
On-Line Problems with Restri
ted InputA dissertation submitted in partial ful�llment of the requirementsfor the degree of Do
tor of Philosophy in Computer S
ien
eLene Monrad FavrholdtDepartment of Mathemati
s and Computer S
ien
eUniversity of Southern DenmarkMay 1, 2002

Contents
1 Introdu
tion 12 On-Line Problems 32.1 Paging . 32.2 The k-Server Problem . 42.3 Metri
al Task Systems . 42.4 S
heduling . 52.5 Bin Pa
king . 72.6 Dual Bin Pa
king . 82.7 Variable-Sized Bin Pa
king . 82.8 The Seat Reservation Problem . 82.9 Edge Coloring . 92.10 Edge Coloring with a Fixed Number of Colors 92.11 Dial a Ride . 93 Quality Measures 113.1 Competitive Analysis . 113.2 Limitations of Competitive Analysis . 133.3 Re�nements of Competitive Analysis . 133.3.1 Resour
e Augmentation . 143.3.2 A

ommodating Fun
tion . 153.3.3 A

ess Graphs . 163.3.4 Loose Competitive Ratio . 173.3.5 Statisti
al Adversary . 183.3.6 Di�use Adversary . 183.3.7 Random Order . 193.3.8 Reasonable Load . 203.3.9 Comparative Ratio . 203.3.10 The Max/Max Ratio . 203.3.11 Lookahead . 213.3.12 Total A

ess Time . 224 Paging with Lo
ality of Referen
e 234.1 The Model . 234.2 Algorithms . 264.3 Results . 27i

ii CONTENTS4.4 The Max-Model . 284.4.1 A Lower Bound for Deterministi
 Algorithms 284.4.2 LRU is Optimal . 294.4.3 FIFO is Not Quite Optimal . 294.4.4 Marking Algorithms . 314.4.5 LFD . 324.5 The Average-Model . 324.5.1 A Lower Bound for Deterministi
 Algorithms 334.5.2 Upper Bounds . 354.5.3 LRU and FIFO are Optimal . 364.5.4 The Worst Marking Algorithm . 374.5.5 LFD . 394.6 Experiments . 425 Edge Coloring with a Fixed Number of Colors 455.1 Algorithms . 455.2 Results . 455.3 Graphs . 465.4 Basi
s . 465.5 k-Colorable Graphs . 475.5.1 A Performan
e Guarantee for Fair Algorithms 475.5.2 Next-Fit is Worst Possible . 485.5.3 First-Fit is a Little Better . 485.5.4 An Impossibility Result for Deterministi
 Algorithms 505.6 General Graphs . 525.6.1 A Performan
e Guarantee for Fair Algorithms 525.6.2 Next-Fit is Worst Possible . 545.6.3 First-Fit is Not Mu
h Better . 545.6.4 An Impossibility Result for Fair Deterministi
 Algorithms 555.6.5 A General Impossibility Result . 566 Dual Bin Pa
king in Variable-Sized Bins 596.1 Algorithms . 596.2 Results . 606.3 A Tight Performan
e Guarantee . 606.4 Impossibility Results . 606.5 Worst-Fit and Largest-Fit . 636.6 Smallest-Bins-First Algorithms . 647 S
heduling on Two Related Ma
hines 677.1 Non-Preemptive S
heduling . 677.1.1 Previous Results . 677.1.2 Our Results . 687.1.3 Impossibility Results . 697.1.4 The New Algorithms . 707.1.5 Performan
e Guarantees . 717.2 Preemptive S
heduling . 73

CONTENTS iii7.2.1 Preliminaries . 747.2.2 Algorithms for q � 2 . 747.2.3 Algorithms for q > 2 . 757.2.4 General Impossibility Results . 778 Con
lusion 79A Resumé 89B Papers 91B.1 Paging with Lo
ality of Referen
e . 92B.2 Edge Coloring with a Fixed Number of Colors 119B.3 On-Line Maximizing the Number of Items Pa
ked in Variable-Sized Bins 135B.4 Optimal Non-Preemptive Semi-Online S
heduling on Two Related Ma
hines . . 143B.5 Optimal Preemptive Semi-Online S
heduling on Two Related Ma
hines 160

Chapter 1Introdu
tionOn-Line Problems. Many real-life problems are on-line, i.e., information is revealed insmaller pie
es and it is ne
essary to take a
tion on ea
h pie
e of information without knowingthe rest. Hen
e, on-line algorithms di�er from o�-line algorithms in that they make de
isionson an in
omplete basis. On-line problems
ome in two variants, maximization problems wherethe aim is to maximize bene�t and minimization problems where the aim is to minimize
ost.Chapter 2 gives a short survey of on-line problems relevant to this thesis.Measuring On-Line Algorithms. The standard measure for the quality of an on-line al-gorithm is the
ompetitive ratio, whi
h is, roughly speaking, the ratio of the performan
e (i.e.,the
ost/bene�t) of the on-line algorithm to an optimal o�-line algorithm, i.e., an algorithmthat knows the whole input in advan
e and has all the time it needs to
ompute an optimalsolution. The
ompetitive ratio is de�ned formally in Se
tion 3.1.The strength and the weakness of the
ompetitive ratio is that it is a very general measure.Sin
e it is so general and sin
e it is a worst
ase measure, it
annot be expe
ted to give verydetailed information. Indeed, for some problems it fails to re�e
t reality in that it givesresults that are very pessimisti

ompared to empiri
al results and/or it does not distinguishalgorithms that are known to perform very di�erently in pra
ti
e.This has motivated many resear
hers to look for more spe
ialized measures. Many of these
an be seen as re�nements of the
ompetitive ratio. Se
tion 3.3 gives a short survey of su
hspe
ialized measures. The dire
tion taken in this thesis is to exploit knowledge about theinput, sin
e very often it is overly pessimisti
 to assume that nothing
an be predi
ted aboutit. Clearly, if something is known about the input, taking this into a

ount yields a morepre
ise analysis. Furthermore, studying spe
ial
ases with restri
ted input
an sometimesserve as a stepping stone to the more general (and probably harder) analysis.On-Line Problems Studied in this Thesis. Chapters 4, 5, 6, and 7 are based on thepapers [4, 49, 43, 42, 44℄ in
luded in Appendix B. The aim has been to give intuition andoverview rather than des
ribing all te
hni
al details, sin
e these
an be found in the papers.In Chapter 4 we study the paging problem. It is well-known that input sequen
es tothe paging problem exhibit lo
ality of referen
e, i.e., depending on whi
h pages have beenrequested lately, the next page requested is likely to belong to a relatively small set of pages.Our way of modeling lo
ality of referen
e is inspired by Denning's working set model. The1

2 CHAPTER 1. INTRODUCTIONmodel is very simple, and it enables us to use the fault rate as the quality measure. This is amore natural measure than the
ompetitive ratio, and our results seem to be mu
h
loser toreality than those obtained for the
ompetitive ratio.In Chapter 5 we study a version of the edge
oloring problem, where a limited number of
olors are available, and the aim is to
olor as many edges as possible. Edges arrive one byone, and ea
h edge must be
olored or reje
ted without knowledge about future edges. Thisproblem has not been studied before. We study the general
ase as well as the
ase, where thenumber of
olors available are su�
ient for an optimal o�-line algorithm to
olor all edges ofthe graph.In Chapter 6 we study dual bin pa
king in variable sized bins. That is, a �xed numberof bins, possibly of unequal sizes, are given, and the goal is to maximize the number of itemspa
ked in the bins. We study a very natural
lass of algorithms, namely those that neverreje
t an item unless it does not �t in any bin. Sin
e, on general sequen
es, no su
h algorithm
an pa
k a
onstant fra
tion of the items in the worst
ase, we restri
t the input sequen
es tothose that
an be pa
ked
ompletely by an optimal o�-line algorithm.Finally, in Chapter 7 we study a simple s
heduling problem. The input is a sequen
e of jobsto be s
heduled on two ma
hines with possibly di�erent speeds. The goal is to minimize thetime it takes to
omplete all jobs. We study preemptive s
heduling as well as non-preemptives
heduling. In preemptive s
heduling it is allowed to break a job in smaller pie
es and run thepie
es in disjoint time intervals, possibly on di�erent ma
hines. We give optimal algorithmsfor the spe
ial
ase, where the job sizes are non-in
reasing.For the general
ase, optimal algorithms have already been identi�ed. However, these havenot been generalized to optimal algorithms for any number of ma
hines. For non-preemptives
heduling, algorithms with a
onstant
ompetitive ratio have been devised. For preemptives
heduling, nothing is known so far ex
ept for the
ase of non-de
reasing speed ratios.Danish Summary. A Danish summary
an be found in Appendix A.Notation. For any algorithm A and any input sequen
e �, A(�) denotes the
ost/bene�t ofrunning A on �. Similarly, OPT(�) denotes the optimal solution to �, i.e., the
ost/bene�t ofrunning an optimal o�-line algorithm on �.Hk denotes the kth harmoni
 number, i.e., Hk =Pki=1 1i � ln(k + 1).

Chapter 2On-Line ProblemsThe on-line problems investigated in this thesis are Paging with Lo
ality of Referen
e, EdgeColoring with a Fixed Number of Colors, Dual Bin Pa
king in Variable-Sized Bins, andS
heduling on Two Related Ma
hines to Minimize Makespan, see Chapters 4, 5, 6, and 7.In this se
tion we de�ne these problems and a few other on-line problems that are relevant tothis thesis and give a brief des
ription of previous results. For a more thorough des
ription,see [54℄, where many of these problems are surveyed.When talking about performan
e guarantees for algorithms for minimization (maximiza-tion) problems, we mean upper (lower) bounds on the
ompetitive ratio. Similarly, impossi-bility results are lower (upper) bounds on the
ompetitive ratio.2.1 PagingIn the paging problem, we are dealing with two levels of memory that
an store pages of equalsizes. There is a large, slow memory and a smaller, fast memory, often
alled the
a
he. The
a
he
an hold k pages. The input is a sequen
e of requests to pages of the slow memory.Whenever a page is requested that is
urrently not in the
a
he, it must be brought from theslow memory to the
a
he at a
ost of 1. This is
alled a page fault. To make room for thenew page, a page must be evi
ted from the
a
he. The page to be evi
ted must be
hosenwithout any knowledge of future requests.Some well-studied paging algorithms are the following.LRU (Least Re
ently Used) On a page fault, LRU evi
ts the page that has not beenrequested for the longest time.FIFO (First In First Out) On a page fault, FIFO evi
ts the page that has been in
a
hefor the longest time.Marking Algorithms This is a whole
lass of algorithms that work in phases. Ea
h phase
ontains requests to exa
tly k distin
t pages, and the �rst page of a phase is not requestedin the previous phase. Thus, phases are maximal in the sense that if a phase is extendedto �the right�, it will
ontain more than k distin
t pages.Ea
h time a page is requested, it is marked (unless it is already marked). Only unmarkedpages are evi
ted. At the end of a phase, all pages in the
a
he are marked. The marks3

4 CHAPTER 2. ON-LINE PROBLEMSare all erased, and a page
an be evi
ted to make room for the �rst page requested inthe next phase.A popular randomized marking algorithm is the algorithm MarkR that
hooses theunmarked page to be evi
ted uniformly at random.Note that LRU is a marking algorithm and FIFO is not. A rather primitive marking algorithmis the algorithm FWF (Flush When Full). When a phase ends, it simply evi
ts all pages fromthe
a
he.For the paging problem, the results of
ompetitive analysis are very negative
ompared towhat is observed in pra
ti
e. Any deterministi
 on-line paging algorithm has a
ompetitiveratio of at least k [95℄, the size of the
a
he, and any randomized algorithm has a
ompetitiveratio of at least Hk [51℄.Several deterministi
 algorithms are k-
ompetitive, i.e., they have optimal
ompetitiveratio. These in
lude FIFO and any marking algorithm [73℄. This does not re�e
t reality well,sin
e empiri
al results show that LRU is better than FIFO. Moreover, it seems unnatural thatan algorithm as primitive as FWF is optimal.The randomized marking algorithmMarkR is 2Hk-
ompetitive [51℄ (the exa
t
ompetitiveratio of MarkR is 2Hk � 1 [1℄). There are more
ompli
ated randomized paging algorithmsthat a
hieve the optimal
ompetitive ratio of Hk [85, 1℄.2.2 The k-Server ProblemThe k-server problem is a generalization of the paging problem and was proposed in [83℄. Ametri
 spa
e and k servers are given. The servers are pla
ed on points in the metri
 spa
e.The input is a sequen
e of requests to points in the metri
 spa
e. Ea
h request must be servedby moving a server to the requested point (unless a server is already pla
ed on that point).Ea
h request must be served without knowledge of future requests. The
ost to be minimizedis the total distan
e traveled by the k servers.The paging problem is a spe
ial
ase of the k-server problem, sin
e it
an be modelled bya uniform metri
 spa
e with one point for ea
h page in the slow memory and one server forea
h slot in the fast memory. Fet
hing a page to the fast memory
orresponds to putting aserver on the
orresponding point.The work fun
tion algorithm is (2k � 1)-
ompetitive in any metri
 spa
e [78℄. Sin
e thek-server problem is a generalization of the paging problem,
learly k is a lower bound on the
ompetitive ratio for the problem. It has been
onje
tured that the
ompetitive ratio of theproblem is k [83℄.2.3 Metri
al Task SystemsThis problem was formulated in [21℄. Again, we have a metri
 spa
e, but only one server. Thepoints of the metri
 spa
e are
alled states. Let N denote the number of states. The input isa sequen
e of tasks. A task is
hara
terized by an N -ary ve
tor giving the
ost of servi
ingthe task in ea
h state. Ea
h task must be served without any knowledge of future tasks. Forea
h task, the server is moved to a new state (or stays where it is) at a
ost
orresponding tothe distan
e between the old and the new state. The task is then pro
essed in the new stateat a
ost given by the
ost ve
tor of the task.

