
E�cient Certi�ed RAT Veri�cation
?

Luís Cruz-Filipe1, Marijn Heule2, Warren Hunt2,
Matt Kaufmann2, and Peter Schneider-Kamp1

1 Department of Mathematics and Computer Science
University of Southern Denmark
{lcf,petersk}@imada.sdu.dk

2 Department of Computer Science
The University of Texas at Austin

{marijn,hunt,kaufmann}@cs.utexas.edu

Abstract. Clausal proofs have become a popular approach to validate
the results of SAT solvers. However, validating clausal proofs in the most
widely supported format (DRAT) is expensive even in highly optimized
implementations. We present a new format, called LRAT, which extends
the DRAT format with hints that facilitate a simple and fast validation
algorithm. Checking validity of LRAT proofs can be implemented using
trusted systems such as the languages supported by theorem provers. We
demonstrate this by implementing two certi�ed LRAT checkers, one in
Coq and one in ACL2.

1 Introduction

Satis�ability (SAT) solvers are used in many applications in academia and in-
dustry, for example to check the correctness of hardware and software [5,8,9]. A
bug in such a SAT solver could result in an invalid claim that some hardware
or software model is correct. In order to deal with this trust issue, we believe a
SAT solver should produce a proof of unsatis�ability [18]. In turn, this proof can
and should be validated with a trusted checker. In this paper we will present a
method and tools to do this e�ciently.

Early work on proofs of unsatis�ability focused on resolution proofs [33,14].
In short, a resolution proof states how every new clause can be constructed
using resolution steps. Resolution proofs are easy to validate, but di�cult and
costly to produce from today's SAT solvers [20]. Moreover, several state-of-the-
art solvers use techniques, such as automated re-encoding [25] and symmetry
breaking [11,21], that go beyond resolution, and therefore cannot be expressed
using resolution proofs.

An alternative method is to produce clausal proofs [15,29,19], that is, se-
quences of steps that each modify the current formula by specifying the deletion
of an existing clause or the addition of a new clause. Such proofs are supported
by all state-of-the-art SAT solvers [6]. The most widely supported clausal proof

? Supported by the National Science Foundation under grant CCF-1526760 and by the
Danish Council for Independent Research, Natural Sciences, grant DFF-1323-00247.

format is called DRAT [16], which is the format required by the recent SAT
competitions3. The DRAT proof format was designed to make it as easy as pos-
sible to produce proofs, in order to make it easy for implementations to support
it [31]. DRAT checkers increase the con�dence in the correctness of unsatis�a-
bility results, but there is still room for improvement, i.e., by checking the result
using a highly-trusted system [10,22,28]. The only mechanically-veri�ed checkers
for DRAT [32] or RUP [14] are too slow for practical use. This holds for certi�ed
SAT solving [7,26,27] as well.

Our tool chain works as follows. When a SAT solver produces a clausal proof
of unsatis�ability for a given formula, we validate this proof using a fast non-
certi�ed proof checker, which then produces an optimized proof with hints. Then,
using a certi�ed checker, we validate that the optimized proof is indeed a valid
proof for the original formula. We do not need to trust whether the original proof
is correct. In fact, the non-certi�ed checker might even produce an optimized
proof from an incorrect proof: since our non-certi�ed checker trims the proof
starting from the step that added the empty clause and chaining back through
the steps that are necessary to support that step, if the proof contains incorrect
steps that are not needed to support the addition of the empty clause, these will
be ignored.

Validating clausal proofs is potentially expensive [31]. For each clause addi-
tion step in a proof of unsatis�ability, unit clause propagation (explained below)
should result in a con�ict when performed on the current formula, based on an
assignment obtained by negating the clause to be added. Thus, we may need
to propagate thousands of unit clauses to check the validity of a single clause
addition step. Scanning over the formula thousands of times for a single check
would be very expensive. This problem has been mitigated through the use of
watch pointers. However, validating clausal proofs is often costly even with watch
pointers.

In this paper we �rst present the new expressive proof format LRAT and af-
terwards show that this proof format enables the development of e�cient certi�ed
proof checkers. This work builds upon previous work of some of the co-authors
[12], as the LRAT format and the certi�ed Coq checker presented here extend
the GRIT format and the certi�ed Coq checker presented there, respectively.
Additionally, we implemented an e�cient certi�ed checker in the ACL2 theorem
proving system, extending [32].

The LRAT format poses several restrictions on the syntax in order to make
validation as fast as possible. Each clause in the proof must be suitably sorted.
This allows a simple check that the clause does not contain duplicate or com-
plementary literals. Hints are also sorted in such a way that they become unit
from left to right. Finally, resolution candidates are sorted by increasing clause
index; this allows scanning the formula once.

This paper is structured as follows. In Section 2 we brie�y recapitulate the
checking procedure for clausal proofs based on the DRAT format. The novel
LRAT format is introduced in Section 3. Section 4 presents an algorithm for

3 see http://satcompetition.org

http://satcompetition.org

verifying LRAT proofs, and discusses its worst-case complexity. We demonstrate
the bene�ts of LRAT by extracting two certi�ed checkers for the format: one in
Coq (Section 5) and one in ACL2 (Section 6). We evaluate the checkers and the
potential of LRAT in Section 7. Finally, we draw some conclusions in Section 8.

