than AVL-trees, for instance.
The result from [5] is the first example of a relaxed version having all of
the same properties as one of the most advanced standard search trees.
However, we see the following practical and theoretical problems with the



result from [5]:

e Some rebalancing operations are not standard single or double rota-
tions, but larger six-nodes transformations.

e There are many rebalancing operations.

e The proof that rebalancing is amortized constant is very long, and it
is quite time consuming to check all the details.

From a practical point of view, the large set of operations as well as the
large size of some of the operations makes it more time consuming to decide
which operation to apply, and it takes longer to carry it out. The latter is
particularly problematic in a parallel environment, where any unnecessary
locking must be avoided, and where locks should be held for as short time
periods as possible.

We address all the objections, presenting a smaller collection of operations,
all of which are single or double rotations. This collection could be seen
as a relaxed version of the operations from [21]. Note that in [5], there
are even more operations than it appears, since root operations are not
listed. Additionally, we give a very short proof of amortized constant time
rebalancing, with details that are quite easy to check. We also prove that
this new collection of operations has all the other properties from [7, 5],
i.e., each update gives rise to at most a logarithmic number of rebalancing
operations, of which at most a constant number are restructuring operations.

Note that in the general result from [16], standard rebalancing operations are
used in a general rebalancing scheme. However, in order to avoid interference
and deadlocks, these operations are embedded in some larger areas (referred
to as operation and synchronization areas), so the resulting rebalancing
operations are in fact gigantic.

This present paper contains the first relaxed binary search tree with amor-
tized constant rebalancing using only standard single or double rotations.

2 A Relaxed Red-Black Tree

The search trees we are going to use will be leaf-oriented. This means that
only the leaves contain keys. The internal nodes contain routers, which are
of the same type as keys and which direct the searches to the right location
as usual in a search tree. However, routers are values that may not be



present as keys in our tree. This is because we do not want to have to
update routers whenever a deletion takes place. For an internal node, the
keys in its left subtree are smaller than or equal to its router, and the keys
in its right subtree are larger.

We define a relaxed red-black tree as a relaxation of the balance constraints
from the standard case. This is exactly as in [5]. Instead of just using the
two colors, red and black, we use weights. So each node in the tree has a
non-negative integer weight. We refer to nodes with weight zero as red and
nodes with weight one as black. If a node has a larger weight, we call it
overweighted, and its amount of overweight is the weight it has in excess of
one. The weight of a path is the sum of the weights of the nodes on the path,
and two consecutive nodes means consecutive on some path, i.e., one node
is a child of the other. Now, the only requirements in this relaxed red-black
tree are that all paths from the root to a leaf have the same weight and that
leaves have weight at least one.

In such a relaxed red-black tree, two consecutive red nodes are referred to
as a red conflict, and an overweighted node as a weight conflict. A standard
red-black tree, or simply a red-black tree, can be defined as a relaxed red-
black tree without any conflicts. The purpose of the rebalancing operations
is to transform a relaxed red-black tree into a standard red-black tree by
removing all conflicts. The difficulty in proving results for relaxed structures
is that rebalancing operations and updates can be interleaved in any order, as
opposed to the standard case where rebalancing is performed (and finished)
immediately after an update.

Since the tree is leaf-oriented, it is always a full tree, i.e., every internal
node has two children. Operations for the updates, insertion and deletion,
as well as for rebalancing are shown in the appendix. Note that all operations
preserve the tree as a relaxed red-black tree, i.e., leaves are non-red and all
paths have the same weight. As usual in search tree papers, we do not show
the subtrees, since the order in which subtrees from before a rebalancing
operation is carried out should be attached again after the operation is
uniquely determined: the only way to preserve the structure as a search tree
is by removing the subtrees in-order before the operation is carried out and
attaching them again in-order after the operation has been carried out. We
do not list symmetric operations, nor discuss these in the proofs. Nodes
that are definitely leaves are marked with a square. Internal nodes and
nodes that may or may not be leaves are marked with a circle.