2.4. SCHEDULING 5Metri
al task systems generalize many on-line problems. To see that the k-server problemis a spe
ial
ase,
onsider a metri
 spa
e
onstru
ted from a given k-server problem in thefollowing way. The metri
 spa
e has exa
tly one point for ea
h subset of the k-server metri
spa
e of size k. It
an be assumed without loss of generality that the k servers always o

upy kdistin
t points. Thus, the points of the new metri
 spa
e
orrespond to the possible pla
ementsof the k servers. The distan
e between two points in the new metri
 spa
e is the minimum
ostof moving the servers from the
on�guration
orresponding to one point to the
on�guration
orresponding to the other point.The work fun
tion algorithm has an optimal
ompetitive ratio of 2N � 1 [21℄. Sin
e theproblem is very general, there are several important spe
ial
ases for whi
h this does not yielda good ratio. For instan
e, for the paging problem it gives a ratio of 2�Mk �� 1, ifM is the sizeof the slow memory.2.4 S
hedulingIn the basi
 s
heduling problem, m ma
hines/pro
essors are given and the input is a sequen
eof jobs, ea
h
hara
terized by its size (running time). The goal is to s
hedule ea
h job on ama
hine, su
h that the time it takes to
omplete all jobs is minimized. This time is
alledthe makespan. In the on-line version, ea
h job must be s
heduled without any knowledge offuture jobs.This basi
 problem has many appli
ations and has been studied in several papers [3, 7, 12,30, 31, 41, 45, 48, 55, 59, 60, 94, 92, 99℄. Let m be the number of ma
hines. The algorithm ListS
heduling s
hedules ea
h job on a
urrently least loaded ma
hine. This algorithm was studiedin [60℄ for the o�-line problem, but sin
e it s
hedules ea
h job without exploiting any knowledgeof the future jobs, it also works for the on-line problem. It was shown to have a
ompetitiveratio of 2� 1m (though it was not
alled the
ompetitive ratio). For m = 2 and m = 3, this isbest possible for deterministi
 algorithms [48℄. For m � 2, the algorithm M2 des
ribed in [3℄is 1:923-
ompetitive. For m � 13, this is better than 2 � 1m . If m � 64, the algorithm MRpresented in [55℄ is even better. Its
ompetitive ratio tends to 1 +p(1 + ln 2)=2 < 1:9201 asm tends to in�nity. For m � 4, the
ompetitive ratio of any deterministi
 algorithm is at least1:707 [48℄, and for m � 80, it is more than 1:853 [59℄.On two ma
hines, the optimal
ompetitive ratio for randomized algorithms is 43 [12℄.There are many variations on the basi
 s
heduling problem. For instan
e, the ma
hinesmay have di�erent speeds. In this
ase, List S
heduling is de�ned su
h that it s
hedules ea
hjob on a ma
hine where it will �nish earliest possible. In the
ase of identi
al ma
hines, thetwo de�nitions are equivalent. If ea
h ma
hine has a
ertain speed, independent of the jobs,the ma
hines are said to be uniformly related.For deterministi
 algorithms, the
ase of m = 2 is
losed; in this
ase List S
heduling isoptimal. Let q be the speed ratio, i.e., assume that one ma
hine is q times faster than theother. The
ompetitive ratio is 1 + qq+1 for q � � and 1 + 1q for q � � (� � 1:618 is thegolden ratio). Thus, the highest (worst)
ompetitive ratio is � and is attained at q = �. Theperforman
e guarantees as well as the overall impossibility result (the maximum
ompetitiveratio of �) are given in [31℄, the other impossibility results are given in [45℄. The latter paperalso shows the following. For q � 2, the impossibility results are true even for randomizedalgorithms. For q < 2, there are randomized algorithms with a better
ompetitive ratio thanthat of List S
heduling.

6 CHAPTER 2. ON-LINE PROBLEMSNon-PreemptiveIdenti
al Relatedm = 2 Deterministi
 C = 1:5 (LS) C = (1 + qq+1 ; q � �1 + 1q ; q � � (LS)Randomized C = 1:333 : : : C � 1:53m!1 Deterministi
 C � 1:920 (MR) C 2 O(1)m � 80 C � 1:853 C 2 O(1)PreemptiveIdenti
al Relatedm = 2 C = 1:333 : : : C = 1 + qq2+q+1 � 1:333 : : :m > 2 C = mmmm�(m�1)m ! ee�1 � 1:582Table 2.1: Known bounds on the
ompetitive ratio CFor general m, there are simple algorithms with
onstant
ompetitive ratios [7℄, but theexa
t overall
ompetitive ratio has not been determined.It may be allowed to preempt jobs, i.e., it may be allowed to split a job in smaller pie
esand run the pie
es in disjoint time intervals, possibly on di�erent ma
hines. This variant ofs
heduling is
alled preemptive s
heduling.The
ompetitive ratio of preemptive s
heduling on m identi
al ma
hines is mmmm�(m�1)m .That is, any algorithm, deterministi
 or randomized, has
ompetitive ratio at least mmmm�(m�1)m[30, 94℄, and there exists a deterministi
 algorithm with this
ompetitive ratio [30, 92℄. Thisratio tends to ee�1 � 1:582 as m tends to in�nity.For preemptive s
heduling on two related ma
hines with speed ratio q, the
ompetitiveratio is 1 + qq2+q+1 [45, 99℄, for deterministi
 algorithms as well as randomized. This fun
tionattains its maximum value of 43 when q = 1.For the general
ase of more ma
hines, nothing is known so far. However, [41℄ gives theoptimal
ompetitive ratio as a fun
tion of all the speeds in the
ase where the speed ratios arenon-de
reasing (that is, if the speeds are s1 � s2 � : : : � sm, then s1s2 � s2s3 � : : : � sm�1sm).The results are summarized in Table 2.1.Note that while some of the non-preemptive variants of the s
heduling problem des
ribedhere have randomized algorithms with a better
ompetitive ratio than the optimal
ompetitiveratio for deterministi
 algorithms, this is not the
ase for the preemptive variants. Indeed,it has been proven that the
ompetitive ratios of the best deterministi
 algorithms are alsobest possible for randomized algorithms. This is rather natural, sin
e the strategy of the bestdeterministi
 algorithms is to maintain
ertain relative levels of the ma
hines (the level of ama
hine is the time it needs to
omplete the jobs assigned to it so far). For non-preemptives
heduling randomization helps �spread out� the jobs over the ma
hines. For preemptives
heduling, this
an be done more pre
isely without randomization.

2.5. BIN PACKING 72.5 Bin Pa
kingThe
lassi
al bin pa
king problem is the following. The input is a sequen
e of items of sizesbetween 0 and 1. The items must be pa
ked in unit sized bins su
h that the sum of sizes ofthe items pa
ked in ea
h bin is at most 1. In the on-line version, ea
h item must be pa
kedwithout any knowledge of future items. The goal is to pa
k the items in as few bins as possible.Thus, this problem is a minimization problem.In [101℄ a lower bound of 1:5 for any deterministi
 bin pa
king algorithm is proven using asequen
e with items of three di�erent sizes. In [82℄ items of 5 di�erent sizes are used to provea better lower bound of approximately 1:536. [98℄ gives a tight analysis of the
onstru
tionfrom [82℄ yielding a lower bound of approximately 1.540. In [28℄ it is argued that these lowerbounds are true for randomized algorithms too.In [91℄ the best known algorithm, Harmoni
++, is given and proven to be 1.58889-
ompetitive. It is also proven that the algorithm Harmoni
+1 of [90℄ that was previouslythought to be the best algorithm is at best 1:59217-
ompetitive.Some simpler,
lassi
al algorithms are First-Fit and Best-Fit. First-Fit orders the binsa

ording to the order in whi
h they were opened. Ea
h time an item arrives, First-Fit putsit in the �rst bin in whi
h it �ts. If it does not �t in any bin, a new bin is opened. Best-Fitputs the item in the bin in whi
h it leaves the least empty spa
e. If it does not �t in any bin,Best-Fit opens a new bin. The
ompetitive ratio of First-Fit and Best-Fit is 1.7. The upperbound for First-Fit was proven in [57℄, and the lower bound was shown in [70℄.An even simpler algorithm is Next-Fit. Next-Fit pa
ks ea
h item in the last opened bin ifit �ts there. Otherwise, it opens a new bin and puts the item there. Next-Fit has
ompetitiveratio 2 [68, 69℄.First-Fit and Best-Fit belong to the
lass of algorithms
alled Any-Fit algorithms. AnAny-Fit algorithm never pa
ks an item in an empty bin, if the item �ts in a non-empty bin.[69℄ shows that su
h an algorithm has a
ompetitive ratio between 1.7 and 2. Only a smallfurther restri
tion is needed to obtain an upper bound mat
hing the lower bound of 1.7. Letthe level of a bin denote the total size of the items pa
ked in the bin. An Almost-Any-Fitalgorithm is an Any-Fit algorithm that never pa
ks an item in a non-empty bin with lowestlevel, unless there are other bins with the same level, or the bin is the only non-empty bin inwhi
h the item �ts. Any Almost-Any-Fit algorithm has a
ompetitive ratio of 1.7 [69℄.The lower bound for Any-Fit algorithms shows that, to beat First-Fit and Best-Fit, it issometimes ne
essary to open a new bin even though the
urrent item �ts in an already openbin. On the other hand, for pra
ti
al appli
ations it may be desirable to sometimes
lose abin even though it is not �lled
ompletely. A bin is said to be open, if it
ontains at least oneitem, and it may still re
eive more items. A bin is said to be
losed, if it
ontains at leastone item, and it will not be
onsidered when pa
king future items. A bin pa
king algorithmis said to use bounded spa
e, if the maximum number of open bins at any time is bounded bysome
onstant.[80℄ proves that the bounded-spa
e algorithm Harmoni
 has a
ompetitive ratio thatapproa
hes 1.691 as the number of open bins in
reases, and that this is the best possible
ompetitive ratio of a bounded-spa
e on-line bin pa
king algorithm.11The pre
ise �gure is h1 =P1i=1 1ui�1 , where u1 = 2 and ui+1 = ui(ui � 1) + 1, i � 1.

8 CHAPTER 2. ON-LINE PROBLEMS2.6 Dual Bin Pa
kingThe dual bin pa
king problem is a maximization problem. Again, the input is a sequen
e ofitems of sizes between 0 and 1. A �xed number of unit sized bins is given, and the aim isto pa
k as many items in the bins as possible. In [27℄ this problem is reported to have beennamed Dual Bin Pa
king in [81℄.A fair algorithm for this problem is an algorithm that never reje
ts an item unless it doesnot �t in any bin. If the items
an be arbitrarily small, no fair algorithm
an be
ompeti-tive [25℄.[25℄
onsiders the
ase where all input sequen
es
an be pa
ked
ompletely by an optimalo�-line algorithm. In this
ase, any fair algorithm has a
ompetitive ratio of at least 12 , andFirst-Fit and Best-Fit have a
ompetitive ratio of at least 58 [25℄. Furthermore, First-Fit's
ompetitive ratio is at most 58 [8℄, if the number of bins
an be arbitrarily large. [8℄ also givesa general upper bound of 0:809 for fair deterministi
 algorithms, when there
an be arbitrarilymany bins, and an upper bound of 67 for unfair algorithms. Furthermore, an unfair algorithmis devised that has a
ompetitive ratio that tends to 23 when the number of bins goes to in�nity.Note that the name dual bin pa
king is also sometimes used to refer to bin
overing. Inthis problem, a bin is
overed if the items pa
ked in it have a total size of at least 1, and thegoal is to
over as many bins as possible.2.7 Variable-Sized Bin Pa
kingThe
lassi
al bin pa
king problem as well as the dual bin pa
king problem
an be generalizedsu
h that there are more than just one bin size. The set of bin sizes is given as a part of theproblem.For the
lassi
al bin pa
king problem with variable-sized bins, there is an unlimited numberof bins of ea
h given size. The goal is to minimize the total size of the bins used. For thisproblem, [34℄ designs an on-line algorithm Variable Harmoni
 based on Harmoni
. LikeHarmoni
 it uses bounded spa
e. The
ompetitive ratio of this algorithm is the same as the
ompetitive ratio of Harmoni
 for identi
al bins. For some
ombinations of bin sizes, the
ompetitive ratio is even better. If there are only two sizes, 1 and 0.7, the
ompetitive ratio ofthe problem is at most 1.4, whi
h is smaller than the optimal
ompetitive ratio for identi
albins. Hen
e, in this
ase, the on-line algorithm �bene�ts more� from having two sizes of binsto
hoose from than the o�-line algorithm it is measured against.In Chapter 6 we investigate dual bin pa
king with variable-sized bins.2.8 The Seat Reservation ProblemThis problem was introdu
ed in [24℄. A train has n 2 N seats and travels from station 1 tostation k 2 N. The input to the problem is a sequen
e of requests
onsisting of a start andan end station. Ea
h request must be assigned a seat without any knowledge of the rest ofthe sequen
e. Two requests
an be assigned the same seat if the start station of one requestis the same as or later than the end station of the other request. Requests have to be treatedin a fair manner, i.e., if a request
an be assigned a seat, it must be assigned a seat. In this
ase, we say that the request is a

epted. Otherwise, it is reje
ted.