Related Work. Independent of our work, Peter Lammich has developed a new
format called GRAT and a certi�ed checker based on Isabelle/HOL [23]. Both
GRAT and LRAT build on the ideas from [12] and enrich DRAT proofs in the
same way. As a consequence, there are now three di�erent certi�ed checkers for
enriched DRAT proofs based on three major theorem provers. While equivalent
from a theoretical standpoint, these checkers di�er by tool chains, performance
characteristics, and the extents and contents of the trusted base.

2 Background on Clausal Proof Checking

Consider a formula, or set of clauses implicitly conjoined, where each clause
is a list of literals (Boolean proposition letters or their negations), implicitly
disjoined. Satis�ability (SAT) solvers decide the question of whether a given
formula is satis�able, that is, true under some assignment of true and false values
to the Boolean proposition letters of the formula. A formula is unsatis�able if
there is no assignment under which the formula is true.

Example 1. Consider the formula below, which we will use as a running example:

F =(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧
(¬x1 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ ¬x4)

Each step in a clausal proof is either the addition or the deletion of a clause.
Each clause addition step should preserve satis�ability; this should be checkable
in polynomial time. The polynomial time checking procedure is described in
detail below. Clause deletion steps need not be checked, because they trivially
preserve satis�ability. The main reason to include clause deletion steps in proofs
is to reduce the computational and memory costs to validate proofs.

A clause with only one literal is called a unit clause. Unit clauses are used to
simplify CNF formulas via an algorithm called Unit Clause Propagation (UCP).
UCP works as follows: for each unit clause (l), all other clauses containing l
are removed from the formula, and all literal occurrences of l̄ are removed from
all clauses in the formula. Notice that this can result in new unit clauses. UCP
terminates when either no literals can be removed, or when it results in a con�ict,
i.e., all literals in a clause have been removed.

If C is a clause, then C denotes its negation, which is a conjunction of all
negated literals in C. A clause C has the property Asymmetric Tautology (AT)
with respect to a CNF formula F i� UCP on F ∧ (C) results in a con�ict. This
operational de�nition is also known as Reverse Unit Propagation (RUP). The
core property used in the DRAT format is Resolution Asymmetric Tautology
(RAT). A clause C has the RAT property with respect to a CNF formula F if

either it has the AT property, or there exists a literal l ∈ C (the pivot) such that
for all clauses D in F with ¬l ∈ D, the clause C ∨ (D \ {¬l}) has the property
AT with respect to F . In this case, C can be added to F while preserving
satis�ability. The proof of this last property is included in our formalization.

DRAT proof checking works as follows. Let F be the input formula and P
be the clausal proof. At each step i, the formula is modi�ed. The initial state is:
F0 = F . At step i > 0, the ith line of P is read. If the line has the pre�x d, then
the clause C described on that line is removed: Fi = Fi−1 \ {C}. Otherwise, if
there is no pre�x, then C must have the RAT property with respect to formula
Fi−1. This must be validated. If the RAT property can be validated, then the
clause is added to the formula: Fi = Fi−1 ∧ C. If the validation fails, then the
proof is invalid.

The empty clause, typically at the end of the proof, should have the AT
property, as it does not have a �rst literal.

3 Introducing the LRAT Format

The Linear RAT (LRAT) proof format is based on the RAT property, and it
is designed to make proof checking as straightforward as possible. The purpose
of LRAT proofs is to facilitate the implementation of proof validation software
using highly trusted systems such as theorem provers. An LRAT proof can be
produced when checking a DRAT proof with a non-certi�ed checker (cf. the end
of this section).4

The most costly operation during clausal proof validation is �nding the unit
clauses during unit propagation. The GRIT format [12] removes this problem
by requiring proofs to include hints that list all unit clauses. This makes it
much easier and faster to validate proofs, because the checker no longer needs to
�nd the unit clauses. However, the GRIT format does not allow checking of all
possible clauses that can be learned by today's SAT solvers and are expressible
in the DRAT format.

The LRAT format extends the GRIT format to remove this limitation, by
adding support for checking the addition of clauses justi�ed by the non-trivial
case of the RAT property. For e�ciency, the LRAT format requires that all
clauses containing the negated pivot be speci�ed. Furthermore, for each resolvent
it has to be speci�ed how to perform UCP, as is done for AT in the GRIT
approach. In addition, the pivot must be the �rst literal in the clause being
added.

While the LRAT format is semantically an extension of the GRIT format,
we updated two aspects. First, the clauses from the original CNF are not in-
cluded, as this required veri�cation that these clauses do indeed occur in the

4 DRAT proofs and LRAT proofs are syntactic objects that do not necessarily rep-
resent valid proofs. However, they are produced by tools that should only generate
objects that correspond to semantically valid proofs, so we adopt this terminology.
By �validating a DRAT/LRAT proof�, we mean verifying by independent means that
such an object indeed represents a valid proof.