3 Complexity

In this section, we prove that as long as there are conflicts in a relaxed red-
black tree, some rebalancing operation will be applicable. Then we prove
that after k updates at most O(k) rebalancing operations can be carried
out, i.e., a constant number of rebalancing operations per update, assuming
that we start with an empty tree. Starting with a red-black tree, a bound of
O(klog(n +1)) is shown, where n is the size of the tree and i is the number
of insertions (so ¢ < k). Finally, we prove that at most O(k) restructuring
operations can be applied, even if we start with a red-black tree.

The Collection of Operations is Complete

First we prove that rebalancing does not terminate before the tree is again
in balance.

Theorem 1 If a relaxed red-black tree is not red-black, then a rebalancing
operation can be applied.

Proof Assume that there is a red conflict in the tree, and consider a top-
most of these, i.e., a red conflict at a smallest distance from the root. Either
its top node is the root, in which case red-root can be applied. Otherwise, the
top node of the conflict has a parent. This parent is not red, because then
the conflict under consideration would not be top-most. So, the parent has
weight at least one. Now consider the sibling of the top node of the conflict.
If it is red, then red-pushl or red-push2 can be applied, and otherwise,
red-dec1 or red-dec2 can be applied.

We have proven that if there is a red conflict, then a rebalancing operation
can be applied. Now assume that there are no red conflicts, but there is
a weight conflict. Consider a weight conflict at a largest distance from the
root. If the overweight is located at the root, then weight-root can be applied.
Otherwise, the overweighted node has a parent. Let u denote the sibling of
the overweighted node. We divide into three cases depending on whether u
is red, overweighted, or black.

If w is red, then it has children, since leaves are not red. Neither the children
of u nor its parent is red, since, by assumption, there are no red conflicts.
Since we are considering a conflict at a largest distance from the root, the
children of u are not overweighted, thus they are black, and weight-temp can



be applied. If w is overweighted, then weight-dec3 can be applied. If u is
black, we consider w’s children, which it has, since otherwise we would not
have the same weight on all paths going from the root to a leaf. If u’s right
child is red, then weight-dec! can be applied. Otherwise, if u’s left child is
red, then weight-dec2 can be applied. Finally, if none of them are red, then
weight-push can be applied. O

Amortized Constant Rebalancing

We prove that starting with an empty tree, rebalancing is amortized con-
stant. The following observations can easily be, and have been, verified by
inspection of the operations in the appendix.

Observation 1

e red-root, red-decl, and red-dec2 decrease the total number of red con-
flicts in the tree.

o weight-root, weight-decl, weight-dec2, and weight-dec3 decrease the
total amount of overweight in the tree.

e An insertion increases the number of red conflicts by at most one, and
a deletion increases the amount of overweight by at most one.

e No rebalancing operation increases the number of red conflicts nor the
number of weight conflicts in the tree.

O

We use a potential function to compute the time complexity [23]. For the
purpose of defining this potential function, we have to keep an eye on certain
patterns in the tree.

Definition 1 We define three patterns that we call potential types. See
figure 1. m|

The crucial part of the proof is finding the correct potential types and ana-
lyzing how the number of these different types in the tree changes as rebal-
ancing operations are carried out.
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Figure 1: Potential types A, B, and C.

Figure 2: Red-pushl when the number of red conflicts is not reduced.

Lemma 1

1. If red-pushi or red-push2 do not reduce the total number of red con-
flicts in the tree, then they reduce the number of potential types (A),
and increase the number of potential types (B) and (C) by at most
one each.

2. The operation weight-temp reduces the number of potential types (C)
by one, and does not increase the number of the other potential types.

3. If weight-push does not decrease the total amount of overweight in the
tree, then it decreases the number of potential types (B) by two, and
only increases the number of potential types (C); and by at most two.

Proof We prove the three parts separately.

1. We only prove the result for red-pushi. The proof for red-push? is
similar. Since the number of red conflicts is not reduced by the op-
eration, we can deduce a fair amount about the context in which it
must be applied; see figure 2. The red conflict that disappears must
be replaced by another one at the top of the operation. Additionally,
none of the other three nodes at the same level as the bottom-most
node of the red conflict can be red.

Now it is easy to see that the number of potential types (A) is reduced
by one, and the number of potential types (B) is increased by one.
Additionally, the number of potential types (C) may increase by one.