2.9. EDGE COLORING 9There are two versions of the problem. Either the pro�t of a

epting a request is propor-tional to the length between its start and end station, or all requests have unit pro�t. For theproportional pri
e problem, any deterministi
 on-line algorithm has a
ompetitive ratio pro-portional to the inverse of the number of stations, even in the
ase where the input sequen
esare restri
ted to those that
an be fully a

ommodated by an optimal o�-line algorithm [24℄.Thus, depending on the number of stations, the
ompetitive ratio
an be arbitrarily bad.For the unit pri
e problem, the situation is the same in the general
ase, where we have norestri
tion on the input sequen
es. For sequen
es that
an be fully a

ommodated by an op-timal o�-line algorithm, any deterministi
 algorithm has a
ompetitive ratio of at least 12 [24℄,and if the ratio of the number of stations to the number of seats
an be arbitrarily large, nodeterministi
 algorithm has a
ompetitive ratio larger than 12 [10℄.2.9 Edge ColoringThe
lassi
al edge
oloring problem is to
olor the edges of a graph using as few
olors aspossible, under the
onstraint that no two adja
ent edges may re
eive the same
olor. In theon-line version, edges arrive one by one and ea
h edge must be
olored before the next edgeis seen.For any graph, let � be the maximum vertex degree. In [11℄ it is shown that the optimal
ompetitive ratio of 2�� 1 is a
hieved by the algorithm that numbers the
olors and
olorsea
h edge with the
olor of lowest possible number. (This is the algorithm
alled First-Fit inChapter 5.)2.10 Edge Coloring with a Fixed Number of ColorsAs far as we know, this variant of the edge
oloring problem has not been studied earlier. Alimited number of
olors are available, and the aim is to
olor as many edges as possible, againunder the
onstraint that no two adja
ent edges may re
eive the same
olor. In the on-lineversion, ea
h edge must be either
olored or reje
ted before the next edge is seen.This modi�
ation of the edge
oloring problem is analogous to the modi�
ation of thevertex
oloring problem made in [24℄ when de�ning the seat reservation problem. Assigningseats to requests is equivalent to assigning
olors to the verti
es of an interval graph.2.11 Dial a RideThe dial a ride problem is about transporting obje
ts from one point in a metri
 spa
e M toanother. There is one server available for this. For every pair of points in M , there is a pathof a given length. A request
onsists of a release time, a startpoint, and an endpoint. Therelease time is the time when the request be
omes known to the on-line algorithm. To servea request, the server must travel from the startpoint to the endpoint. On
e an obje
t hasbeen pi
ked up at its startpoint, it
annot be left anywhere else than at its destination point.Thus, if serving one request has been begun, it must be
ompleted before any other request
an be served. The server starts at a spe
ial point, the origin, and has to end in this pointafter serving all requests.

10 CHAPTER 2. ON-LINE PROBLEMSThe dial a ride problem di�ers from the other on-line problems des
ribed here in that newrequests
an be released while some of the already released requests have not yet been servedand more requests
an be released at the same time.There are several possible obje
t fun
tions for this problem. If the goal is to minimizethe total
ompletion time, whi
h is the time when all requests have been served and theserver is ba
k in the origin, there exist
ompetitive algorithms [6℄. The algorithms IGNOREand REPLAN are both 52 -
ompetitive. An algorithm
alled SMARTSTART is 2-
ompetitive,whi
h is best possible for deterministi
 algorithms. This algorithm is sometimes �deliberately�idle, i.e., it
hooses to do nothing for a while even though there are unserved requests.If the goal is to minimize the average time from a request is released until it has beenserved, no on-line algorithm is
ompetitive [62℄. This obje
tive is
alled the average �ow time.

Chapter 3Quality MeasuresBy the quality of an on-line algorithm, we mean the quality of the output of the algorithm. Thetime
omplexity of an on-line algorithm is rarely dis
ussed. One might argue that espe
iallyfor on-line algorithms, time
omplexity is an important issue. On the other hand, most on-linealgorithms studied in the literature are fairly e�
ient.When evaluating the quality of algorithms, two main approa
hes
ome to mind, worst
ase and average
ase analysis. Worst
ase analysis has the disadvantage that there mightbe a few rather
ontrived input sequen
es giving a performan
e mu
h worse than the typi
alsequen
es. In this sense, average
ase analysis seems more reasonable. However, this requiresa statisti
al model of the input. Realisti
 models
an be di�
ult to devise. Furthermore, theanalysis tends to be more
hallenging than worst
ase analysis.3.1 Competitive AnalysisThe quality measure that has be
ome the standard measure for on-line algorithms is a worst
ase measure. However, for many problems the worst
ase performan
e as an absolute measuredoes not make sense. For instan
e, the worst
ase fault rate of any deterministi
 pagingalgorithm is 1. Competitive analysis solves this problem by measuring the performan
e of theon-line algorithm relative to an optimal o�-line algorithm, i.e., an algorithm that knows thewhole input sequen
e from the beginning and has all the time it needs to
ompute the optimalsolution. For many on-line problems, the o�-line version is NP-hard. Thus, sometimes, e�
ienton-line algorithms are measured against an o�-line algorithm that
annot even be polynomial,unless NP=P.The
ompetitive ratio was used already in [95℄, and in [73℄ it was named the
ompetitiveratio. The
ompetitive ratio for deterministi
 algorithms is formally de�ned in the followingway.De�nition 3.1 For any
 � 1, an on-line algorithm A for a minimization problem is
-
ompetitive, if there exists a
onstant b su
h thatA(�) �
 �OPT(�) + b; for any input sequen
e �;The
ompetitive ratio of A is C = inff
 j A is
-
ompetitiveg:11

12 CHAPTER 3. QUALITY MEASURESDe�nition 3.2 For any
 � 1, an on-line algorithm A for a maximization problem is
-
ompetitive, if there exists a
onstant b su
h thatA(�) �
 �OPT(�) + b; for any input sequen
e �:The
ompetitive ratio of A is C = supf
 j A is
-
ompetitiveg:If the inequality holds with b = 0, the algorithm is said to be stri
tly
-
ompetitive.If C is independent of the input sequen
e, the algorithm is said to be
ompetitive.The
ompetitive ratio of an on-line problem is the
ompetitive ratio of the best possibleon-line algorithm for the problem. For
larity, this is sometimes referred to as the optimal
ompetitive ratio. Let C be the
ompetitive ratio of some on-line problem. Any algorithmwith a
ompetitive ratio
 2 O(C) is said to be strongly
ompetitive.Note that some authors de�ne
-
ompetitiveness for maximization problems as OPT(�) �
�A(�)+b, for any input sequen
e �. In this way, a good
ompetitive ratio is a low ratio for bothmaximization and minimization problems. However, the de�nition
hosen here is
onsistentwith most literature on approximation algorithms. To avoid
onfusion, we will often usethe terms performan
e guarantee and impossibility result instead of the more
ommon termsupper bound and lower bound.Competitive analysis is often interpreted as a game between the on-line algorithm and anadversary who
hooses the input sequen
e and serves it using an optimal o�-line algorithm.When analyzing randomized algorithms, one must de
ide on an adversary type. In [15℄three types of adversaries for randomized algorithms are de�ned.The most
ommonly used adversary is the oblivious adversary. This adversary
onstru
tsthe input sequen
e knowing the de�nition of the algorithm but without knowing the out
omeof the random
hoi
es made by the algorithm. This adversary is the only adversary
onsideredin this thesis.A more powerful adversary is the adaptive on-line adversary. This adversary may de�neea
h request based on the on-line algorithm's answer to all previous requests, but it must servethe request without knowing the random
hoi
es made by the on-line algorithm as answer tofuture requests. This adversary is at least as strong as the oblivious adversary, sin
e it isallowed to de�ne the whole sequen
e in advan
e and
ompute an optimal solution beforegiving the sequen
e.The third adversary, is the adaptive o�-line adversary. This adversary may de�ne ea
hrequest based on the on-line algorithm's answer to all previous requests and it serves ea
hrequest knowing the whole sequen
e. This adversary is the most powerful of the three. In-deed, against this adversary, no randomized algorithm for a given problem
an have a better
ompetitive ratio than the best deterministi
 algorithm for the problem [15℄.When analyzing randomized algorithms, we address the expe
ted bene�t/
ost E[A(�)℄ ofthe algorithm.De�nition 3.3 For any
 � 1, a randomized on-line algorithm A for a minimization problemis
-
ompetitive, if there exists a
onstant b su
h thatE[A(�)℄ �
 �OPT(�) + b; for any input sequen
e �:The
ompetitive ratio of A is C = inff
 j A is
-
ompetitiveg:

3.2. LIMITATIONS OF COMPETITIVE ANALYSIS 13De�nition 3.4 For any
 � 1, an on-line algorithm A for a maximization problem is
-
ompetitive, if there exists a
onstant b su
h thatE[A(�)℄ �
 �OPT(�) + b; for any input sequen
e �:The
ompetitive ratio of A is C = supf
 j A is
-
ompetitiveg:3.2 Limitations of Competitive AnalysisFor some on-line problems,
ompetitive analysis yields very pessimisti
 results. Furthermore,it sometimes fails to distinguish algorithms that are known to perform very di�erently inpra
ti
e. Some examples of this were given Chapter 2. Motivated by this, many resear
hershave proposed re�nements to
ompetitive analysis (see the next se
tion).[14℄ proves some
ounterintuitive properties of the
ompetitive ratio. For instan
e, on-linealgorithms for the k-server problem must remember the past to be
onstant
ompetitive, butknowing a �nite part of the future does not help:� To be
onstant
ompetitive, any on-line algorithm for the k-server problem must de
idehow to serve ea
h request based not only on the
urrent request but also on what hashappened in the past. Depending on the distan
es of the metri
 spa
e, the amount ofmemory needed
an be arbitrarily large.This is
ounterintuitive, sin
e in standard
ompetitive analysis, we do not assume thatfuture requests depend in any way on past requests.� For the k-server problem, lookahead does not help. That is, knowing the next ` requestsat ea
h point in time does not improve the
ompetitive ratio, for any �nite `.This is
ounterintuitive, sin
e what makes the o�-line algorithm so mu
h more powerfulthan any on-line algorithm is merely the fa
t that it knows the future.The paper also gives an example showing that minimizing the amortized
ost, i.e., the total
ost divided by the number of requests,
an be in
on�i
t with minimizing the
ompetitiveratio.3.3 Re�nements of Competitive AnalysisThe previous se
tion des
ribed some of the drawba
ks of
ompetitive analysis. This se
tion de-s
ribes a number of re�nements of
ompetitive analysis. Some are a
tually not re�nements butrather alternatives to
ompetitive analysis. Others are re�nements of the problem de�nition.Most re�nements to
ompetitive analysis fall into one of three
ategories.� The set of input sequen
es is restri
ted in some way and/or the algorithm is givensome information about the input sequen
e, re�e
ting that the future is not always
ompletely unpredi
table. Examples (that will be de�ned later in this se
tion) are thea

ommodating fun
tion, a

ess graphs, reasonable load, and lookahead.To some extent, the loose
ompetitive ratio also belongs here. Using the loose
ompet-itive ratio, sequen
es with insigni�
ant
ost are ignored. Similarly, sequen
es that arebad only for spe
i�
 values of the problem parameters are ��ltered out�.

14 CHAPTER 3. QUALITY MEASURESIn a broader sense, restri
ting the input set
an be interpreted as putting a probabilitydistribution on the input set. Examples are the statisti
al adversary and the di�useadversary. It
an also be argued that the random order
ompetitive ratio belongs here.Random order
ompetitive analysis
orresponds to assuming that, for any multiset ofrequests, any permutation is equally likely.� The on-line algorithm is given more resour
es than the o�-line algorithm it is measuredagainst (resour
e augmentation).� The on-line algorithm is
ompared to an algorithm (or
lass of algorithms) less powerfulthan the optimal o�-line algorithm (the
omparative ratio).The rest of this se
tion des
ribes a number of re�nements of
ompetitive analysis. Manyof these are also des
ribed in [65℄ and [53℄. Depending on the problem and the aspe
ts one�nds important, di�erent measures may be appropriate.3.3.1 Resour
e AugmentationThe idea of resour
e augmentation is to obtain more optimisti
 ratios than the standard
ompetitive ratio by measuring the on-line algorithm relative to an optimal o�-line algorithmwith fewer resour
es than the on-line algorithm.The use of resour
e augmentation in the analysis of on-line algorithms was �rst introdu
edin [95℄, where it is shown, that the
ompetitive ratio of LRU and FIFO is
onstant, if the on-line algorithm has a
a
he that is a
onstant fa
tor larger than that of the o�-line algorithm.If h is the size of the o�-line
a
he, the
ompetitive ratio of LRU and FIFO is kk�h+1 . Thus, ifthe o�-line
a
he has size k(1� 1
), the
ompetitive ratio of LRU and FIFO is smaller than
.After some years, the
on
ept of resour
e augmentation was studied again; [9, 16, 26,40, 71, 72, 79, 88℄ study resour
e augmentation for various s
heduling problems. [76℄ studiesresour
e augmentation for the k-server problem, and [35, 46℄ study resour
e augmentation forthe bin pa
king problem. In [88℄ the
on
ept was named resour
e augmentation.In [71℄, some s
heduling problems with one pro
essor are analyzed using resour
e augmen-tation. It is assumed that the on-line pro
essor has speed 1 + ", " > 0, whereas the o�-linepro
essor has speed 1. The
ompetitive ratio in this
ase is denoted the "-weak
ompetitiveratio.The paper
onsiders some preemptive s
heduling problems for whi
h no on-line algorithmis
ompetitive. One su
h problem is the following. A sequen
e of jobs are to be s
heduled onone pro
essor. Ea
h job has a release time and a length. Ea
h job be
omes known only at therelease time, and its length is unknown until it has been run to
ompletion. The problem isto minimize the average time from a job is released until it has been
ompleted.Any deterministi
 on-line algorithm for the problem has a
ompetitive ratio of
(n1=3) andany randomized on-line algorithm has a
ompetitive ratio of
(log n), where n is the numberof jobs in the input sequen
e [87℄, in other words, no on-line algorithm for this problem is
ompetitive. However, there is a deterministi
 on-line algorithm, Balan
e, that has an "-weak
ompetitive ratio of at most 1 + 1" . Thus, a
onstant in
rease in speed yields a
onstant
ompetitive ratio. The same
an be a
hieved, giving the on-line algorithm a pro
essor withspeed 1 and a pro
essor with speed ". On the other hand, the algorithm Round Robin has an"-weak
ompetitive ratio of
(n1�").Thus, the motivation for analyzing the "-weak
ompetitive ratio is that