CNF formula

p cnf 4 8

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

-1 -3 -4 0

1 3 4 0

-1 2 4 0

1 -2 -4 0

DRUP format

1 2 0

d 1 -3 2 0

1 3 0

d 1 4 3 0

1 0

d 1 3 0

d 1 2 0

d 1 -4 -2 0

2 0

d -1 4 2 0

d 2 -4 3 0

0

GRIT format

1 1 2 -3 0 0

2 -1 -2 3 0 0

3 2 3 -4 0 0

4 -2 -3 4 0 0

5 -1 -3 -4 0 0

6 1 3 4 0 0

7 -1 2 4 0 0

8 1 -2 -4 0 0

9 1 2 0 1 6 3 0

0 1 0

10 1 3 0 9 8 6 0

0 6 0

11 1 0 10 9 4 8 0

0 10 9 8 0

12 2 0 11 7 5 3 0

0 7 3 0

13 0 11 12 2 4 5 0

LRAT format

9 1 2 0 1 6 3 0

9 d 1 0

10 1 3 0 9 8 6 0

10 d 6 0

11 1 0 10 9 4 8 0

11 d 10 9 8 0

12 2 0 11 7 5 3 0

12 d 7 3 0

13 0 11 12 2 4 5 0

Fig. 1. A CNF formula and three similar proofs of unsatis�ability in the DRUP, GRIT
and LRAT format, respectively. Formula clauses are shown in normal font, deletion in-
formation in italic, learned clauses underlined, and unit propagation information doubly
underlined. The proofs do not have clauses based on the RAT property. The spacing
shown aims to improve readability, but extra spacing does not e�ect the meaning of a
LRAT �le.

original CNF. The advantage of working only with a subset of clauses from the
original CNF can be achieved by starting with a deletion step for clauses not
relevant for the proof. Second, the syntax of the deletion information has been
extended to include a clause identi�er. To be recognized, deletion statements are
now identi�ed with lines that start with an index followed by �d�. This change
makes the format stable under permutations of lines. In practice, checkers expect
proof statements in ascending order, which easily can be achieved by sorting the
lines numerically. Stability under permutation is useful, as non-certi�ed checkers
performing backward analysis often output the steps in a di�erent order than
the one needed. This property ensures that e.g. deletions are performed at the
right point of time.

To demonstrate these two changes, we �rst consider an example, which does
not require the RAT property. Figure 1 shows an original CNF, the DRUP
proof obtained by a SAT solver, the GRIT version of that proof, and, �nally, the
equivalent LRAT proof.

To specify the addition of a clause justi�ed by the RAT property, we extend
the format used for the AT property in GRIT. The line starts with the clause
identi�er of the new clause followed by the 0-terminated new clause. The �rst
literal of the new clause is required to be the pivot literal. Next, for each clause
with clause identi�er i containing the negated pivot, we specify the (negative)

CNF formula

p cnf 4 8

1 2 -3 0

-1 -2 3 0

2 3 -4 0

-2 -3 4 0

-1 -3 -4 0

1 3 4 0

-1 2 4 0

1 -2 -4 0

DRAT format

1 0

d 1 -4 -2 0

d 1 4 3 0

d 1 2 -3 0

2 0

d -1 2 4 0

d 2 -4 3 0

0

LRAT format

9 1 0 -2 6 8 -5 1 8 -7 6 1 0

9 d 8 6 1 0

10 2 0 9 7 5 3 0

10 d 7 3 0

11 0 9 10 2 4 5 0

Fig. 2. The LRAT format with the RAT property (with original clauses in normal font,
deletion information in italic, learned clauses underlined, unit propagation information
doubly underlined, and resolution clauses in bold).

integer −i followed by a (possibly empty) list of (positive) clause identi�ers used
in UCP of the new clause with clause i.

For example, consider the �rst line of the LRAT proof in Figure 2:

9 1 0 -2 6 8 -5 1 8 -7 6 1 0

The �rst number, 9 expresses that the new clause will get identi�er 9. The
numbers in between the identi�er and the �rst 0 are the literals in the clause.
In clause of clause 9 this is only literal 1. The �rst 0 is followed by the hints.
All hints are clause identi�ers or their negations. Positive hints express that
the clause becomes unit or falsi�ed. Negative hints express that the clause is
a candidate for a RAT check, i.e., it contains the complement of the pivot. In
the example line, there are three such negative hints: -2, -5, and -7. The LRAT
format prescribes that negative literals are listed in increasing order of their
absolute value.

After a negative hint, there may be positive hints that list the identi�ers of
clauses that become unit and eventually falsi�ed. For example, assigning false
to the literal in the new clause (1) and to the literals in the second clause apart
from the negated pivot (2 and -3) causes the sixth clause to become unit (4),
which in turn falsi�es the eigth clause.

There are two extensions to this kind of simple RAT checking. (1) It is
possible that there are no positive hints following a negative hint. In this case, the
new clause and the candidate for a RAT check have two pairs of complementary
literals. (2) It is also possible that some positive hints are listed before the �rst
negative hint. In this case, these clauses (i.e., whose identi�ers are listed) become
unit after assigning the literals in the new clause to false.

The full syntax of the LRAT format is given by the grammar in Figure 3,
where, for the sake of sanity, whitespace (tabs and spaces) is ignored. Note that,

〈proof〉 = {〈line〉}
〈line〉 = (〈rat〉 | 〈delete〉), “\n”
〈rat〉 = 〈id〉, 〈clause〉, “0”, 〈idlist〉, {〈res〉}, “0”
〈delete〉 = 〈id〉, “d”, 〈idlist〉, “0”
〈res〉 = 〈neg〉, 〈idlist〉
〈idlist〉 = {〈id〉}
〈id〉 = 〈pos〉
〈lit〉 = 〈pos〉 | 〈neg〉
〈pos〉 = “1” | “2” | . . .
〈neg〉 = “-”, 〈pos〉
〈clause〉 = {〈lit〉}, “0”

Fig. 3. EBNF grammar for the LRAT format.

syntactically, AT and RAT lines are both covered by RAT lines. AT is just the
special case where there is a non-empty list of only positive hints.