2. Easy observation.



3. Clearly, no configurations of potential type (A) can be created. Ad-
ditionally, if the total amount of overweight is not decreased, then
wy > 1. This means that no new configuration of potential type (B)
can be created right above the root of the operation; if there is one
there after the operation, then it was already present before the op-
eration. The same is true for the position at the left-most leaf of the
operation. Thus, no new configurations of potential type (B) can be
created.

Two configurations of potential type (B) disappear. That is the one
located at the node which changes weight from one to zero, as well as
the one located at the root of the operation (recall that wy > 1).

The number of configurations of potential type (C) increases by at
most two. One can appear at the root of the operation (if we > 3)
and one can appear right above the root of the operation.

The main theorem can now be proven.

Theorem 2 Rebalancing is amortized constant.

Proof We use the standard potential function technique [23]. Let the
potential types (A), (B), and (C) have weights 4, 2, and 1, respectively, and
let a(T), b(T), and ¢(T') denote the number of configurations in the tree T'
of types (A), (B), and (C), respectively. We refer to 4a(T") + 2b(T") + ¢(T")
as the weighted sum.

When a rebalancing operation reduces the total number of red conflicts or
weight conflicts, it may create some configurations of potential types (A),
(B), and (C), and it may remove some. Let m be the maximum increase of
the weighted sum that may accompany any rebalancing operation.

Let 7(T") and w(T') denote the number of red conflicts and the total amount
of overweight, respectively, in a tree T, The potential of a tree T" is denoted
®(T), and is defined to be ®(T') = (m + 1)(r(T) +w(T)) + 4a(T) +2b(T) +
¢(T). Clearly, ®(T) is always non-negative.

Since insertion and deletion only change a constant number of nodes, the

potential increase due to these operations is bounded by a constant.

In order to prove that each update gives rise to at most an amortized con-
stant number of rebalancing operations, we prove that whenever a rebalanc-
ing operation is carried out, there will be a potential decrease of at least



one. Since we start with an empty tree with potential zero, the result will
follow.

By observation 1 and the choice of m, this holds for the operations red-root,
red-decl, red-dec2, weight-root, weight-decl, weight-dec?2, and weight-decS.
The remaining operations are the ones we considered in lemma 1. If these
operations reduce the number of conflicts in the tree, again by the choice
of m, we are done. The remaining cases are exactly the ones addressed in
lemma 1.

For red-push1 and red-push2, the potential change is at most —4+2+1 = —1.
For weight-temp, it is —1, and for weight-push, it is at most —4 + 2 = —2.
Od

Worst-Case Logarithmic Rebalancing

The operations from [5] are basically the same as the ones from [7], and in
the latter it was shown that for any k, starting with a red-black tree (not
necessarily empty), k updates give rise to at most O(klog(n+1i)) rebalancing
operations, where n is the number of leaves and ¢ is the number of insertions
since the tree was last red-black. If this result held only when updates are
made into an initially empty tree, the amortized result from the present
paper would always be better. However, the result from [7] holds even
when updates are made into an initially non-empty tree, so in that case,
the results are incomparable. For instance, at most a logarithmic number of
rebalancing operations are necessary in order to re-establish the red-black
invariant if one update is made into a tree which is red-black. This does
not follow from the amortized constant result. However, the operations in
our paper also have this property, and the proof from [7] carries over with
minor modifications, except that an entirely new lemma is required in order
to deal with the operation weight-temp. We give the proof below.

When weights become large, many rebalancing operations can be necessary.
In order to obtain a good result, it is necessary to be able to argue that
many deletions have taken place to create the large weights. Therefore, we
must keep track of the number and the location of deletions. To this end,
we maintain a count function, ¢, from the set of nodes in the tree to the
natural numbers. Its purpose is to remember how many nodes there have
been in a given subtree, including the current nodes. The function is defined
as follows.