3.3. REFINEMENTS OF COMPETITIVE ANALYSIS 15� it is a more optimisti
 measure than the standard
ompetitive ratio� it tells us how mu
h more performan
e we get if we in
rease the speed of the pro
essor� it helps distinguish di�erent on-line algorithms.The �rst item is further elaborated. If OPT1(�)OPT1+"(�) is bounded for all input sequen
es �, abounded "-weak
ompetitive ratio will imply a bounded
ompetitive ratio, sin
eOPT1(�)OPT1+"(�) � A1+"(�)OPT1(�) = A1+"(�)OPT1+"(�) :Thus, if we
onsider an input sequen
e �abnormal�, if the optimal o�-line performan
e de
reasesdramati
ally, when the speed is de
reased slightly, the "-weak
ompetitive ratio gives us a hintabout the
ompetitive ratio on �normal� sequen
es.In [16℄, the upper bound on the "-weak
ompetitive ratio of Balan
e is improved to21+" . Thus, if Balan
e has a ma
hine that is more than twi
e as fast as that of the o�-linealgorithm, Balan
e performs better than the optimal o�-line algorithm.3.3.2 A

ommodating Fun
tionLike resour
e augmentation, the a

ommodating fun
tion applies to any problem with somelimited resour
e. The a

ommodating fun
tion is indeed
losely related to resour
e augmenta-tion. However, whereas resour
e augmentation is assuming that the on-line algorithm has moreresour
es than the o�-line algorithm, the a

ommodating fun
tion is
omputed by assuminga restri
ted set of input sequen
es.The �rst step towards de�ning the a

ommodating fun
tion was taken in [24℄, where theseat reservation problem is studied. The situation, where the ti
ket pri
es are proportionalto the distan
e traveled, as well as the situation where the ti
kets have a unit pri
e, arestudied. For both problems, any deterministi
 algorithm has a
ompetitive ratio of �(1k),where k is the number of stations. Thus, for a large number of stations, the
ompetitive ratiois very small. However, if the input sequen
es are restri
ted to those that
an be
ompletelya

ommodated by an optimal o�-line algorithm, any deterministi
 algorithm for the unitpri
e problem is 12 -
ompetitive. Su
h sequen
es are
alled a

ommodating sequen
es1. Thisrestri
tion on the set of input sequen
es seems to be a realisti
 assumption, sin
e it is likelythat the management, based on data from earlier years, are able to predi
t how many
ars itwill take to a

ommodate all passengers, if the requests are all known in advan
e (the seatreservation problem is equivalent to vertex
oloring an interval graph, whi
h
an be donee�
iently). However, this number of
ars may not su�
e, when the requests are to be servedon-line (if the number of stations is large
ompared to the number of seats, the
ompetitiveratio of any deterministi
 algorithm is
lose to 12 [10℄). Thus, it seems desirable to have more
ars than needed by an optimal o�-line algorithm. For other problems it may be more realisti
to assume that the resour
es supplied are not even su�
ient for an optimal o�-line algorithm.This motivates the de�nition of �-sequen
es.Assume that the amount n of resour
es are available (n
ould be the number of seats inthe train or the number of bins in the dual bin pa
king problem). For any � > 0, an inputsequen
e is said to be an �-sequen
e, if an optimal o�-line algorithm does not bene�t from1In [24℄ the
ompetitive ratio on a

ommodating sequen
es was
alled the a

ommodating ratio. In laterpapers this was
hanged for
onsisten
y with
ommon pra
ti
e in the �eld

16 CHAPTER 3. QUALITY MEASUREShaving more than the amount �n of resour
es. More formally, for any input sequen
e �,and any amount m of resour
es, let OPTm(�) denote the bene�t/
ost of an optimal o�-linealgorithm on the sequen
e � when the amount m of resour
es is given. An input sequen
e � isan �-sequen
e, if OPTn0(�) = OPT�n(�) for any n0 � �n. Thus, a

ommodating sequen
esare 1-sequen
es.Let A be an on-line algorithm for a maximization problem. The a

ommodating fun
tionis de�ned as AA(�) = supf
 j A is
-
ompetitive on �-sequen
esg:For minimization problems, the a

ommodating fun
tion is de�ned analogously:AA(�) = inff
 j A is
-
ompetitive on �-sequen
esg:For any �normal� on-line problem, the
ompetitive ratio (with no restri
tion on the set ofinput sequen
es) equals lim�!1A(�).When
hoosing an on-line algorithm for dual bin pa
king it
an be
ru
ial to know some-thing about the input sequen
es. If the input sequen
es are all a

ommodating, First-Fit is58 -
ompetitive [25℄, but in the general
ase, the
ompetitive ratio of First-Fit is �(s), wheres is the size of the smallest item in the sequen
e. An algorithm
alled Log has a
ompetitiveratio of �(1log 1=s) in both
ases [22℄. Thus, if the sequen
es are known to be a

ommodating,First-Fit is the best
hoi
e, but if the sequen
es are not likely to be �-sequen
es for any small�, Log may be the best
hoi
e.For � < 1, the a

ommodating fun
tion is
losely related to resour
e augmentation. As-sume that the amount n of resour
es is available. If the input sequen
es are all �-sequen
es and� < 1, the performan
e of an optimal o�-line algorithm would be the same even if the amountof resour
es were de
reased to �n. This means that any performan
e guarantee proven in theresour
e augmentation setting is valid for the a

ommodating fun
tion with � < 1. The
on-trapositive of this observation gives that impossibility results for the a

ommodating fun
tionwith � < 1
arry over to the resour
e augmentation setting.The opposite is not true. In [23℄ some examples are given where analyzing the a

ommo-dating fun
tion gives results that are mu
h more optimisti
 than those obtained with resour
eaugmentation. The
ompetitive ratio of First-Fit for the seat reservation problem does not
hange signi�
antly when the on-line algorithm is given more seats than the o�-line algo-rithm. Even if the on-line algorithm has 1� times as many seats as the o�-line algorithm, the
ompetitive ratio of First-Fit is at most 1+�(��2=n)(k�1) . This fra
tion tends to 0 as k tends toin�nity. On the other hand, the a

ommodating fun
tion of First-Fit is at least 1 � 2�b1=�
when � � 1. Similarly, the
ompetitive ratio of First-Fit for dual bin pa
king is at least 3+2�8�on �-sequen
es with � � 1, but for general sequen
es, the
ompetitive ratio of First-Fit isat most s� , even if the on-line algorithm has 1� times as many bins as the o�-line algorithm.Again, s is the size of the smallest item in the sequen
eFor those results from resour
e augmentation that are also valid for the a

ommodatingfun
tion, the a

ommodating fun
tion adds an extra, very natural interpretation.3.3.3 A

ess GraphsFor the paging problem, the impli
it assumption in standard
ompetitive analysis that anysequen
e of requests may o

ur is parti
ularly unrealisti
. Most programs exhibit lo
ality ofreferen
e. When a page is referen
ed, it is more likely to be referen
ed in the near future

3.3. REFINEMENTS OF COMPETITIVE ANALYSIS 17(temporal lo
ality), and pages near it in memory are more likely to be referen
ed in thenear future (spatial lo
ality). Lo
ality of referen
e is the explanation why LRU works well inpra
ti
e. Indeed, two-level memory is only useful if request sequen
es are not arbitrary.In [19℄ a model of lo
ality of referen
e is introdu
ed. The stru
ture of the program isrepresented by a graph that
ontains a vertex for ea
h page that may be referen
ed. Whena page p is referen
ed, the next request must be to p or to one of the pages
orresponding tothe neighbors of p in the graph. A

ess graphs may be dire
ted or undire
ted. Here, we onlydis
uss undire
ted a

ess graphs, sin
e is it su�
ient to give a good illustration of the ideas.In the a

ess graph model, LRU is better than FIFO; on any a

ess graph, the
ompetitiveratio of LRU is at least as good as that of FIFO [33℄, and there are graphs where the
ompetitiveratio of LRU is mu
h better than that of FIFO. For instan
e it is not di�
ult to see that, ifthe a

ess graph is a line of k + 1 verti
es, the
ompetitive ratio of FIFO is at least k+12 (infa
t this is a lower bound on the
ompetitive ratio of FIFO on any a

ess graph with at leastk + 1 verti
es [19℄) and the
ompetitive ratio of LRU is 1. In general, if the a

ess graph is atree, LRU is an optimal deterministi
 on-line paging algorithm [19℄.However, it is
lear that there are a

ess graphs for whi
h LRU is not optimal. An exampleis a ring graph on k + 1 verti
es. [19℄ gives an algorithm
alled FAR. Whenever a page mustbe evi
ted, FAR
hooses a page whose distan
e in the graph to the page just requested islargest possible. For the ring graph, this is
learly a better strategy than the LRU strategy.[67℄ shows that FAR is strongly
ompetitive for any a

ess graph.[50℄ gives a simple strongly
ompetitive randomized algorithm.[52℄ gives paging algorithms that build the a

ess graph on the �y. This means that thea

ess graph need not be known in advan
e; the a

ess graph may even
hange dynami
ally.The algorithms require only O(k log n) spa
e, where n is the size of the slow memory. Adeterministi
 and a randomized algorithm are given. Both are strongly
ompetitive.The
on
ept of a

ess graphs has been very su

essful in the sense that it helps distinguishthe performan
e of di�erent algorithms. However, the results on the a
tual
ompetitive ratiosare sometimes rather di�
ult to interpret. Some of the results involve �nding a vine de
om-position (see [18, p. 63℄) of the a

ess graph or the maximum number of leaves in any subtreewith k + 1 verti
es.[74℄ takes the idea of a

ess graphs one step further by introdu
ing probabilities on theedges. Hen
e, the algorithm knows not only whi
h pages
an be requested next, but also theprobability of ea
h of these pages to be requested next. In this model it is possible to use thefault rate as the measure instead of measuring the on-line algorithms relative to an o�-linealgorithm. The paper gives an algorithm that has a fault rate whi
h is within a
onstantfa
tor of the optimal on-line fault rate.3.3.4 Loose Competitive RatioThe loose
ompetitive ratio is de�ned in [103℄ for the paging problem, but it should be ap-pli
able to other problems as well. In [104℄ the de�nition is re�ned and generalized to �le
a
hing. Here we des
ribe the
on
ept as de�ned in [104℄ for the spe
ial
ase of paging, sin
eit illustrates the ideas.A paging algorithm A is ("; Æ)-loosely C-
ompetitive, if for any request sequen
e � andany n 2 N, at least (1� Æ)n of the
a
he sizes k 2 f1; 2; : : : ; ng satisfyA(�) � max fC �OPT(�); "j�jg :

18 CHAPTER 3. QUALITY MEASURESThus, the loose
ompetitive ratio does not
onsider those sequen
es that we do not worryabout anyway, be
ause they have a low fault rate. Furthermore, sequen
es that are only badfor a few
a
he sizes are not
onsidered, sin
e in real life, the sequen
es are not generated bya
ruel adversary that knows the exa
t hardware
on�guration.[104℄ proves the following result, relevant for many deterministi
 algorithms. For any0 < "; Æ < 1, any kk�h+1 -
ompetitive algorithm is ("; Æ)-loosely C-
ompetitive, where C =e 1Æ bln 1"
. (As in Se
tion 3.3.1 on resour
e augmentation, h is the size of the o�-line
a
he.)Hen
e, for
onstant " and Æ, these algorithms have
onstant
ompetitive ratios. The result iswidely appli
able, sin
e FIFO as well as any marking algorithm is kk�h+1 -
ompetitive.The following result is relevant for randomized algorithms. For any 0 < "; Æ < 1, anyO(ln kk�h+1)-
ompetitive algorithm is ("; Æ)-loosely C-
ompetitive, where C 2 O(1 + ln 1Æ +ln ln 1").[65℄ poses the following open problem. For many s
heduling problems, adversary sequen
eshave been tailormade for the spe
i�
 number of ma
hines available. (For instan
e the sequen
eagainst List S
heduling on m identi
al ma
hines is m(m � 1) jobs of size 1 followed by onejob of size m.) Is it possible to obtain the same impossibility results for the loose
ompetitiveratio?3.3.5 Statisti
al AdversaryThe statisti
al adversary introdu
ed in [89℄
hooses the input sequen
e su
h that it is
onsistentwith some statisti
al assumptions. The idea is to measure the worst
ase absolute performan
e.That is, in
ontrast to
ompetitive analysis, the performan
e is not measured relative toanother algorithm.As an example, a problem in investment theory is analyzed. The input to the problem isa sequen
e of sto
k pri
es, and it is assumed that the mean and standard deviation are given.The adversary sequen
e must be
hosen among those sequen
es with the assumed mean andstandard deviation. Furthermore, the pri
es are bounded from above and below.The statisti
al adversary is also studied in [32℄.Note that in [53℄ the term statisti
al adversary is used to denote the sto
hasti
 version ofthe rate � adversary de�ned in [20℄.3.3.6 Di�use AdversaryAssuming that the input sequen
es are
onsistent with some spe
i�
 probability distributionmay be as unrealisti
 as assuming that nothing is known about the input sequen
es. As amiddle ground, [77℄ proposes to use a whole
lass of distributions. The algorithm knows the
lass of distributions, but it does not know whi
h distribution is pi
ked by the adversary. The
ompetitive ratio of an on-line algorithm against this adversary,
alled the di�use adversary,is its worst
ase expe
ted performan
e ratio, over the distributions in the
lass. Formally, if� is the set of probability distributions, the performan
e ratio of algorithm A isC(�) = maxD2� ED[A(�)℄ED[OPT(�)℄ :If �
ontains all possible distributions, the ratio be
omes equal to the standard
ompetitiveratio; the adversary simply pi
ks a distribution
ontaining only one worst
ase sequen
e.