Producing LRAT proofs directly from SAT solvers would add signi�cant
overhead both in runtime and memory usage, and it might require the addition
of complicated code. Instead, we extended the DRAT-trim proof checker [16]
to emit LRAT proofs. DRAT-trim already supported the emitting of optimized
proofs in the DRAT and TraceCheck+ formats. DRAT-trim emits an LRAT
proof after validation of a proof using the �-L proof.lrat� option.

We implemented an uncerti�ed checker for LRAT in C that achieves runtimes
comparable to the one from [12] on proofs without RAT lines.

4 Verifying LRAT Proofs

We now discuss how to check an LRAT proof. The algorithm we present takes
as input a formula in CNF and an LRAT proof, and returns:

� YES, indicating that the proof has successfully been checked, and a new CNF,
which is satis�able if the input CNF was satis�able;

� or NO, indicating that the proof could not be checked.

We are thus able both to check unsatis�ability (if the formula returned in the �rst
case contains the empty clause) and addition of clauses preserving satis�ability.

The algorithm assumes a CNF to be a �nite map from a set of positive
integers to clauses. We write Ci for the clause with index i. The main step is
checking individual RAT steps, which is done by Algorithm check_rat. We
use the notation ĩ to denote a list [i1, . . . , in].

Lines 4�10 perform UCP on ϕ∧Cj using the clauses referred to by i01, . . . , i
0
n.

If the empty clause is derived at some stage, then Cj has the AT property w.r.t.
ϕ. Otherwise, we store the extended clause C and let p be its �rst element
(line 12). We then check that this clause has the RAT property: we go through
all clauses in ϕ; lines 14 and 15 deal with the trivial cases, while lines 18�24 again

Algorithm 1 Checking a single RAT step

1: procedure check_rat(ϕ, `) . ϕ = {Ci}i∈I is a CNF, ` is a RAT step

2: parse ` as
[
j, Cj , 0, ĩ0, {−ik, ĩk}nk=1

]
3: . instantiate all variables as (vectors of) positive integers
4: C ← Cj . recall that clauses are lists of literals

5: for all i ∈ ĩ0 do

6: C′
i ← Ci \ C

7: if C′
i = ∅ then return YES

8: if |C′
i| ≥ 2 then return NO

9: C ← C++C̄′
i . we use ++ for append

10: end for

11: if C = ∅ then return NO

12: p← (C)1
13: for all i ∈ I do

14: if Ci does not contain p̄ then skip

15: if Ci and C contain dual literals aside from p and p̄ then skip

16: �nd j such that ij = i (from `)
17: if no such j exists then return NO

18: C′ ← C++(Ci \ {p̄})
19: for all m ∈ ĩj do
20: C′

m ← Cm \ C′

21: if C′
m = ∅ then skip to next iteration of line 14

22: if |C′
m| ≥ 2 then return NO

23: C′ ← C′++C̄′
m

24: end for

25: return NO

26: end for

27: return YES

28: end procedure

Algorithm 2 Checking an LRAT proof

1: procedure check_lrat(ϕ, p) . ϕ = {Ci}i∈I is a CNF, p is an LRAT proof
2: for all lines ` of p do

3: if ` can be parsed as 〈delete〉 then
4: remove all clauses Ci with i ∈ 〈idlist〉 from ϕ
5: end if

6: if ` can be parsed as 〈rat〉 then . ` is
[
j, Cj , 0, ĩ0, {−ik, ĩk}nk=1

]
7: call check_rat(ϕ,`)
8: if the result is YES, then add Cj to ϕ
9: if the result is NO, then return NO

10: else

11: return NO

12: end if

13: end for

14: return YES and ϕ
15: end procedure

perform UCP to show that C ′ has the AT property. If the algorithm terminates
and returns YES, we have successfully veri�ed that Cj satis�es the RAT property
with respect to ϕ.

Algorithm check_lrat veri�es an LRAT proof by giving each line denoting
a RAT step to Algorithm check_rat.

Lemma 1 (Termination). Algorithm check_lrat always terminates.

Proof. Straightforward, as all cycles in both algorithms are for loops.

Theorem 1 (Soundness). If the result of running check_lrat on ϕ and an
LRAT proof is YES and ϕ′, then: (i) all the steps in the LRAT proof are valid,
and (ii) if ϕ is satis�able, then ϕ′ is also satis�able.

We skip the proof of this theorem, as this algorithm has been directly translated
to ACL2 and proved sound therein (Section 6).

We now discuss the complexity of these algorithms. We assume e�cient data
structures, so that e.g. �nding an element in a collection can be done in time
logarithmic in the number of elements in the collection. In particular, literals
in clauses are ordered, and we have constant-time access to any position in a
clause. The main challenge is analysing the complexity of a single RAT check.

Lemma 2. Algorithm check_rat runs in time

O (|I| · |`| · (log |I|+ c · log(max(c, |`|)))) ,

where c is the number of literals in the longest clause in ϕ and |`| is the length
of the input line.

Proof. Lines 4, 11, 12 and 27 can obviously be done in constant time, while line 2
can be done in time linear in |`|. Furthermore, the loop in lines 5�10 is the same
as that in lines 19�24 (starting with |C| ≤ |C ′|), so the worst-case asymptotic
complexity of the whole algorithm is that of the loop in lines 13�26.