Initially, we have a red-black tree, and we define all nodes u to have c(u) =



1. We now describe how each operation changes the count function. For
an insertion, the leaf before the operation is the internal node after the
operation, and it keeps its count value. Thus, the two leaves after the
operation are new, and when such a new node, u, is created, we define
c(u) = 1. A deletion involves three nodes: the leaf u to be deleted, its
sibling v, and their parent . Two nodes disappear. We consider = to be the
node which remains. The function value ¢(x) for the parent = of the deleted
leaf is changed to c(u) + ¢(v) + ¢(z), referring to the values from before the
operation is carried out. This ensures that the sum of all the count values
equals the number of nodes which are or have been in the tree since it was
red-black.

When a rebalancing operation changes the structure of the tree, nodes are
moved around. To preserve the function ¢, we have to define where the
nodes move to, i.e., given a fixed node u immediately prior to a rebalancing
operation, which node is u after the restructuring.

For the operations which only change weights, we use the obvious identifi-
cation by location. For the restructuring operations, the node which is the
root before the operation is also the root after the operation. The identity of
the remaining nodes is determined by the ordering (their keys): ignoring the
root, the ith node encountered in an in-order traversal of the nodes involved
in the operation before the operation is carried out is again the ith node in
an in-order traversal after the operation is carried out.

We can now establish an exponential connection between the path weights
and the number of nodes which are or have been in a subtree. We let T},
denote the subtree rooted by u, refer to c(u) as the count of u, refer to
> ver, €(v) as the count sum of u, and define the weighted height of a node
to be the sum of all the weights from that node down to a leaf (recall that
no matter which leaf is chosen, this weight is the same, so it is well-defined).

Lemma 2 If the weighted height of u is w, then >~ 7 c(v) > 2% — 1.

Proof By induction on the number of operations performed on the tree.
Notice first that for any node u, c(u) is initialized to 1, and from then on,
c(u) can only increase.

The base case is when no operations have been performed, so the tree is red-
black. We establish the result for this case by a proof by induction on height.
If anode u is a leaf, then w = 1,50 2 —1 = 1 = ¢(u). If u is not a leaf, it has
two children v; and vy. Since the tree is red-black, u has weight at most one,
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so if u has weighted height w, its children have weighted height at least w—1.
Thus, by induction, },cp, c(v) > 2v=1 — 1 and Yver,, €(v) = w—l 1.
Since c(u) =1, Ypep, c(v) > (21 =)+ (¥ —1)+1=2% — 1.

For the induction step, we consider each operation in turn.

For insertion, the new nodes are given weight 1 and the count function is
set to 1. No other nodes have their weighted heights changed or their count
sum decreased.

For deletion, count sums and weighted heights remain unchanged for all
nodes in the tree which are remaining after the operation.

For the rebalancing operations, general arguments can handle all cases.
With the exception of red-root and weight-root, the weighted heights of
the root of the operations as well as their count sums remain unchanged.
Furthermore, the result holds for leaves of an operation which keep the same
subtrees they had before the operation was carried out, provided that their
own weight is not increased (this includes weight-root). Finally, the result
holds for a node of weight 0 or 1, provided that it is a leaf or that the result
holds for both of its subtrees (the same proof as was used in the base case).
By these arguments, the result holds for all nodes in the tree, no matter
which operation was applied. O

Let n be the number of nodes in the structure at a given time when the tree
is red-black. An upper bound on the number of nodes in the structure at
a later point, after ¢ insertions have taken place, is n + 2i. The following
corollary of the lemma above bounds the maximum weighted heights in the
tree.

Corollary 1 The largest weighted height any node can have is bounded by
llogs(n +2i +1)].

Proof Clearly, by definition of ¢, the count sum of the root equals n + 2i.
Thus, if w is the weighted height of the root, n+2¢ > 2% —1. So, the largest
weighted height any node can have is bounded by |logs(n + 2i + 1)], since
the root has the largest weighted height in the tree, and since this weighted
height must be an integer. a

This can be used to bound the number of operations which can be carried
out, since the operations, with the exception of weight-temp, have been

designed in such a way that if they do not remove a problem of imbalance,
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they move it to a node of a larger weighted height. To be precise, the location
of a red conflict is the bottom-most node of the two red nodes. The location
of a weight conflict is the node which is overweighted. Now, whenever a
conflict is removed by a rebalancing operation just to be introduced again
higher up in the tree (the operations red-push1, red-push2, and weight-push
do this), we say that the conflict has moved.

