
The Relative Worst Order Ratio
Applied to Paging

Joan Boyar

Department of Mathematics and Computer Science

University of Southern Denmark, Odense

Joint work with

Lene M. Favrholdt

Kim S. Larsen

University of Southern Denmark

OLA 2004 – p.1/44

Paging Problem

Cache: k pages

Slow memory: N > k pages

Request sequence: sequence of page
numbers

Fault: page requested not in cache

Cost: 1 per fault to bring page into cache

Goal: minimize cost
OLA 2004 – p.2/44

Refinements of
competitive analysis

Max/Max Ratio
[Ben-David, Borodin 94]

Compares A to OPT
on worst sequences of length n.

Random Order Ratio
[Kenyon 95]

Compares A to OPT
on random ordering of same sequence.

OLA 2004 – p.3/44

Relative Worst Order
Ratio

AW (I) : A
′s performance on worst permutation of I wrt. A

Intuitively: WRA,B = worst-case AW (I)
BW (I)

on long I

=

B (K)

A (K)

B (J)
A (J)

B (L)

A

A

B (O)

B (M)
W

W

W

W W

W

W

(I)A B

A

W W

W

(I)

AW(N)=

W (M)

BW (N)

(O)

(L)W

OLA 2004 – p.4/44

Relative Worst Order
Ratio

[Boyar,Favrholdt 03]
Formally:

cl(A, B) = sup {c | ∃b : ∀I : AW(I) ≥ c BW(I) − b}

cu(A, B) = inf {c | ∃b : ∀I : AW(I) ≤ c BW(I) + b} .

If cl(A, B) ≥ 1 or cu(A, B) ≤ 1, the algorithms are
comparable. Then the relative worst-order ratio
WRA,B is defined.

Otherwise, WRA,B is undefined.
OLA 2004 – p.5/44

Relative Worst Order
Ratio

cl(A, B) = sup {c | ∃b : ∀I : AW(I) ≥ c BW(I) − b}

cu(A, B) = inf {c | ∃b : ∀I : AW(I) ≤ c BW(I) + b} .

If cl(A, B) ≥ 1, then WRA,B = cu(A, B), and

if cu(A, B) ≤ 1, then WRA,B = cl(A, B) .

OLA 2004 – p.6/44

Relative Worst Order
Ratio

cl(A, B) ≥ 1 or cu(A, B) ≤ 1:
One algorithm is at least as good as the other.

WRA,B bounds how much better.

Values of WRA,B:

minimization maximization
A better than B < 1 > 1

B better than A > 1 < 1

OLA 2004 – p.7/44

Algorithms:
LRU vs. FWF

LRU – Least Recently Used
FWF – Flush When Full
Both have competitive ratio k.

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2〉

Total cost LRU = 8
Total cost FWF = 20

OLA 2004 – p.8/44

FWF vs. LRU

ILRU – worst ordering of I for LRU

∀I FWFW (I) ≥ FWF(ILRU) ≥ LRUW (I)

Thus, cl(FWF, LRU) ≥ 1 holds.

OLA 2004 – p.9/44

FWF vs. LRU

In = 〈1, 2, .., k, k + 1, k, ...3, 2〉n

FWFW (In) = 2kn

Worst ordering for LRU:
〈2, ..., k, k + 1, 1〉n, 〈2, ..., k〉n

LRUW (In) = n(k + 1) + k − 1

Theorem. WRFWF,LRU ≥ 2k
k+1

Theorem. WRFWF,LRU = 2k
k+1

OLA 2004 – p.10/44

Look-Ahead

Model: A sees request + next l requests:
Look-ahead(l)

On-line → Look-ahead(l) → OPT

Fact 3: k is still best possible competitive ratio,

even with look-ahead l.

OLA 2004 – p.11/44

Other Models of
Look-Ahead

Resource-bounded look-ahead [Young 91]

Strong look-ahead [Albers 93]

Natural look-head [Breslauer 98]

OLA 2004 – p.12/44

Look-ahead

LRU(ℓ):

Sees current page and next l pages.

Avoids evicting pages it sees.

Evicts l.r.u. among others in cache.

First show cl(LRU, LRU(ℓ)) ≥ 1 holds:
Theorem. For any sequence I,
LRUW (I) ≥ LRU(ℓ)W (I).