When reaching line 13, |C| ≤ |`|: each literal in C comes either from Cj

(which is part of `) or from one iteration of the loop in lines 5�10, whose hint is
obtained from `. Similarly, |C ′| ≤ c + |`| throughout the whole cycle: its literals
come either from Ci ∈ ϕ, from C, or from an iteration of the loop in lines 19�24,
whose hint is in a di�erent part of ` than that used to build C.

Line 14 requires looking for a literal in Ci, which can be done in time O(log c).
Line 15 requires looking for |Ci| literals in C, which can be done in time O(c ·
log(|`|)). Line 16 requires �nding an index in the data structure generated from
` in line 2, which can be done in time O(log |`|). Lines 17, 18 and 25 can be done
in constant time.

We now analyze the loop in lines 19�24, observing that it is executed at
most |`| times. The loop begins by retrieving Cm from ϕ, which can be done
in time O(log |I|) if we assume CNFs to be stored e.g. in a binary tree. Line
20 then removes all elements of C ′ from Cm, which can be done e�ciently by
going through Cm and checking whether each element is in C ′; this has a global

complexity of O(c · log(c + |`|)). (Note that, in the successful case � the one we
are interested in � the result is always the empty clause or a single literal.) All
the remaining lines can be done in constant time, so the total time required by
the loop in lines 19�24 is O(|`|(log |I|+ c · log(c + |`|))).

Since the loop in lines 13�26 is executed |I| times, the total time for the
whole algorithm is thus

O (|I| · (log c + c · log |`|+ log |`|+ |`|(log |I|+ c · log(c + |`|)))) .

Since both log c and log |`| are bounded by log(c+ |`|), we can replace log c+ c ·
log(c + |`|) + log |`| by (c + 2) log(c + |`|), obtaining

O (|I| · ((c + 2) · log(c + |`|) + |`|(log |I|+ c · log(c + |`|))))

which we can simplify to

O (|I| · (|`| log |I|+ (|`|+ 2) · c · log(c + |`|))))

or, equivalently,
O (|I| · |`| · (log |I|+ c · log(c + |`|))))

since |`| and |`|+ 2 are asymptotically equivalent. Observing that log(c + |`|) ≤
log(2(max(c, |`|))) = log(2) + log(max(c, |`|)) yields the bound in the lemma.

Theorem 2 (Complexity). The complexity of checking an LRAT proof is

O (n · (|I|+ n) · l (log(|I|+ n) + k · log k))

where n is the number of lines in the DRAT proof, l is the length of the longest
line in the proof, I and c are as before, and k = max(c, l).

Proof. The bound follows from observing that the loop in Algorithm check_lrat

is executed n times (in case of success); in the worst case, all steps are RAT
steps, adding one clause to ϕ (hence the increase in |I| to |I| + n) and poten-
tially making the size of the longest clause in ϕ increase to l (hence raising the
multiplicative factor from c to k in the rightmost logarithmic term).

We make some observations. If we allow only the lengths of the proof n
to grow while keeping all other parameters �xed, the asymptotic complexity
of check_lrat is O(n2 log n). Similarly, if we compare proofs of the same
length but consider variations of the length of the clauses in the original CNF,
the asymptotic complexity is O(c log c). In practice, we observe that algorithm
check_rat typically terminates in line 7; in these cases, the bound in Lemma 2
can be improved to O(|`| · (log |I|+ c log c)).

5 Checking LRAT Proofs in Coq

Our development of a veri�er of LRAT proofs in Coq does not follow Algo-
rithm check_lrat directly. This is due to the fact that we had previously

developed a certi�ed checker for GRIT proofs [12], by extracting an OCaml pro-
gram from a Coq formalization, and we opted for extending this construction. In
particular, the addition of clauses justi�ed by AT (where check_rat returns
YES in line 7) is veri�ed using the original checker.

The complexity of checking the RAT property in our development is bet-
ter than the theoretical upper bound, because we preprocess the LRAT proof
and add additional information to bypass line 15 when it fails. (This prepro-
cessing amounts to checking the proof with an untrusted veri�er, so the overall
complexity including this line is still that of Theorem 2.) The rationale for this
preprocessing is that there is a big overhead in using extracted data structures
(see [24]), which means that, even if the overall complexity of the extracted
checker is optimal, there are large constants that slow down the checker's per-
formance in practice. We work with a pure extracted program, where all data
structures are extracted from their Coq formalizations.5 This means, in particu-
lar, that we do not have lists with direct access. Thus, clauses are represented as
binary search trees, which allows most of the operations to have optimal com-
plexity; the exception is the addition in lines 9, 18 and 23, which takes time
logarithmic in the size of the original clause, but which is dominated by other
steps in the corresponding cycles.

Our experiments show that, with the optimizations enabled by preprocessing,
this checker is fast enough to be used in the largest instances available.

The development of the checker in [12] is modular, with di�erent functions
that verify each type of line in a GRIT proof. We thus extended this set of
functions with a function RAT_check that veri�es RAT lines. This function imple-
ments a modi�ed variant of Algorithm check_rat: the enriched proof indicates
whether we should execute line 15 (and if so, it tells us which literal to look for).
Its soundness theorem states that, if the check succeeds, then the clause given
can be added to the CNF preserving satis�ability. The term c is the given CNF,
while the clause Cj is (pivot::cl) (so the pivot is already singled out), and L

contains the remaining information in the line justifying the RAT step.