Finally, we define the weighted height of a conflict: the weighted height of
a red conflict is the weighted height of the node where it is located. If a
node has weight w; > 1 and it has weighted height w, we consider this to
be w1 — 1 weight conflicts of weighted height w — w1 + 2, w — w1 + 3, ..., w,
respectively. We also refer to the node as having wi — 1 units of overweight.
When a unit of overweight is moved or removed, we always assume that it
is the one with the largest weighted height.

Proposition 1 The operations red-root, red-dec1, and red-dec2 remove at
least one red conflict, and the operations weight-root, weight-decl, weight-
dec2, and weight-dec8 remove at least one unit of overweight. All these
operations leave the remaining conflicts at the same weighted height as be-
fore the operation was carried out, and no new conflicts are created.

Proof Easy inspection of the operations in the appendix. Note that using
the weighted height of a conflict instead of simply the weighted height of the
location of the conflict was necessary to make the result hold for the nodes
which have overweight we — 1 after an operation (see the appendix). O

Proposition 2 The operations red-pushl, red-push2, and weight-push ei-
ther remove a conflict or move a conflict such that it is located at a larger
weighted height after the operation. Other conflicts remain at the same
weighted height as before the operation was carried out, and no new con-
flicts are created.

Proof Easy inspection of the operations in the appendix. For red-pushi
and red-push2, the new location for the conflict, if it does not disappear, is
the root of the operation after it has been carried out. Clearly, the weighted
height of the conflict has increased with one. For weight-push, the increase
in weighted height, if the conflict is moved, is wy + 1, which is at least one.

O

Proposition 3 The operation weight-temp does not change the weighted
height of any conflicts, and no new conflicts are created.
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Proof Easy inspection of operation weight-temp in the appendix. O

As already mentioned, weight-temp does not have the desirable property
that it moves conflicts to a node with a larger weighted height. Thus, a
bound for the number of weight-temp operations which are carried out must
be obtained in a different way.

If an overweighted node has a red parent, which in turn has a non-red
sibling and a non-red parent, we refer to this as a weight-temp configuration,
since the operation weight-temp creates such configurations. If u is the
overweighted node in such a configuration, we refer to the other nodes as
the parent, the uncle, and the grandparent of the configuration (or simply
of u).

Lemma 3 Weight-temp configurations can only disappear through the ap-
plication of an operation which decreases the total number of conflicts in
the tree.

Proof By inspection of the operations in the appendix. Clearly, in order
to change the configuration, an operation must overlap nodes in the config-
uration. Let u be the overweighted node in the configuration (the one with
a red parent).

The operation insertion cannot make the configuration disappear (note that
if the uncle of the configuration has weight one, then it cannot be a leaf),
and if a deletion changes the situation, it is because wq; = 0 and w3 > 1
(within the deletion operation). However, we must have that ws > w3, so
the total amount of overweight decreases by wq — 1.

It is only necessary to discuss the rebalancing operations which do not nec-
essarily decrease the total number of conflicts in the tree, i.e., red-pushl,
red-push2, weight-temp, and weight-push.

The operation red-pushl can be applied in this situation if u is the top-node
of the red-push1 operation. In that case, the amount of overweight as well
as the number of red conflicts decrease. It can also be applied at a position
where u’s uncle is the top node of the red-pushl operation. In that case, a
red conflict disappears. The operation red-push2 is similar.

The operation weight-temp can only be applied to nodes in this configuration
if either u or its uncle is the root of the weight-temp operation. Since
the weight of the root of a weight-temp operation is not changed when the
operation is carried out, neither is the configuration.
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Finally, weight-push can overlap the configuration if the parent of u is the
root of the weight-push operation. However, in that case, the amount of
overweight decreases. It can also overlap if the uncle of w is the root of
weight-push. In that case, the uncle of u has its weight increased, so it will
still be non-red. ]

Corollary 2 If i insertions and d deletions are made into a red-black tree,
at most ¢ + d weight-temp operations can be applied.