OLA 2004 – p.13/44

LRU vs. LRU (ℓ)

Sequence I. Partition into phases:
LRU(ℓ) faults k + 1 times per phase.
Suppose ≤ k distinct pages in phase P .

〈... p1, ..., p, ..., q, ..., p, ..., ps
︸ ︷︷ ︸

phase P ; k+1 faults for LRU(ℓ)

, ps+1, ...〉

Page p evicted when q requested.

Least recently used not among next ℓ.

OLA 2004 – p.14/44

LRU vs. LRU (ℓ)

Case p not among next ℓ:

〈...p1, ..., p , ..., q, ...,
︸ ︷︷ ︸

P ′⊂P

p, ..., ps, ps+1, ...〉

P ′ has q and ≥ k − 1 distinct pages.

Phase P has ≥ k + 1 distinct pages.

OLA 2004 – p.15/44

LRU vs. LRU (ℓ)

Case p not among next ℓ:

〈...p1, ..., p , ..., q, ...,
︸ ︷︷ ︸

P ′⊂P

p, ..., ps, ps+1, ...〉

P ′ has q and ≥ k − 1 distinct pages.
Phase P has ≥ k + 1 distinct pages.

Case p among next ℓ:

〈...p1, ..., p, ..., q , ...,
︸︷︷︸

P ′′⊂P

p, ..., ps, ps+1, ...〉

≥ k − 1 distinct in P ′′; ≥ k + 1 in P .
OLA 2004 – p.16/44

LRU vs. LRU (ℓ)

Process I by phases.
Example sequence, k = 5 and ℓ = 2:

〈1, 2, 3, 4, 5, 6, || 5, 7, 1, 8, 4, 2, 5, 9, 3〉

Reorder phase with new pages first;
others in order from last phase.

〈1, 2, 3, 4, 5, 6, || 7, 8, 9, 1, 2, 3, 4, 5, 5〉

LRU faults on ≥ as many as LRU(ℓ).

OLA 2004 – p.17/44

LRU vs. LRU (ℓ)

Consider In = 〈1, 2, .., k, k + 1〉n.
In has only k + 1 pages.
LRU faults on every page.

Suppose l ≤ k − 1.
Whenever LRU(ℓ) faults (after first k faults),
it doesn’t fault on next l requests.

Suppose l ≥ k.
LRU(ℓ) faults on ≤ 1 page out of k.

Theorem. WRLRU,LRU(ℓ) ≥ min{l + 1, k}.
OLA 2004 – p.18/44

Retrospective-LRU

Mimic the optimal algorithm, LFD.
Phases with marking:
Basic Ideas

Remove marks at start of new phase.

Mark a requested page if in LFD’s cache.

Avoid evicting marked pages if possible.

Within the marked/unmarked groups, evict using LRU.

Start new phase if 2nd fault on same page.

OLA 2004 – p.19/44

RLRU: request r to page p

if p is not in cache then

if there is no unmarked page then

evict the least recently used page in cache

else

evict the least recently used unmarked page

if second fault on p in current phase then

unmark all pages and start a new phase with r

if p was in LFD’s cache just before this request then

mark p

else

if p is different from the previous page then

mark p

OLA 2004 – p.20/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

Total cost = 0

Cache initially empty.

OLA 2004 – p.21/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

1

Total cost = 1

Cache filling up.

OLA 2004 – p.22/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

1 2

Total cost = 2

Cache filling up.

OLA 2004 – p.23/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

1 2 3

Total cost = 3

Cache filling up.

OLA 2004 – p.24/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

1 2 3 4

Total cost = 4

Cache filling up.

OLA 2004 – p.25/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

1 2 3 4 5

Total cost = 5

Cache filling up.

OLA 2004 – p.26/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

6 2 3 4 5

Total cost = 6

Least recently used evicted.

OLA 2004 – p.27/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

6 1 3 4 5

Total cost = 7

Least recently used evicted.
Page marked.

OLA 2004 – p.28/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

6 1 2 4 5

Total cost = 8

Least recently used unmarked evicted.
Page marked.

OLA 2004 – p.29/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

6 1 2 3 5

Total cost = 9

Least recently used unmarked evicted.
Page marked.