Theorem RAT_theorem : ∀ c pivot cl L, RAT_check c pivot cl L = true →
∀ V, satisfies V c →
∃ V, satisfies V (CNF_add (pivot::cl) c).

(For readibility, we omit type injections from the Coq listings.)

We then enrich the overall loop to include the case where the proof includes
RAT lines, and reprove the correctness of the main function refute from [12],
whose task it is to prove unsatis�ability of a given formula. Its arguments are
only the CNF c (given as a list of pairs index/clause) and the preprocessed LRAT
proof (whose type is formalized as Oracle).

Theorem refute_correct : ∀ (c:list (ad * Clause)) (O:Oracle),
refute c O = true → unsat c.

5 With the exception of integers, which are only used as labels and therefore can be
extracted to a native type without compromising soundness of the extracted code.

By extracting refute, we again obtain a correct-by-construction checker for
proofs of unsatis�ability using the full LRAT format. If this checker returns
true when given a particular CNF and proof, this guarantees that the CNF is
indeed unsatis�able. The universal quanti�cation over the oracle ensures that
any errors in its implementation (and in particular in the interface connecting
it to the checker) do not a�ect the correctness of this answer.

Satis�ability-preserving addition of clauses. Algorithm check_lrat is formu-
lated not in terms of unsatis�ability, but of preservation of satis�ability � with
unsatis�ability being a particular case where the empty clause is added. In order
to provide this functionality, we tweaked our checker to return a pair consisting
of a boolean value and a CNF. In the base case (when the input proof is empty),
the checker now returns true (instead of false) together with the CNF currently
stored. If the empty clause is derived at some point, the checker still returns true
as before, but now together with a CNF containing only the empty clause. If
any step fails, we return false and also provide the formula currently stored
(which results from applying the longest initial segment of the LRAT proof that
is veri�able); otherwise we proceed as before.

With these changes, we can still verify unsatis�ability as before, but we can
also provide a target CNF and check that the oracle provides a correct reduction
from the initial CNF to the target. Function enrich o�ers this new functionality.

Theorem enrich_correct : ∀ (c c':list (ad * Clause)) (O:Oracle),
enrich c c' O = true → ICNF_reduces c c'.

(The predicate ICNF_reduces states that any valuation satisfying c can be used
to construct a valuation satisfying c' .)

Results. After adapting the interface to be able to transform proofs in the full
LRAT format into the oracle syntax de�ned above, we tested the extracted
checker on 225 unsatis�ability proofs output by SAT solvers supporting RAT
proofs. See Section 7 for further details.

We also used the possibility of adding new clauses to check the transformation
proof from [17], the only SAT-related step in the original proof of the Boolean
Pythagorean Triples problem that we were unable to verify in [12]. The certi�ed
LRAT checker in Coq was able to verify this proof in 8 minutes and 25 seconds,
including approx. 15 seconds for checking that the formula generated by the
proof coincides with the formula produced by the original SAT solver.

6 LRAT Checker in ACL2

In this section, in order to demonstrate the general applicability of our approach,
we extended the original ACL2-based DRAT checker [30] to permit the checking
of UNSAT proofs in the LRAT format. We have certi�ed this extension using
the ACL2 theorem-proving system.

We outline our formalization below using the Lisp-style ACL2 syntax, with
comments to assist readers unfamiliar with Lisp syntax. Note that embedded
comments begin with a �;� character and continue to the end of a line.

We omit the code here but note that it has been optimized for e�ciency.
In particular, applicative hash tables represent formulas, and are heuristically
cleaned on occasion after deletion; and mutable objects [2] are used for assign-
ments. These techniques reduce the complexity substantially. Of course, correct-
ness of such optimizations was necessarily proved as part of the overall correct-
ness proof. The code and top-level theorem are available from the top-level �le
top.lisp in the full proof development [4], included in the GitHub repository [3]
that holds ACL2 and its libraries. Also see the README �le in that directory. Here
we focus primarily on the statement of correctness.

The top-level correctness theorem is as follows.

(defthm main-theorem

(implies

(and (formula-p formula) ; Valid formula and

(refutation-p proof formula)) ; Valid proof with empty clause

(not (satisfiable formula)))) ; Imply unsatisfiable

The command defthm is an ACL2 system command that demands that the
ACL2 theorem-proving system establish the validity of the claim that follows
the name (in this case main-theorem) of the theorem to be checked.

The theorem above is expressed in terms of the three functions formula-p,
refutation-p, and satisfiable. The �rst of these recognizes structures that
represent sets of clauses; our particular representation uses applicative hash ta-
bles [1]. The function refutation-p recognizes valid proofs that yield a contra-
diction; thus, it calls other functions, including one that performs the necessary
RAT checks. We verify an alleged proof by checking that each of its steps pre-
serves satis�ability.

Finally, we de�ne satisfiable to mean that there exists an assignment
satisfying a given formula. The �rst de�nition says that the given assignment
satis�es the given formula, while the second uses an existential quanti�er to say
that some assignment satis�es the given formula.

(defun solution-p (assignment formula)

(and (clause-or-assignment-p assignment)

(formula-truep formula assignment)))

(defun-sk satisfiable (formula)

(exists assignment (solution-p assignment formula)))

Before our SAT proof checker can be called, an LRAT-style proof is read
from a �le, and during the reading process it is converted into an internal Lisp
format that is used by our checker. Using the ACL2 theorem prover, we have
veri�ed the theorem main-theorem above, which states that our code correctly
checks the validity of a proof of the empty clause.