3.3. REFINEMENTS OF COMPETITIVE ANALYSIS 19In parti
ular, [77℄
onsiders the set of distributions �", where, in ea
h step, the probabilityof any page to be requested next is at most ", for some " > 0. They show that LRU is optimalagainst su
h an adversary, but they give no
losed form for the
ompetitive ratio for k > 2.The
lass �" of distributions is further investigated in [105℄, where the following is proven.The
ompetitive ratio of any deterministi
 on-line algorithm isCdet � k�1Xi=1 1maxf"�1 � i; 1g :An upper bound is given for the
lass of deterministi
 lazy marking algorithms. (A lazyalgorithm is an algorithm that only evi
ts a page when it has to. Sometimes su
h algorithmsare
alled demand paging algorithms.) The bound isCm � 2 k�1Xi=1 1maxf"�1 � i; 1g + 2:For " � 1k+1 , the same is true for randomized algorithms.Note that for " = 1n ,k�1Xi=1 1maxf"�1 � i; 1g = (Hn�1 �Hn�k; n � kHn�1 + k � n; n � k:The upper bound result
overs LRU, sin
e it is a lazy marking algorithm, but it does not
over FIFO, sin
e it is not a marking algorithm, and it does not
over FWF, sin
e it is notlazy. Indeed, for " � 1k+1 , the
ompetitive ratio of FIFO and FWF is k, just as the standard
ompetitive ratio.For " � 1k+1 , the lower bound for deterministi
 algorithms is raised toPk�1i=1 1maxf"�1�i;1g+1, and the lower bound for randomized algorithms is Hk, the optimal
ompetitive ratio againstthe standard oblivious adversary.Hen
e, for " � 1k+1 , the
lass of randomized algorithms is no stronger than the
lassof deterministi
 algorithms, and for " � 1k+1 , the optimal
ompetitive ratio for randomizedalgorithms is the same as against the standard oblivious adversary. This is perhaps not sosurprising. To a great extend, the advantage of randomized algorithms is that the inputsequen
es �look random� from the algorithms perspe
tive � there are no real worst
asesequen
es. Hen
e, if the input is fairly random (this is the
ase if " is small), it seemsreasonable that randomized algorithms are not mu
h stronger than deterministi
 algorithms.On the other hand, if " is large, the adversary does not di�er mu
h from the standard adversary.3.3.7 Random OrderIn [75℄ the Best-Fit algorithm for bin pa
king is investigated. Normally, when analyzing binpa
king algorithms, the performan
e is measured using the worst
ase performan
e ratio, overall input sequen
es. This yields the lower bound of 1.7 for both First-Fit and Best-Fit, whi
h israther pessimisti

ompared to empiri
al results on Best-Fit's performan
e. The lower boundis due to input sequen
es with items of very spe
ial sizes where the items o

ur in order of non-de
reasing size. Most permutations of these input sequen
es give ratios that are signi�
antly

20 CHAPTER 3. QUALITY MEASURESbetter. This motivates studying the worst
ase expe
ted performan
e ratio, over all multisetsof items, assuming that any permutation of the items is equally likely.This expe
ted performan
e ratio is shown to lie between approximately 1.08 and 1.5 forBest-Fit. Thus, using this performan
e measure, the performan
e guarantee for Best-Fit isa little better than the general lower bound on the
ompetitive ratio of any bin pa
kingalgorithm.3.3.8 Reasonable LoadThe notion of reasonable load is very similar to the
on
ept of the rate � adversary de�nedin [20℄ and further investigated in [5℄. It also has similarities to the a

ommodating fun
tion.[62℄ studies the on-line dial a ride problem with an in�nite number of requests. In this
ase,the total
ompletion time is meaningless. However, if we want to minimize the average �owtime,
ompetitive analysis does not yield any information as to whi
h algorithm to
hoose,sin
e the
ompetitive ratio of any on-line algorithm for this problem is unbounded.This motivated the authors of [62℄ to put a restri
tion on the set of input sequen
es. Sin
eall requests must be served, it seems reasonable to require that an optimal o�-line algorithmis able to do so, i.e., the number of released jobs not yet served does not grow unboundedly.For any � 2 N, a request sequen
e is �-reasonable, if any sequen
e of requests released withina time period of length T � �
an be served in time at most T . A request sequen
e isreasonable, if there exists a �, su
h that the sequen
e is �-reasonable.On �-reasonable request sequen
es, the algorihm ignore, des
ribed in detail in [6℄, yieldsa maximal �ow time of at most 2�. On the other hand, there are reasonable request sequen
esfor whi
h the average �ow time of the algorithm replan, also des
ribed in [6℄, is unbounded.Sin
e the o�-line version of the dial a ride problem is NP-hard, it seems desirable that thesequen
es are �more� than reasonable. A sequen
e is (�; �)-reasonable, if requests releasedduring a period of time T � �
an be served in time at most T=�. If the problem is solvedusing a �-approximation algorithm, the number of released jobs not yet served will not growunboundedly, if the sequen
e is (�; �)-reasonable, for some bounded �.Note the similarity between (�; �)-reasonable sequen
es and 1� -sequen
es as de�ned inSe
tion 3.3.2.3.3.9 Comparative RatioMotivated by the fa
t that lookahead
annot improve the
ompetitive ratio of an on-line pagingalgorithm, [77℄ introdu
es the
omparative ratio. Rather than evaluating the performan
e ofsingle algorithms, the purpose is to
ompare the power of
lasses of algorithms having a

essto di�erent amounts of information. For instan
e it is shown that
omparing on-line pagingalgorithms, i.e., algorithms that know only the
urrent page requested, to algorithms thatknow the
urrent request and the following `� 1 requests gives a ratio of minfk; `g.3.3.10 The Max/Max RatioThe Max/Max ratio is introdu
ed in [14℄. Like the
ompetitive ratio, it is a worst
ase measureand it measures the on-line performan
e relative to the optimal o�-line performan
e. However,whereas the
ompetitive ratio measures the performan
e on ea
h input sequen
e relative tothe performan
e of an optimal o�-line algorithm on that same sequen
e, the Max/Max ratio
ompares the performan
e on ea
h input sequen
e � to the worst
ase performan
e of an

3.3. REFINEMENTS OF COMPETITIVE ANALYSIS 21optimal o�-line algorithm on all sequen
es of the same length as �. More pre
isely, theMax/Max ratio is the ratio of the worst
ase
ost of the on-line algorithm on sequen
es oflength ` to the optimal o�-line
ost on sequen
es of length `, as ` goes to in�nity.The example problem is the k-server problem with a bounded metri
 spa
e. For this prob-lem the Max/Max ratio is the worst
ase amortized
ost of the on-line algorithm normalizedby the amortized optimal o�-line
ost. This means that the Max/Max ratio of two on-linealgorithms
an be
ompared without referring to an optimal o�-line algorithm � the ratio oftheir Max/Max ratios is simply the ratio of their worst
ase performan
es.The paper gives an on-line memoryless k-server algorithm that, for any k and any boundedmetri
 spa
e G, has a Max/Max ratio of at most 2k.2 Moreover, the ratio is within a fa
tor oftwo of the best possible on-line algorithm. This is in
ontrast to the
ompetitive ratio whi
h,depending on the distan
es in the metri
 spa
e,
an be arbitrarily large, for any memorylessalgorithm for the k-server problem. It is also shown that lookahead does help. Spe
i�
ally, itis shown that if the algorithm knows not only the
urrent request but also the following `� 1requests, the Max/Max ratio is n�1` , if n� k � ` � n� 1 and n is the number of points in themetri
 spa
e. If ` < n� k, a lookahead of size ` does not improve the Max/Max ratio.Moreover, it is shown that the best possible Max/Max ratio depends on the metri
 spa
e.For the uniform metri
 spa
e with n points, the Max/Max ratio is n�1n�k . Thus, for the uniformmetri
 spa
e with k+1 points, the Max/Max ratio is k. On the other hand, there exist metri
spa
es with arbitrarily many points for whi
h the Max/Max ratio is 1. This is in
ontrast tothe
ompetitive ratio, sin
e any deterministi
 k-server algorithm has a
ompetitive ratio of atleast k in any metri
 spa
e with more than k points, and it has been
onje
tured that this isthe optimal
ompetitive ratio [83℄.Thus, even though the de�nition of the Max/Max ratio is similar to the de�nition of the
ompetitive ratio, the Max/Max ratio seems to give more reasonable results for the k-serverproblem. Unfortunately, for the paging problem, the Max/Max ratio seems to give even lessinformation than the
ompetitive ratio. If there is no restri
tion on the request sequen
es,the fault rate of any algorithm (in
luding the optimal o�-line algorithm)
an be arbitrarily
lose to one, depending only on the number of distin
t pages that
an be requested. Thus,
onsidering arbitrarily large numbers of distin
t pages, the Max/Max ratio of any algorithm
an be arbitrarily
lose to 1. Moreover, for problems like s
heduling to minimize makespan(or the k-server problem with an unbounded metri
 spa
e) where a bound on the length ofthe input sequen
e does not yield a bound on the
ost, the Max/Max ratio does not dire
tlyapply.3.3.11 LookaheadAs mentioned in Se
tion 3.2, lookahead
annot improve the
ompetitive ratio of k-serveralgorithms. This is true for any metri
 spa
e, and hen
e it
annot improve the
ompetititiveratio of paging algorithms. As a response to this, some stronger versions of lookahead havebeen studied.[2℄ introdu
es the notion of strong lookahead. Strong lookahead ` means that the algorithmknows the minimal pre�x of the remaining sequen
e that
ontains requests to ` distin
t pages.2The memoryless algorithm requires some prepro
essing
onsisting in solving an NP-hard problem (theMinmax radius k-
lustering problem). However, a 2-approximation algorithm exists [17℄. Using this algorithmin the prepro
essing step yields a Max/Max ratio of at most 4k.

22 CHAPTER 3. QUALITY MEASURESA version of LRU, generalized to take advantage of lookahead, is studied. When a pagemust be evi
ted, the least re
ently used page that is not among the pages in the lookaheadis
hosen. If su
h a page does not exist, the page that is requested farthest in the future isevi
ted. With a lookahead of size `, we
all this version of the algorithm LRU(`).The
ompetitive ratio of LRU(`) is k� `, when ` � k� 2, and this is best possible amongdeterministi
 paging algorithms.Often, in real appli
ations, requests arrive in blo
ks. If the sequen
e is partioned in blo
kssu
h that ea
h blo
k is a minimal sequen
e with ` distin
t pages, and the algorithm seesone blo
k at a time, LRU(`) is (k � ` + 1)-
ompetitive and a variant of MarkR is (2Hk�`)-
ompetitive, when ` � k � 2.3.3.12 Total A

ess TimeSometimes the problem des
ription itself
an be re�ned to obtain more realisti
 results. Thisis the
ase for the paging problem. One reason that
ompetitive analysis yields very unrealisti
results for the paging problem is that arbitrarily long sequen
es exist for whi
h the o�-linealgorithm has no faults at all. Hen
e, in [97℄ it is assumed that it takes time 1 to a

ess a pagein the fast memory, while fet
hing a page from the slow memory takes time p � 1. With thisde�nition of the problem, it is shown that lookahead
an give improved
ompetitive ratios.Sin
e LRU(`) (as de�ned in Se
tion 3.3.11) is di�
ult to analyze, a simpler version isstudied. Instead of using the full lookahead, only those pages in the lookahead
ontained inthe
urrent marking phase are
onsidered. We
all this version LRU(`; k).The following results are obtained on the re�ned version of the paging problem.� Su�
ient (�nite) lookahead yields algorithms with
onstant
ompetitive ratios. Spe
i�-
ally, LRU(kp; k) is 2-
ompetitive.� On sequen
es with a signi�
ant lo
ality of referen
e, any marking algorithm has a
on-stant
ompetitive ratio. More pre
isely, for any input sequen
e, let L be the averagelength of a phase. If L � ak, then the
ompetitive ratio of any marking algorithm isless than 1 + pa .In
ontrast, LFU(`) (Least Frequently Used) has a
ompetitive ratio of more than p onsequen
es with mu
h more lo
ality of referen
e than what is needed for LRU(`) to be2-
ompetitive.

Chapter 4Paging with Lo
ality of Referen
eThe most natural quality measure for paging algorithms seems to be the fault rate, i.e., thenumber of faults divided by the number of requests. However, if no restri
tion is put on theset of input sequen
es, the worst
ase fault rate of any deterministi
 on-line paging algorithmis 1, sin
e in the worst
ase, ea
h request is to a page that is
urrently not in the
a
he. If theslow memory is mu
h larger than the
a
he, even the worst
ase fault rate of any randomizedon-line algorithm will be
lose to 1. Modeling lo
ality of referen
e is one way of restri
tingthe input sequen
es. In [4℄ we study a very simple model of lo
ality of referen
e.4.1 The ModelIn modeling lo
ality of referen
e we go ba
k to the working set
on
ept by Denning [37, 38℄ thatis also used in standard text books on operating systems [36, 96℄ to des
ribe the phenomenonof lo
ality. The set of pages that a pro
ess is
urrently using is
alled the working set. Fixing apoint in a request sequen
e and determining the working set size in a window of size n startingat this point in the sequen
e, one obtains a fun
tion of n whose general behavior is depi
tedin Figure 4.1. The fun
tion is in
reasing and
on
ave. Denning [37℄ shows that this is in fa
ta mathemati
al
onsequen
e of the working set model, assuming statisti
al regularities lo
allyin a request sequen
e.We assume that an appli
ation is
hara
terized by a
on
ave fun
tion f . The appli
ationgenerates request sequen
es that are
onsistent with f . We will investigate two models. Inthe Max-Model a request sequen
e is
onsistent with f if the maximum number of distin
tpages referen
ed in a window of size n is at most f(n), for any n 2 N. In the Average-Model
Window Size

Program SizeWorking SetSize
Figure 4.1: Working set size as a fun
tion of the window size.23

24 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE

0

50

100

150

200

250

300

350

400

450

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

W
or

ki
ng

 S
et

 S
iz

e

Window Size

Maximum
Average

(a) VAX, PASCAL, 500 pages. 0

50

100

150

200

250

300

350

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

W
or

ki
ng

 S
et

 S
iz

e

Window Size

Maximum
Average

(b) VAX, SPIC, 385 pages.