Proof By observation 1, no rebalancing operation increases the number of
conflicts. Since insertion and deletion create at most one conflict each time
they are applied, the total number of conflicts ever introduced in the tree is
bounded by i + d.

By lemma 3, a weight-temp configuration can only be removed through the
application of an operation which decreases the total number of conflicts in
the tree. Thus, weight-temp configurations can be removed at most ¢ + d
times.

After i insertions and d deletions, by theorem 1 and 2, the tree will eventually
become red-black. Since a weight-temp configuration contains overweight,
this will therefore eventually be removed. Thus, at most i + d weight-temp
configurations can ever be created. O

We can now prove that starting with a red-black tree, each update gives rise
to at most a logarithmic number of rebalancing operations.

Theorem 3 Rebalancing is worst-case logarithmic.

Proof We show that if k£ updates are made to a red-black tree with n keys,
k(|logg(n+2i+41)] + 1) rebalancing operations are sufficient to balance the
tree, i.e., to make it red-black again. Here k = i + d, where ¢ is the number
of insertions and d is the number of deletions.

Observe by inspection of the appendix that the operation insertion creates
at most one red conflict, and creates it with a weighted height of one. The
operation deletion creates at most one additional unit of overweight, and it
gets weighted height at least two (we only create new overweight if wy > 1
and ws > 1).

By propositions 1, 2, and 3, no rebalancing operations decrease the weighted
height of a conflict. By proposition 1, the operations red-root, red-dec1, and
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red-dec2 can be applied at most ¢ times, and the operations weight-root,
weight-decl, weight-dec2, and weight-dec3 can be applied at most d times.

By corollary 1, the largest weighted height any node can have is bounded by
M = |logy(n + 2i + 1)]. Since, by proposition 2, every time the operations
red-pushl and red-push?2 are applied, they move a conflict to a node with
a larger weighted height, these operations can be applied at most (M — 1)
times. Similarly, also by proposition 2, the operation weight-push can be
applied at most d(M — 2) times.

By corollary 2, at most ¢ + d weight-temp operations can be applied.

Summing up, at most i(M + 1) +dM < k([logy(n+2i+1)] + 1) operations
can be applied. O

Worst-Case Constant Restructuring

Even starting with a red-black tree, each update gives rise to at most a
constant number of restructuring operations.

Theorem 4 Restructuring is worst-case constant.

Proof The rebalancing operations which make structural changes are red-
decl, red-dec?2, weight-temp, weight-dec1, weight-dec?2, and weight-dec3. By
proposition 1 and corollary 2, these operations can be applied at most 2(i+d)
times when starting with a red-black tree. O

4 Concluding Remarks

We have defined a relaxed red-black search tree with rebalancing operations
which are single or double rotations. Starting with a red-black tree (which
could be empty), rebalancing has been shown to be worst-case logarithmic
and the number of restructuring operations worst-case constant per update.
Starting with an empty tree, rebalancing has been shown to be amortized
constant.

Notice that since each potential type contributes only a constant amount to
the potential of a whole relaxed red-black tree, the potential of a tree is at
most linear in the size of the tree. This implies that if we start with a red-
black tree of size n instead of an empty tree, after 2(n) updates, rebalancing
will again be amortized constant.
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Appendix: The Operations

Update Operations

wy —1 wq
gw; >1 — — O witws
1 1 w2 w3

(insert) (delete)

Rebalancing Operations

0 o ROOT 1
—
0 0

(red-root)
wi > 1 wi—1 wyp > 1 wi —1
A ATEEE GRS
0 0 0 0
(red-pushl) (red-push2)
wy >1 wi
wy>1 — 0 /X <X /\
wao
(red-decl) (red-dec2)
1>1
w; >1 0 ROOT _, g1 w2>1</\ /\
(weight-root) (weight- temp)
wy >1 C/\ 1 wy >1 % C/\
wg —1 w3z >0 wy—1
(weight-decl) (weight-dec2)
w1 wy+1
w1 wy+1
C/D\) — wo >1 g% — wo —1
wo >1 w3z >1 wg —1 w3z —1
w3z >0 wyg >0 w3
(weight-dec3) (weight-push)
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