Results. The ACL2 checker is able to check the validity of adding each of the
68,667 clauses in the transformation proof from [17] in less than 9 seconds. The
certi�ed checking of this LRAT proof is almost as fast as non-certi�ed checking
and conversion of the DRAT proof into the LRAT proof by DRAT-trim. This
is a testament to the e�ciency potential of the LRAT format in particular,
and the approach taken in our work in general. At the moment of writing, the
correspondence between the formula generated by the original SAT solver and
by executing the proof has not been ported yet to the ACL2 checker, but this
can easily be added in a similar way as we did for the Coq checker.

7 Experimental Evaluation

In order to evaluate the potential of the LRAT format, we performed extensive
experiments on benchmarks from the 2016 SAT competition and the 2015 SAT
race. The set of instances we considered consists of the 241 instances from the
main and parallel tracks that could be shown to be UNSAT within 5,000 seconds
using the 2016 competition version of CryptoMiniSat v5 [13]. (CryptoMiniSat
was the only solver from this competition where we were able to obtain a non-
trivial number of RAT lines in most proofs.) All experiments were performed on
identical nodes equipped with dual Intel Xeon E5-2680v3 running at 2.50 GHz
with 64 GByte RAM on CentOS with a 3.10.0 Linux kernel.

For each of these instances, the original CNF and proof were �rst trimmed
and optimized and then output in LRAT using drat-trim in backward checking
mode. A total of 225 out the 241 instances could be successfully processed by
drat-trim within 20,000 seconds. Out of the remaining 16 instances, 12 timed
out, 3 resulted in a segmentation fault and 1 proof could not be veri�ed. In total
there were 381,468,814 lines in the 225 proofs totalling 250 GByte, out of which
3,260,037 were non-trivial RAT lines.

The Coq checker veri�ed 161 out of these 225 instances within a maximum
runtime of 24 hours. For the remaining 64 instances, it timed out (59), ran out
of memory (1), or determined that the proof was invalid (4). The 161 veri�ed
proofs amount to a total of 88 GByte and were processed in just under 3 weeks
of CPU time, or in other words at an average speed of 3 MByte per minute.

The ACL2 checker veri�ed 212 out of the 225 instances within a maximum
runtime of 6,708 seconds, typically being at least an order of magnitude faster
than the Coq checker. For the remaining 13 instances, it ran out of memory (1),
terminated unexpectedly6 (1), or determined that the proofs were invalid (11).
The 212 veri�ed proofs amount to a total of 205 GByte and were processed in
just under 17 hours of CPU time, or in other words at an average speed of 207
MByte per minute.

The alleged LRAT proofs for the 11 instances where veri�cation using the
ACL2 checker failed range in size from 50 MByte to 6.4 GByte. The Coq checker

6 Termination seems to occur due to an error condition of the underlying LISP runtime
system (CCL) used, and could not be reproduced using another system (SBCL).

either agrees with the result (7) or times out (4). We then inspected the smallest
alleged proofs by hand and found that they indeed are not valid LRAT proofs.

Given the size of the proofs involved, determining the reason for a failed
veri�cation is de�nitely a challenge. When the non-certi�ed checker claims that
it successfully veri�ed the proof, but outputs an LRAT proof that cannot be
veri�ed by the certi�ed checker, it seems reasonable to assume that at least the
non-certi�ed checker has bugs. This is because the non-certi�ed checker does
not only transform the proof from one format into another, but also checks the
individual steps.

To summarize the experiments, both certi�ed checkers have been found to be
able to verify LRAT proofs of up to several GByte within reasonable computa-
tional resources. The input data, the executables, and instructions how to rerun
the experiments are available from: http://imada.sdu.dk/~petersk/lrat/

8 Conclusions

We have introduced a novel format for clausal proof checking, Linear RAT
(LRAT), which extends the GRIT format [12] to support checking all techniques
used in state-of-the-art SAT solvers. We have shown that it allows for implement-
ing e�cient certi�ed proof checkers for UNSAT proofs with the RAT property,
both using Coq and using ACL2. The ACL2 LRAT checker is almost as fast as
� and in some cases even faster than � non-certi�ed checking by DRAT-trim
of the corresponding DRAT proof. This suggests that certi�ed checking can be
achieved with a reasonable overhead.

Furthermore, we have shown that our Coq checker's ability to check trans-
formation proofs has allowed us to check the transformation proof from [17], the
only SAT-related step in the original proof of the Boolean Pythagorean Triples
problem that we were unable to verify in [12].

http://imada.sdu.dk/~petersk/lrat/

References

1. ACL2 Community. ACL2 documentation topic: FAST-ALISTS. http:

//www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=

ACL2____FAST-ALISTS.

2. ACL2 Community. ACL2 documentation topic: STOBJ. http://www.cs.utexas.
edu/users/moore/acl2/v7-2/manual/?topic=ACL2____STOBJ.

3. ACL2 Community. ACL2 system and libraries on GitHub. https://github.com/
acl2/acl2/.

4. ACL2 LRAT checker. https://github.com/acl2/acl2/tree/master/books/

projects/sat/lrat/.

5. F. I. amd Zijiang Yang, M. K. Ganai, A. Gupta, and P. Ashar. E�cient SAT-based
bounded model checking for software veri�cation. Theoretical Computer Science,
404(3):256�274, 2008.