0

20

40

60

80

100

120

140

160

180

200

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

W
or

ki
ng

 S
et

 S
iz

e

Window Size

Maximum
Average

(
) SPARC, GCC, 276 pages. 0

50

100

150

200

250

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

W
or

ki
ng

 S
et

 S
iz

e

Window Size

Maximum
Average

(d) SPARC, COMPRESS, 229 pages.Figure 4.2: Maximum and average size of the working set in windows of size up to 100;000 requests.Ea
h diagram's
aption gives the ar
hite
ture, the name of the tra
e, and the number of distin
t pagesrequested in the entire sequen
e.a request sequen
e is
onsistent with f if the average number of distin
t pages referen
ed ina window of size n is at most f(n), for any n 2 N.In our model the fun
tion f
hara
terizes the maximal/average working set size globally ina request sequen
e, whereas the original working set model
onsiders working set sizes lo
ally.The Max-Model is
losely related to the original working set model. On the other hand, theAverage-Model permits a larger
lass of request sequen
es. It is interesting if an appli
ation
hanges the working set
ompletely at
ertain times in a request sequen
e.We have performed experiments with tra
es from standard
orpora, analyzing maxi-mum/average working set sizes in windows of size n, see Se
tion 4.6 for details. The resultfor four of these tra
es are depi
ted in Figure 4.2. As illustrated by the �gure, the behaviorof the working set size proposed by Denning for a single window of in
reasing size
an also beobserved globally , taking the maximum/average working set size over all windows of a requestsequen
e; the
urves have an overall
on
ave behavior. We also observe that, for all windowsizes, the working set size is very small
ompared to the window size. This suggests that themodel we propose here is indeed reasonable for studying paging algorithms.Naturally, the fun
tions are not only
on
ave, they are also non-de
reasing. Furthermore,

4.1. THE MODEL 25sin
e windows of size 1
ontain exa
tly one page, f(1) = 1.If windows of size n
ontain at most m pages, then a window of size n + 1
an
ontainat most m+ 1 pages. Thus, in the Max-Model, f is surje
tive on the integers between 1 andits maximum value, i.e., for all natural numbers m between 1 and supff(n) j n 2 Ng, thereexists an n with f(n) = m.This is all
aptured in the following de�nition (the �rst inequality in 2. says that thefun
tion is
on
ave, and the last inequality says that it is non-de
reasing).De�nition 4.1 A fun
tion f : N ! R+ is
on
ave� if1. f(1) = 12. 8n 2 N : f(n+ 1)� f(n) � f(n+ 2)� f(n+ 1) � 0.In the Max-Model, we additionally require that f be surje
tive on the integers between 1 andits maximum value.Note that the requirement in the Max-Model that the fun
tion be surje
tive on the integersbetween 1 and its maximum value implies that f(n+ 1)� f(n) � 1, for all n 2 N.For a given appli
ation, a good approximation of f is easy to determine. One only has tos
an a su�
iently long request sequen
e and
ompute the maximum/average number of pagesin windows of size n, just as it was done to obtain the
urves in Figure 4.2. Essentially, forea
h tra
e, we
an use any
on
ave fun
tion f that is an upper bound on the observed datapoints, e.g., we
an take the upper
onvex hull of the points.For the Max-Model, there might be one small problem; the upper
onvex hull might notbe surje
tive on the integers between 1 and the maximum value. This
an be �xed without
hanging the upper bound too mu
h. Note that the points of the upper
onvex hull arepoints of the original
urve. The
oordinates of these points are natural numbers and they are
onne
ted by straight line segments. The following two steps sket
h how to obtain a
on
ave�upper bound from the upper
onvex hull.1. For ea
h line segment ` with a slope ab , if there is no m 2 N su
h that ab = 1m ,
hoosem 2 N su
h that 1m+1 < ab < 1m , and repla
e ` by two line segments with slopes 1m+1and 1m . Denote the lengths of the proje
tions of these two line segments on the x-axis by x1 and x2. These two lengths are the solutions to the linear equation systemx1(m+ 1) + x2m = b and x1 + x2 = a.2. For ea
h line segment that was repla
ed by two line segments in Step 1, let m be thenatural number
hosen su
h that the slope of ` lies between 1m+1 and 1m . If thereare other line segments of the upper
onvex hull with slopes in the same interval, thesegments with slope 1m should be moved before all of the segments with slope 1m+1 .See Figure 4.3 for an example illustrating the two steps.In the analysis of the Max-Model, we need a de�nition of the inverse of a
on
ave� fun
tion.De�nition 4.2 For any
on
ave� fun
tion f , letM = supfbf(n)
 j n 2 Ng. De�ne f�1 : fm 2N j m �Mg ! N by f�1(m) = minfn 2 N j f(n) � mg:

26 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE
-

6
1468
1012

1 4 7 10 15 22(a) The
on
ave fun
tion and the upper boundafter Step 1. -
6

1468
1012

1 4 7 10 15 22(b) The
on
ave fun
tion and the upper boundafter Step 2.Figure 4.3: In ea
h sub�gure, a
on
ave fun
tion and an upper bound on the fun
tion is shown.In words, f�1(m) is the smallest possible size of a window
ontaining m distin
t pages.Both in the Max- and the Average-Model, given a
on
ave� fun
tion f , we will analyzethe performan
e of paging algorithms on request sequen
es that are
onsistent with f . Pra
-titioners use the fault rate to evaluate the performan
e of paging algorithms. We will use thismeasure, too.De�nition 4.3 The fault rate of a paging algorithm A on an input sequen
e � isFA(�) = A(�)j�j :We are interested in the worst
ase performan
e on all sequen
es that are
onsistent with f .De�nition 4.4 The fault rate of a paging algorithm A with respe
t to a
on
ave� fun
tion fis FA(f) := inffr j 9n 2 N : 8�; �
onsistent with f; j�j � n : FA(�) � rg:Throughout the analysis, we assume that the fun
tions
onsidered are
on
ave�. Moreover,we assume that the fun
tions have maximum values of at least k+1, sin
e otherwise the faultrate of any reasonable paging algorithm is 0.4.2 AlgorithmsThe on-line algorithms
onsidered are all deterministi
. They are: LRU, FIFO, and the
lass ofdeterministi
 marking algorithms (see Se
tion 2.1 for the de�nitions). Furthermore, we studythe optimal o�-line algorithm LFD. On a fault, LFD evi
ts the page whose next request isfarthest in the future. Sin
e LFD is an o�-line algorithm, it
annot be used in pra
ti
e, butsin
e it is an optimal o�-line algorithm [13℄, it is interesting to analyze it. Note, however, thatthe fault rate of an on-line algorithm divided by the fault rate of LFD does not ne
essarilygive the
ompetitive ratio of the on-line algorithm on sequen
es
onsistent with f .

4.3. RESULTS 27Max-Model Average-ModelAny on-line alg. � k�1f�1(k+1)�2 � f(k+1)�1kLRU = k�1f�1(k+1)�2 = f(k+1)�1kFIFO � k�1=kf�1(k+1)�1 , � kf�1(k+1)�1 = f(k+1)�1kMarking � kf�1(k+1)�1 � 43 f(k)kLFD � maxm2Nk+m�M n mf�1(k+m+1)�1o ; � 2 max1�m�kk+m�M n m+1f�1(k+m)o � 4M�4k4M�k f(k+1)k+1Table 4.1: Fault rates of the algorithms
onsidered.4.3 ResultsWe investigate the Max-Model and the Average-Model in Se
tions 4.4 and 4.5, respe
tively.The results are summarized in Table 4.1. Re
all that M is the maximum number of distin
tpages that
an be requested in any sequen
e
onsistent with f . In the Average-Model, theexa
t upper bound on marking algorithms is a
tually a little smaller than that shown in thetable. Similarly, the fault rate of LFD in the Average-Model is slightly larger than that shownin the table.In the Max-Model, LRU is optimal. FIFO is not quite optimal; the lower bound on thefault rate of FIFO is a little larger than the optimal fault rate for most
on
ave� fun
tions.The upper bound on the fault rate of FIFO (whi
h is almost equal to the lower bound) isequal to the fault rate of the worst possible marking algorithm.In the Average-Model, both FIFO and LRU are optimal. A worst possible marking algo-rithm is about a fa
tor of 43 from being optimal. As in the Max-Model, the fault rate of LFDdepends on the total number M of pages that may be requested. If M is approximately k,LFD has a fault rate
lose to 0, as expe
ted. IfM is large
ompared to k, the fault rate is
loseto f(k+1)k+1 . Thus, at �rst, it might seem that for M � k, the fault rate of LFD is larger thanthat of LRU and FIFO, sin
e f(k+1)k+1 > f(k+1)�1k , if f(k + 1) > k + 1. However, for M � k,the fun
tion giving the lower bound for LFD has f(k + 1) � k + 1.Sin
e we
onsider worst
ase fault rate, the fault rates predi
ted by the Max-Model as wellas those predi
ted by the Average-Model are higher than those observed in pra
ti
e. However,in our experiments, the gap was
onsiderably smaller than the gap between the �theoreti
al�
ompetitive ratio and the �empiri
al�
ompetitive ratio.Our experiments suggest that fault rates predi
ted by the Max-Model are
loser to realitythan those predi
ted by the Average-Model (see Se
tion 4.6). Furthermore, the Max-Modeldistinguishes LRU and FIFO. On the other hand, only the Average-Model distinguishes FIFOfrom the
lass of marking algorithms � in the Max-Model, the fault rate of FIFO
annot bedistinguished from primitive algorithms like FWF.

28 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE4.4 The Max-ModelIn this se
tion we study the Max-Model. Given a
on
ave� fun
tion f , f(n) is an upper boundon the maximum number of distin
t pages en
ountered in any n
onse
utive requests of aninput sequen
e.The proofs of the results of the Max-Model are all rather simple. The upper bound proofsfor the on-line algorithms are similar to the
orresponding proofs in
ompetitive analysis. Theidea (for LFD too) is to divide the input sequen
es into phases with a given number of faultsor a given number of distin
t pages and prove a lower bound on the length of a phase.The sequen
es of all lower bound proofs for the on-line algorithms
ontain exa
tly k + 1distin
t pages. All lower bound sequen
es are
onstru
ted in phases, ea
h
onsisting of blo
ksof non-de
reasing lengths. For all algorithms but FIFO, ea
h blo
k
onsists of requests toonly one page. Sin
e we are dealing with deterministi
 algorithms, we
an
hoose the page ofa blo
k to be the one page that is not in
a
he at the end of the previous phase.We will assume that f(2) = 2, be
ause if any window of size 2 has requests to less than 2distin
t pages, then the whole sequen
e has requests to only one page.In ea
h of the lower bound proofs and in the upper bound proof for LFD, we will need thefollowing simple proposition (Proposition 1 in [4℄).Proposition 4.5 For any
on
ave� fun
tion f , f�1 is a stri
tly in
reasing fun
tion satisfyingthat, for all 2 � m �M � 1,f�1(m+ 1)� f�1(m) � f�1(m)� f�1(m� 1):This is where we need that f is surje
tive on all integers between 1 and M . Consider forinstan
e the linear fun
tion f(n) = 13 + 23n. For this fun
tion, f�1(1) = 1, f�1(2) = 3, andf�1(3) = 4. Thus, f�1(3) � f�1(2) < f�1(2) � f�1(1).4.4.1 A Lower Bound for Deterministi
 AlgorithmsTo prove the general lower bound of k�1f�1(k+1)�2 on the fault rate of deterministi
 pagingalgorithms, we
onstru
t an input sequen
e
ontaining requests to k + 1 distin
t pages p1,p2,. . . , pk+1. The sequen
e is
onstru
ted in phases ea
h
onsisting of k � 1 blo
ks. The ithblo
k of a phase
onsists of f�1(i+2)� f�1(i+1) requests to the page that was not in
a
heat the end of the previous blo
k. The de�nition of the blo
k lengths implies that the �rst iblo
ks of a phase have a total length ofiXj=1 f�1(i+ 2)� f�1(i+ 1) = f�1(i+ 2)� f�1(2) = f�1(i+ 2)� 2:In parti
ular, it implies that the length of a phase is f�1(k+1)�2. Sin
e the algorithm faultson the �rst request of ea
h blo
k, this gives the
laimed fault rate.To
omplete the proof, we must show that the
onstru
ted sequen
e is
onsistent with f .Thus, for any number n, 1 � n � k+1, we must show that any window
ontaining n distin
tpages has a length of at least f�1(n). For 1 � n � 2, any window with n distin
t pageshas length at least f�1(n). By Proposition 4.5, the blo
k length is non-de
reasing within aphase. Thus, to �nd a shortest possible window with n distin
t pages, 3 � n � k + 1, weshould sear
h at the beginning of phase. More spe
i�
ally, we
onsider the �rst n� 2 blo
ks

4.4. THE MAX-MODEL 29of a phase P , the �rst request of the (n� 1)st blo
k of P and the last request before P . Thissubsequen
e
ontains at most n distin
t pages, and sin
e the �rst n�2 blo
ks of a phase havea total length of f�1(n)� 2, the subsequen
e has a length of f�1(n). Note that if n = k + 1,the �rst n� 1 blo
ks of P will
onstitute all of P .4.4.2 LRU is OptimalTo prove that LRU is optimal, we partition any input sequen
e �
onsistent with f into phases,su
h that ea
h phase
ontains exa
tly k�1 faults, and ea
h phase starts with a fault. Consideran arbitrary phase P . We argue that the subsequen
e of � starting at the last request beforeP and ending at the �rst request after P (in
luding that request)
ontains k+1 distin
t pages.This implies that P has a length of at least f�1(k + 1)� 2, whi
h gives the upper bound.Let p be the page referen
ed by the last request before P . Phase P and the �rst requestafter P in
lude k page faults. If these page faults are on distin
t pages di�erent from p, weare done. If not, then� one of the k faults is on p, or� two of the k faults are on the same page.Note that p is in
a
he at the beginning of the phase. Thus, if one of the k faults is on p, p isevi
ted at some point within P . At that point, p is the least re
ently used page in the
a
he,whi
h means that k pages di�erent from p are requested within the phase. If the window
ontains two faults on one page, the same argument applies.4.4.3 FIFO is Not Quite OptimalIn the proof of the upper bound for LRU, we used the fa
t that between any request to a pagep and a fault on p there are requests to at least k other pages. This is not ne
essarily the
ase for FIFO. However, between any pair of faults on a page p, there are faults on at least kother pages. Therefore, when we partition the input sequen
e into phases, we in
lude k faultsin ea
h phase instead of only k � 1. As for LRU, ea
h phase starts with a fault. Thus, anywindow
ontaining a whole phase and the �rst request of the next phase
ontains k+1 faultson k + 1 distin
t pages. Hen
e, a phase has a length of at least f�1(k + 1) � 1, whi
h givesan upper bound on the fault rate of kf�1(k + 1)� 1 :To prove an almost mat
hing lower bound, we use a sequen
e
onstru
ted of blo
ks, phases,and super phases. The sequen
e
ontains requests to k+ 1 distin
t pages p0; p1; : : : ; pk. Ea
hblo
k
onsists of a number of requests to p0 followed by one request to another page. Thepages pi, i 6= 0, are requested in
y
li
 order. Ea
h phase
onsists of k � 1 blo
ks.Assume �rst that, f�1(4)� f�1(3) > f�1(3)� f�1(2). In this
ase, the length of the �rstblo
k of a phase is f�1(3)� f�1(2) + 1 = f�1(3)� 1, and for 2 � i � k, the length of the ithblo
k of a phase is f�1(i + 2)� f�1(i+ 1). A super phase
onsists of k phases. For k = 5, asuper phase might look as illustrated in Figure 4.4.FIFO faults on ea
h request to a page pi 6= p0, and ea
h time all k pages pi, 1 � i � k, havebeen requested, the next request to p0 is a fault. This gives a total of (k + 1)(k � 1) = k2 � 1faults per super phase.