OLA 2004 – p.30/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

6 1 2 3 4

Total cost = 10

Least recently used unmarked evicted.
Page marked.

OLA 2004 – p.31/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

7 1 2 3 4

Total cost = 11

Least recently used unmarked evicted.

OLA 2004 – p.32/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

8 1 2 3 4

Total cost = 12

Least recently used unmarked evicted.

OLA 2004 – p.33/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

8 1 2 3 4

Total cost = 12

No fault!

OLA 2004 – p.34/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

8 1 2 3 4

Total cost = 12

No fault!

OLA 2004 – p.35/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

8 1 2 3 4

Total cost = 12

No fault!

OLA 2004 – p.36/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

8 1 2 3 4

Total cost = 12

No fault!

OLA 2004 – p.37/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

9 1 2 3 4

Total cost = 13

Least recently used unmarked evicted.

OLA 2004 – p.38/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

10 1 2 3 4

Total cost = 14

Least recently used unmarked evicted.

OLA 2004 – p.39/44

RLRU – Execution

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 7, 8, 1, 2, 3, 4, 9, 10〉

Asymptotically, RLRU faults on 2 pages per
group (regardless of ordering).

LRU faults on k + 1 pages per group.

So LRU can be a factor k+1
2 worse than RLRU.

OLA 2004 – p.40/44

Experimental Results

Tested on a collection of traces from various applications:

key word searches in text files

selections and joins in Postgres

external sorting

various kernel operations

Trace lengths vary from 18,533 to 95,723 requests.
Cache sizes powers of two from 8 through 2048.
For higher powers, all pages can fit in cache

(for most sequences).
OLA 2004 – p.41/44

Experimental Results

k sort j1 j2 j3 j4 j5 j6 join pq7 xds

12619 470 8177 4243 7201 25332 4596 7718 9277 10762

16 10736 468 8134 4255 7221 25326 4525 7003 9259 10709

14.92 0.43 0.53 -0.28 -0.28 0.02 1.54 9.26 0.19 0.49

10587 136 8120 4230 7135 25276 4505 6879 9185 10754

64 10402 137 8057 4239 7140 25278 4506 6838 9103 10695

1.75 -0.74 0.78 -0.21 -0.07 -0.01 -0.02 0.60 0.89 0.55

10238 126 8118 4213 7039 25209 4499 6793 8989 10564

256 10166 126 8057 4221 7038 24913 4492 6780 8984 10534

0.70 0.00 0.75 -0.19 0.01 1.17 0.16 0.19 0.06 0.28

9618 126 5060 1921 6709 24024 4476 6042 8674 10190

1024 9532 126 4157 1799 6674 23693 4470 6040 8607 10183

0.89 0.00 17.85 6.35 0.52 1.38 0.13 0.03 0.77 0.07

OLA 2004 – p.42/44

Experimental Results

0%–2% 18%

0%–2% 2%

OLA 2004 – p.43/44

Other Results with
Relative Worst Order
Ratio

1. Bin Packing: Worst-Fit better than Next-Fit.

2. Dual Bin Packing:
First-Fit better than Worst-Fit.

3. Scheduling – minimizing makespan:
Post-Greedy better than putting all jobs on fast
machine, for two related machines.

4. Bin Coloring:
Greedy better than keeping only one open bin.

5. Proportional Price Seat Reservation:
First-Fit better than Worst-Fit.

OLA 2004 – p.44/44

	Paging Problem
	Refinements of \ competitive analysis
	Relative Worst Order Ratio
	Relative Worst Order Ratio
	Relative Worst Order Ratio
	Relative Worst Order Ratio
	Algorithms: \ LRU vs. FWF
	FWF vs. LRU
	FWF vs. LRU
	Look-Ahead
	Other Models of Look-Ahead
	Look-ahead
	$LRU $ vs. $LRU (ell)$
	$LRU $ vs. $LRU (ell)$
	$LRU $ vs. $LRU (ell)$
	$LRU $ vs. $LRU (ell)$
	$LRU $ vs. $LRU (ell)$
	Retrospective-LRU
	DD {RLRU: request r to page p}
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	RLRU -- Execution
	Experimental Results
	Experimental Results
	Experimental Results
	Other Results with Relative Worst Order Ratio