6. T. Balyo, H. M. J. H., and M. Järvisalo. Sat competition 2016: Recent develop-
ments. In AAAI 2017, 2017.

7. J. C. Blanchette, M. Fleury, and C. Weidenbach. A veri�ed SAT solver framework
with learn, forget, restart, and incrementality. In IJCAR, pages 25�44, 2016.

8. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satis�ability solving. Formal Methods in System Design, 19(1):7�34, 2001.

9. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Y.
Vardi. Bene�ts of bounded model checking at an industrial setting. In CAV, pages
436�453. Springer, 2001.

10. The Coq proof assistant. https://coq.inria.fr/.

11. J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates
for search problems. In KRÕ96, pages 148�159. Morgan Kaufmann, 1996.

12. L. Cruz-Filipe, J. Marques-Silva, and P. Schneider-Kamp. E�cient certi�ed reso-
lution proof checking. In TACAS, LNCS, accepted for publication.

13. Cryptominisat v5. http://baldur.iti.kit.edu/sat-competition-2016/

solvers/main/cmsat5_main2.zip.

14. A. Darbari, B. Fischer, and J. Marques-Silva. Industrial-strength certi�ed SAT
solving through veri�ed SAT proof checking. In ICTAC, pages 260�274, 2010.

15. E. I. Goldberg and Y. Novikov. Veri�cation of proofs of unsatis�ability for CNF
formulas. In DATE, pages 10886�10891, 2003.

16. M. Heule. The DRAT format and DRAT-trim checker. CoRR, abs/1610.06229,
2016. Source code available from: https://github.com/marijnheule/drat-trim.

17. M. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the Boolean
Pythagorean Triples problem via cube-and-conquer. In SAT 2016, pages 228�245,
2016.

18. M. J. H. Heule and A. Biere. Proofs for satis�ability problems. In All about Proofs,
Proofs for All (APPA), July 2014. http://www.easychair.org/smart-program/

VSL2014/APPA-index.html.

19. M. J. H. Heule, W. A. Hunt Jr., and N. D. Wetzler. Trimming while checking
clausal proofs. In FMCAD, pages 181�188, 2013.

20. M. J. H. Heule, W. A. Hunt Jr., and N. D. Wetzler. Bridging the gap between easy
generation and e�cient veri�cation of unsatis�ability proofs. Softw. Test., Verif.
Reliab., 24(8):593�607, 2014.

21. M. J. H. Heule, W. A. Hunt Jr., and N. D. Wetzler. Expressing symmetry breaking
in DRAT proofs. In CADE, pages 591�606, 2015.

http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/v7-2/manual/?topic=ACL2____STOBJ
http://www.cs.utexas.edu/users/moore/acl2/v7-2/manual/?topic=ACL2____STOBJ
https://github.com/acl2/acl2/
https://github.com/acl2/acl2/
https://github.com/acl2/acl2/tree/master/books/projects/sat/lrat/
https://github.com/acl2/acl2/tree/master/books/projects/sat/lrat/
https://coq.inria.fr/
http://baldur.iti.kit.edu/sat-competition-2016/solvers/main/cmsat5_main2.zip
http://baldur.iti.kit.edu/sat-competition-2016/solvers/main/cmsat5_main2.zip
https://github.com/marijnheule/drat-trim
http://www.easychair.org/smart-program/VSL2014/APPA-index.html
http://www.easychair.org/smart-program/VSL2014/APPA-index.html

22. M. Kaufmann and J. S. Moore. An industrial strength theorem prover for a logic
based on common lisp. IEEE Trans. Software Eng., 23(4):203�213, 1997.

23. P. Lammich. E�cient veri�ed (UN)SAT certi�cate checking. In CADE-26, LNCS.
Springer, 2017. To appear.

24. P. Letouzey. Extraction in Coq: An overview. In CiE 2008, volume 5028 of LNCS,
pages 359�369. Springer, 2008.

25. N. Manthey, M. J. H. Heule, and A. Biere. Automated reencoding of boolean
formulas. In Proceedings of Haifa Veri�cation Conference 2012, 2012.

26. F. Maric. Formal veri�cation of a modern SAT solver by shallow embedding into
Isabelle/HOL. Theor. Comput. Sci., 411(50):4333�4356, 2010.

27. F. Maric and P. Janicic. Formalization of abstract state transition systems for
SAT. Logical Methods in Computer Science, 7(3), 2011.

28. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL � A Proof Assistant for
Higher-Order Logic. Springer, 2002.

29. A. Van Gelder. Producing and verifying extremely large propositional refutations
- have your cake and eat it too. Ann. Math. Artif. Intell., 65(4):329�372, 2012.

30. N. Wetzler, M. J. Heule, and J. Warren A. Hunt. Mechanical veri�cation of SAT
refutations with extended resolution. In ITP 2013, volume 7998 of LNCS, pages
229�244. Springer, 2013.

31. N. Wetzler, M. J. H. Heule, and W. A. Hunt Jr. DRAT-trim: E�cient checking
and trimming using expressive clausal proofs. In SAT, pages 422�429, 2014.

32. N. D. Wetzler, H. M. J. H., and W. A. Hunt Jr. Mechanical veri�cation of SAT
refutations with extended resolution. In ITP, pages 229�244, 2013.

33. L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In DATE, pages
10880�10885, 2003.

	Efficient Certified RAT Verification