30 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCEp0 p0 p0 p0 p0 p0 p0p0 p0 p0 p0 p0 p0 p0p0 p0 p0 p0 p0 p0 p0p0 p0 p0 p0 p0 p0 p0p0 p0 p0 p0 p0 p0 p0
p1 p2 p3 p4p5 p1 p2 p3p4 p5 p1 p2p3 p4 p5 p1p2 p3 p4 p5Figure 4.4: An example super phase, k = 5.For 2 � i � k � 1, the �rst i blo
ks of a phase have a total length off�1(3) � 1 + iXj=2 �f�1(j + 2)� f�1(j + 1)� = f�1(3) � 1 + f�1(i+ 2)� f�1(3)= f�1(i+ 2)� 1:Thus, the length of a phase is f�1(k+1)�1, and the length of a super phase is k(f�1(k+1)�1).This gives a fault rate of k2 � 1k�f�1(k + 1)� 1� = k � 1kf�1(k + 1)� 1 :To prove that this is a valid lower bound on the fault rate of FIFO, we must show thatthe
onstru
ted sequen
e is
onsistent with f . Sin
e we assume that f�1(4) � f�1(3) >f�1(3) � f�1(2), the se
ond blo
k of a phase is at least as long as the �rst blo
k of a phase.Thus, by Proposition 4.5, the blo
k lengths are non-de
reasing within a phase. Therefore, ashortest possible window
ontaining n distin
t pages, 3 � n � k + 1,
an be found by takingthe �rst n � 2 blo
ks of a phase and the last request of the previous phase. Su
h a windowhas a length of at least f�1(n)� 1 + 1 = f�1(n).This proves that, if f�1(4)� f�1(3) > f�1(3)� f�1(2), the fault rate of FIFO is at leastk�1=kf�1(k+1)�1 . This fault rate is larger than that of LRU, ifk � 1kf�1(k + 1)� 1 > k � 1f�1(k + 1)� 2 ;whi
h is equivalent to f�1(k+1) > k+2. Roughly speaking, this will be the
ase for sequen
esthat exhibit lo
ality of referen
e within windows of length at least k + 3.For
ompleteness,
onsider also the
ase f�1(4)� f�1(3) = f�1(3)� f�1(2). In this
ase,the sequen
e just des
ribed is not
onsistent with f . Let s = minfi � 4 j f�1(i+1)�f�1(i) >f�1(i) � f�1(i � 1)g. For 1 � i � minfs � 2; k � 1g, we let the ith blo
k of a phase havelength f�1(i + 2) � f�1(i + 1) + 1. For minfs � 2; k � 1g + 1 � i � k � 1, we let theith blo
k have length f�1(i + 2) � f�1(i + 1) as before. This results in a phase length of

4.4. THE MAX-MODEL 31f�1(k + 1)� 1 +minfs� 3; k � 2g = f�1(k + 1) +minfs� 4; k � 3g and a fault rate ofk � 1kf�1(k + 1) +minfs� 4; k � 3g :Assume that s � k. Then, the fault rate of FIFO is larger than that of LRU, ifk � 1kf�1(k + 1) + s� 4 > k � 1f�1(k + 1)� 2 :This is equivalent to f�1(k + 1) > (s � 2)k + 2. If s � k + 1 and f(3) = 3, then f(k + 1) =f(2) +Pki=2(f(i+ 1)� f(i)) = 2 +Pki=2 1 = k + 1, and the fault rate of any algorithm withrespe
t to f is 1. If s � k+ 1 and f�1(3) > 3, then the fault rate of FIFO is larger than thatof LRU, if k � 1kf�1(k + 1) + k � 3 > k � 1f�1(k + 1)� 2 ;whi
h is equivalent to f�1(k + 1) > k2 � k + 2. For large values of k, even this amount oflo
ality of referen
e does not seem unrealisti
.4.4.4 Marking AlgorithmsTo prove an upper bound on the fault rate of any marking algorithm, we partition the inputsequen
e into phases
orresponding to the marking phases. In ea
h phase, exa
tly k distin
tpages are requested, and ea
h page
auses at most one fault. When all pages in the
a
he aremarked, a new phase starts when a page not in
a
he is requested. Thus, the �rst page of aphase is a page that was not requested in the previous phase. We
on
lude that a phase hasa length of at least f�1(k + 1)� 1. Sin
e ea
h phase
ontains at most k faults, the fault rateis at most kf�1(k + 1)� 1 :To see that the upper bound is best possible,
onsider the following
lass of markingalgorithms. On the �rst fault within a phase, the page that was requested last in the previousphase is evi
ted. Clearly, this
lass
ontains FWF.The lower bound sequen
e
ontains k distin
t pages and is
onstru
ted in phases, ea
h
onsisting of k blo
ks. The ith blo
k of a phase
onsists of f�1(i + 1) � f�1(i) requests tothe page that was not in
a
he at the end of the previous blo
k. Thus, the algorithm faults ktimes per phase, and the length of a phase is Pki=1(f�1(i+ 1)� f�1(i)) = f�1(k + 1)� 1.To see that the sequen
e is
onsistent with f , note that the page requested in the se
ondblo
k of a phase is the page that was requested in the last blo
k of the previous phase.Furthermore, by Proposition 4.5, the blo
k lengths are non-de
reasing within a phase. Thus,a shortest possible window
ontaining n distin
t pages
an be found taking the �rst n � 1blo
ks of a phase (the �rst blo
k
ontains only one page) and the �rst request of the nth blo
kof the phase (the �rst blo
k of the following phase, if n = k + 1). This shows that the lengthof a window
ontaining requests to n distin
t pages is at leastn�1Xi=1 �f�1(i+ 1)� f�1(i)�+ 1 = (f�1(n)� 1) + 1 = f�1(n);whi
h proves the
onsisten
y with f .

32 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE4.4.5 LFDTo prove an upper bound on the fault rate of LFD, we partition any input sequen
e intophases, su
h that ea
h phase
ontains requests to exa
tly k distin
t pages. For ea
h phase i,let mi be the number of new pages, i.e., pages that were not requested in phase i�1. Considerthe o�-line algorithm that evi
ts only pages that are not requested in the next phase. Thisis possible, sin
e the
a
he
an hold k pages. This algorithm has at most mi faults in phasei, whi
h gives an upper bound on the average number of faults per phase of m = 1nPni=1mi,where n denotes the number of phases. Sin
e LFD has the best possible fault rate, this is anupper bound on the average number of faults of LFD.Any two
onse
utive phases i� 1 and i have a length of at least f�1(k+mi). This gives alower bound on the length of the sequen
e of approximately 12 Pni=1 f�1(k +mi), whi
h is atleast 12n � f�1�b 1nPni=1(k +mi)
� (by Proposition 2 in the paper). Thus, the average phaselength is at least 12f�1�b 1nPni=2(k +mi)
�. This gives an upper bound on the fault rate of2 mf�1 �b 1nPni=1(k +mi)
� = 2 mf�1 (bk +m
) � 2 max1�m�kk+m�M � m+ 1f�1(k +m)� :We now prove a lower bound that is essentially a fa
tor of two away from the upper boundjust proven. Choose an m 2 N su
h that mf�1(k+m+1)�1 is maximized, and let N = k+m. We
onstru
t a sequen
e
ontaining N distin
t pages in phases
onsisting of N � 1 blo
ks ea
h.Ea
h blo
k
ontains requests to only one page, and the N pages are requested in a
y
li
 order.The page requested in the last blo
k of a phase Pj is not requested in the following phasePj+1. Sin
e this page is in the
a
he at the end of Pj , at most k� 1 of the pages requested inPj+1 are in
a
he at the end of Pj . Thus, LFD has at least N � 1 � (k � 1) = N � k faultsin ea
h phase. The ith blo
k of a phase has a length of f�1(i + 2) � f�1(i + 1). Thus, thelength of a phase is f�1(N +1)� 1 = f�1(k+m+1)� 1. The argument that the sequen
e is
onsistent with f is analogous to that of the proof of the general lower bound for deterministi
on-line algorithms. This gives a lower bound ofmaxm2Nk+m�M � mf�1(k +m+ 1)� 1� :4.5 The Average-ModelThe proofs of the results of the Average-Model tend to be more
ompli
ated than those of theMax-Model. Only the upper bound for LRU is extremely simple to prove.All bounds on the fault rates of the Average Model are tight in some sense. The generallower bound for deterministi
 algorithms mat
hes the upper bound on the fault rate of LRUand FIFO with respe
t to any
on
ave� fun
tion. For LFD, there exists a
on
ave� fun
tion fsu
h that the fault rate of LFD with respe
t to this f mat
hes the upper bound on the faultrate of LFD. As to the
lass of marking algorithms, there is a marking algorithm M and a
on
ave� fun
tion f su
h that the fault rate ofM with respe
t to f mat
hes the general upperbound for marking algorithms.We need some additional notation. For any sequen
e � of page requests, �[i℄ denotes theith request r in � as well as the page requested by r, 1 � i � j�j. For 1 � i � j�j � `+ 1, let�`[i℄ be the subsequen
e (window) h�[i℄; �[i + 1℄; : : : ; �[i + ` � 1℄i. Let N`(i) be the number

4.5. THE AVERAGE-MODEL 33
-

6
1 k + 1 k +m+ 11k + 1� kmn(k + 1) +m� 1k + 1

Figure 4.5: A(`), an upper bound on Av(`).of distin
t pages in �`[i℄, and let N` = Pj�j�`+1i=1 N`(i). Let Av(`) be the average number ofdistin
t pages in windows of length `, i.e., Av(`) = N`j�j�`+1 .A sequen
e �
onsistent with a given
on
ave� fun
tion f has Av(`) � f(`), 1 � ` � j�j.4.5.1 A Lower Bound for Deterministi
 AlgorithmsTo prove the general lower bound of f(k+1)�1k , we
onstru
t an input sequen
e
onsisting ofrequests to k+1 distin
t pages p1; p2; : : : ; pk+1. The sequen
e
onsists of two parts. For somelarge integer n, the �rst part
onsists of n(k + 1) requests that will all make the algorithmfault. To ensure that the sequen
e is
onsistent with f , a se
ond part is added. For someinteger m dependent on n and f , this part
onsists of m requests to only one page.Sin
e the algorithm faults on ea
h of the n(k + 1) �rst requests, the fault rate will be atleast n(k+1)n(k+1)+m . For any m su
h that � is
onsistent with f , this fra
tion yields a valid lowerbound on the fault rate of any deterministi
 algorithm. To �nd a su
h m, we should
al
ulatethe average fun
tion for the sequen
e, or at least an upper bound on the average fun
tion.Among all sequen
es of length n(k+ 1)
ontaining k + 1 distin
t pages, the sequen
e � =hp1; p2; : : : ; pk+1in has the highest possible average number of distin
t pages, for ea
h possiblewindow length. Thus, the sequen
e we will investigate is � = hp1; p2; : : : ; pk+1inhpk+1im. Theaverage fun
tion Av for this sequen
e is an upper bound on the average fun
tion for anysequen
e
onstru
ted as des
ribed.We will prove that the fun
tion A de�ned below is an upper bound on Av. The fun
tion
onsists of three linear parts (see Figure 4.5):A(`) = 8>>>>><>>>>>:1 +�1� mn(k + 1) +m� 1� (`� 1); 1 � ` � k + 1k + 1� kmn(k + 1) +m� 1 + kn(k + 1) +m� 1�`� (k + 1)�; k + 1 � ` � k +m+ 1k + 1; k +m+ 1 � ` � j�jClearly, Av(1) = 1. Thus, to
al
ulate an upper bound on Av(`) for 1 � ` � j�j, it su�
es to
al
ulate an upper bound on Av(`+ 1)�Av(`) for 1 � ` � j�j � 1.We �rst
onsider small `. Assume 1 � ` � k. The sequen
e
ontains j�j � `+ 1 windowsof length `. The �rst n(k+1)� `+ 1 of these windows
ontain ` distin
t pages ea
h, the lastm� `+ 1 windows
ontain only one page ea
h, and for ea
h i, 2 � i � `� 1, there is exa
tly

34 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE
p1 pk pk+1 pk+1 pk+1n(k + 1)z }| { mz }| {
| {z }n(k + 1)� `� 1 | {z }`+ 1Figure 4.6: ` � k: The windows �`[1℄; : : : ; �`[n(k + 1)� `℄ will ea
h
ontain one new page, when ` isin
remented.
p1 p1 . . pk+1 pk+1 pk+1n(k + 1)z }| { mz }| {
| {z }(n� 1)(k + 1) | {z }k + 1Figure 4.7: k +1 � ` � k+m+1: The windows �`[1℄; : : : ; �`[(n� 1)(k +1) + 1℄
ontain k +1 pagesea
h. The windows �`[n(k + 1)℄; : : : ; �`[n(k + 1) � ` + 1℄
ontain one page ea
h. For 2 � i � k, thewindow �`[n(k + 1)� i+ 1℄
ontains i pages.one window
ontaining exa
tly i distin
t pages. When extending the window length from ` to`+1, the �rst n(k+1)� ` windows will
ontain one additional page. The number of distin
tpages in ea
h of the rest of the windows will remain un
hanged (see Figure 4.6). Thus, if nis mu
h larger than k, Av(` + 1) � Av(`) is
lose to n(k+1)n(k+1)+m : However, we will
al
ulate anexa
t upper bound on Av(`+ 1)�Av(`).For 1 � ` � k, Av(` + 1) � Av(`) is a slightly de
reasing fun
tion of `, sin
e in ea
h step,one window less has its number of distin
t pages in
reased. Thus, for 1 � ` � k,Av(`+ 1)�Av(`) � Av(2)�Av(1) = (n(k + 1)� 1) � 2 +m � 1n(k + 1) +m� 1 � 1= 1� mn(k + 1) +m� 1 :For k + 1 � ` � k + m, Av(`) is still an in
reasing fun
tion. This
an be seen in thefollowing way. When ` is in
remented, the number of windows with only one page de
reasesby one, whereas the number of windows with k + 1 distin
t pages stays the same (and forea
h i, 2 � i � k, the number of windows with exa
tly i pages remains one). See Figure 4.7.(When the window length rea
hes k + 1 +m, all windows have k + 1 distin
t pages.)As ` in
reases, the number of windows of length ` de
reases. Hen
e, the drop in the

4.5. THE AVERAGE-MODEL 35number of windows with requests to only one page means more and more. In other words,between k + 1 and k +m+ 1, Av(`) grows faster and faster. Thus, the straight line between(k + 1; k + 1� kmn(k+1)+m�1) and (k +m+ 1; k + 1) is an upper bound on Av in this interval.This line has a slope ofk + 1� �k + 1� kmn(k+1)+m�1�k +m+ 1� (k + 1) = kn(k + 1) +m� 1 :What remains to be done is to determine m su
h that the sequen
e � is
onsistent witha given
on
ave� fun
tion f . Sin
e A is an upper bound on Av, � is
onsistent with f , ifA(`) � f(`), for all `, 1 � ` � j�j. Sin
e f is
on
ave�, it is su�
ient to prove1. A(1) � f(1)2. A(k + 1) � f(k + 1)3. A(k +m+ 1) � f(k +m+ 1).1. follows immediately from A(1) = 1 = f(1).2. is equivalent to k + 1� kmn(k + 1) +m� 1 � f(k + 1);whi
h in turn is equivalent tom � k + 1� f(k + 1)f(k + 1)� 1 �n(k + 1)� 1�:Thus, we let m = k + 1� f(k + 1)f(k + 1)� 1 n(k + 1):If f(k + 1) = k + 1, any deterministi
 paging algorithm has a fault rate of 1 = f(k+1)�1k .If f(k + 1) < k + 1, m grows linearly with n. Thus, there exists an n0 2 N su
h that, forall n � n0, k +m + 1 � f�1(k + 1). Sin
e A(k +m + 1) = k + 1, this shows that n
an be
hosen su
h that 3. is ful�lled.We obtain a lower bound on the fault rate of any deterministi
 paging algorithm ofn(k + 1)n(k + 1) +m = 11 + k+1�f(k+1)f(k+1)�1 = f(k + 1)� 1k :4.5.2 Upper BoundsSo far we have fo
used on windows, e.g.,
ounting the number of distin
t pages within windowsof a given length or windows
ontaining k faults. In the upper bound proofs of the Average-Model we will instead fo
us on pages. Assume that the input sequen
e
ontains requests ton distin
t pages p1; p2; : : : ; pn. For 1 � i � n, let w`(i) be the number of windows of length `
ontaining a request to pi. Then, N` = Pni=1w`(i). We will say that pi
ontributes w`(i) toN`.

36 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE�0: pi i+ k
Figure 4.8: For ea
h position j su
h that N 0k+1(j) < Nk+1(j), the page requested just after thewindow �0k+1[j℄ is di�erent from ea
h page requested inside the window.4.5.3 LRU and FIFO are OptimalIn the Average Model, both LRU and FIFO are optimal. For LRU, this
an be seen in thefollowing way. Whenever a page p is requested, the next k requests
annot in
ur a fault onp. Thus, ea
h fault on p is
ontained in k + 1 windows of length k + 1
ontaining no otherfaults on p. Furthermore, ea
h request to p that does not in
ur a fault is the �rst request ofa window of length k + 1
ontaining no fault on p. This shows that (ex
ept for the �rst andlast k requests) ea
h fault
ontributes k + 1 to Nk+1 and ea
h request that does not in
ur afault
ontributes at least 1 to Nk+1. This gives approximatelyNk+1 � (k + 1) � LRU(�) + �j�j � LRU(�)� = k � LRU(�) + j�j;and Av(k + 1) � k � LRU(�) + j�jj�j = k � FLRU(�) + 1:Sin
e � is
onsistent with f ,f(k + 1) � Av(k + 1) � k � FLRU(�) + 1:Solving for the fault rate, we obtain an upper on the fault rate of LRU mat
hing the generallower bound.When it
omes to FIFO, we
annot say that there are at least k requests between ea
hpair of requests to a given page p. We
an only say that, between two faults on p, there areat least k requests. Let the term free request denote a request that is not a fault. We must�nd an alternative way to prove that free requests
ontribute to Nk+1.Assume that we remove all free requests from the sequen
e and then we put them ba
kinto the sequen
e one by one. We show that for ea
h request put ba
k into the sequen
e,Nk+1 in
reases by at least one. This is illustrated in Figure 4.8: A request to a page p isinserted just before the (i+k)th request of the sequen
e �, for some i. The resulting sequen
eis denoted �0.We study windows of length k+1 in � and �0. For ea
h j � i�1, �k+1[j℄ = �0k+1[j℄ and forea
h j � i+k, �k+1[j℄ = �0k+1[j+1℄, so we need only
onsider the windows �k+1[i℄; : : : ; �k+1[i+k � 1℄ and �0k+1[i℄; : : : ; �0k+1[i+ k℄. To prove N 0k+1 � Nk+1 + 1, it su�
es to provei+kXj=i N 0k+1(j) � 1 + i+k�1Xj=i Nk+1(j) :Let i � j � i + k � 1. The window �0k+1[j℄
ontains the requests of �k[j℄ and the newrequest to p. Therefore, Nk+1(j) and N 0k+1(j)
an di�er by at most one. Let n be the number

4.5. THE AVERAGE-MODEL 37of positions j for whi
h Nk+1(j) > N 0k+1(j). We just need that N 0k+1(i + k) � n + 1. IfNk+1(j) > N 0k+1(j), the last page �[j + k℄ requested in �k+1[j℄
ontributes to Nk+1(j) andp does not
ontribute to N 0k+1(j). This means that �[j + k℄ is di�erent from ea
h page in�k[j℄ and from p. Assume that the windows shown in Figure 4.8 are those windows of �0
ontaining fewer distin
t pages than the
orresponding windows in �. For ea
h su
h window,the request immediately after the window is di�erent from ea
h request inside the window.Thus, the shaded requests are all to distin
t pages di�erent from p. This means that thewindow �0k+1[i + k℄
ontains at least n+ 1 distin
t pages, namely p and those shaded in the�gure. This
ompletes the proof that ea
h free request
ontributes at least one to Nk+1.4.5.4 The Worst Marking AlgorithmWe already know that there exists at least one optimal marking algorithm, namely LRU.There exists, however, a marking algorithm M and a
on
ave� fun
tion f su
h that the faultrate of M with respe
t to f is approximately 43 that of LRU. More pre
isely, the fault rate isFM = 8><>: 4k3k + 2 f(k)k ; k even4k3k + 2� 1=k f(k)k ; k odd.As we shall see, this is the worst possible fault rate of any marking algorithm with respe
t toany
on
ave� fun
tion.Lower boundConsider the sequen
e UpDownnh = hp1; p2; : : : ; ph�1; ph; ph�1; : : : ; p2in, h; n 2 N. Su
h asequen
e will also be used for proving the lower bound on the fault rate of LFD. A subse-quen
e hp1; p2; : : : ; ph�1; ph; ph�1; : : : ; p2i is
alled a phase. When n goes to in�nity the averagenumber of distin
t pages in windows of length ` goes toAv1h (`) = 8>>>><>>>>:`� (`� 1)24(h � 1) ; 1 � ` � 2h� 3; ` odd,`� (`� 1)2 � 14(h � 1) ; 2 � ` � 2h� 3; ` even,h; ` � 2h� 2:For the windows starting in one of the �rst n� 1 phases of UpDownnh, the average numberof distin
t pages in a window of length ` is Av1h (`). The sum of the number of distin
t pagesin all windows of length `
ontained in the last UpDownnh phase is at most 2(h� 1)h. Thus,Av(`) � 2(h � 1)(n� 1)Av1h (`) + 2(h� 1)hn � 2(h� 1)� `+ 1� 2(h � 1)(n� 1)Av1h (`) + 2(h� 1)h2(h� 1)(n� 1)= Av1h (`) + hn� 1 :

38 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE� �� �Figure 4.9: A phase
ontaining k = 10 requests and the �rst and last window asso
iated with thephase.Let " = hn�1 . Then, it is
lear that the fun
tionf(`) = 8><>:1; ` = 1Av1h (`) + "; 2 � ` � 2h� 3;h; ` � 2h � 2is an upper bound on Av(`), but this fun
tion is not
on
ave�, sin
e f(2)�f(1) = 2+"�1 > 1.Therefore, we use the tighter upper boundf(`) = (minf`;Av1h (`) + "g; 1 � ` � 2h� 3;h; ` � 2h� 2:Consider now the marking algorithm M that uses the LIFO rule on the unmarked pages.That is, when a page must be evi
ted, M
hooses the unmarked page that has been in the
a
he for the shortest time. M will fault on ea
h request of UpDownnk+1. Thus,FM(�) = 1 = kf(k) � f(k)k = kAv1k+1(k) + k+1n�1 � f(k)k= 8>>><>>>: 4k3k + 2� 1k + 4 k+1n�1 � f(k)k ; k odd,4k3k + 2 + 4 k+1n�1 � f(k)k ; k even.Note that the proof of the lower bound is also valid for FWF.Upper BoundThe lower bound is best possible as
an be seen by the following. Ea
h phase
ontains requeststo exa
tly k distin
t pages. We will
ount how many windows of length k ea
h of these pagesis
ontained in.Assume �rst that k is even. Consider a phase P
ontaining the requests �[i℄; : : : ; �[j℄. Toensure that nothing is
ounted twi
e, we will
onsider only the windows �`[i� k2+1℄; : : : ; �`[j�k2 + 1℄. Figure 4.9 illustrates whi
h windows are
onsidered; the �rst and the last window areshown. Note that the se
ond and the last request of the phase are
ontained in k2 + 1 of thewindows
onsidered. The third and the se
ond to last request of the phase are
ontained ink2 + 2 of the windows
onsidered, and so on. The (k2 + 1)st request is
ontained in k of thepages
onsidered. The �rst page p requested in the phase is not requested in the previous

4.5. THE AVERAGE-MODEL 39� �� �Figure 4.10: A phase
ontaining k = 9 requests and the �rst and last window asso
iated with thephase.phase, so this page is
ontained in k windows
ontaining no other requests to p. Thus, thetotal
ontribution from a phase is at least2 � k=2Xi=1 �k2 + i� = 34k2 + 12k:This is at least 34k + 12 per fault, sin
e ea
h phase
ontains at most k faults. Thus, Nk+1 �(34k + 12)M(�), andf(k) � Av(k) � (34k + 12)M(�)j�j = �34k + 12�FM(�) :Hen
e, FM � f(k)34k + 12 = 4k3k + 2 f(k)k :Assume now that k is odd (see Figure 4.10). The �rst request
ontributes to k windows oflength k. The se
ond and the se
ond to last request
ontribute to k�12 + 2 ea
h. The k+12 threquest
ontributes to k windows. The last request
ontributes to k+12 windows. Thus, ea
hphase
ontributes 2k + k + 12 + k�12Xi=2 k � 12 + i = 34k2 + 12k � 14 :Doing the same
al
ulations as in the
ase of k even, we arrive atFM � 4k3k + 2� 1k f(k)k :4.5.5 LFDIn this se
tion we prove an upper bound on the fault rate of LFD of approximately 4M�4k4M�k f(k+1)k+1and give a
on
ave� fun
tion with respe
t to whi
h the fault rate of LFD exa
tly mat
hes theupper bound.Upper BoundConsider any request sequen
e �
onsistent with some
on
ave� fun
tion f . Again we willanalyze the
ontribution from faults and free requests to Nk+1. Like in the
ase of LRU andFIFO, no page generates more than one fault within a window of length k+1, and hen
e ea
h

40 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCEfault
ontributes k + 1 to Nk+1. Determining the
ontribution from free requests is a littlemore
ompli
ated, and we postpone that a little.We partition the sequen
e into phases P 1; P 2; : : : ; P n. The phase P 1 starts with the �rstrequest in the sequen
e and, for 2 � i � n, phase P i starts with the �rst fault on a page thatwas evi
ted in phase P i�1. Thus, within a phase, there is at most one fault on ea
h page,and the k pages that are in fast memory at the beginning of a phase do not generate a faultwithin the phase. Hen
e, ea
h phase
ontains at most M � k faults.For 1 � i � n, let F i be the number of faults in phase P i, and let N ik+1 be the
ontributionto Nk+1 from requests in P i. Let W be a lower bound on the
ontribution to Nk+1 from freerequests within one phase.Then, N ik+1F i � (k + 1)F i +WF i � (k + 1)(M � k) +WM � k :Solving for F i yields F i � M � k(k + 1)(M � k) +W �N ik+1; andLFD(�) = nXi=1 F i � M � k(k + 1)(M � k) +W n�2Xi=2 N ik+1 = M � k(k + 1)(M � k) +W �Nk+1:Thus, FLFD(�) � M � k(k + 1)(M � k) +W �Av(k + 1) � M � k(k + 1)(M � k) +W � f(k + 1) :To �nish the proof we must determine a lower bound W on the
ontribution to Nk+1 fromthe free requests of one phase.First observe that any phase P i must
ontain free requests to at least k� 1 distin
t pages.This
an be seen in the following way. Let p be the �rst page requested in phase P i+1, and letsi+1 be the index of this request. Then p is evi
ted at some point during phase P i. Assumethat this happens as a result of a request with index q. Sin
e p is the page to be evi
ted,the k � 1 other pages p1; : : : ; pk�1 in the
a
he are requested at some point between �[q℄ and�[si+1℄. Ea
h of these requests must be free, be
ause otherwise P i would
ontain a fault on apage that had been evi
ted earlier in the phase and this would
ontradi
t the de�nition of aphase.For 1 � j � k� 1, let rj be the �rst request to pj after �[q℄, and let W (rj) be the numberof windows
ontaining rj, no fault on pj , and no request to pj
ontained in P i�1. ThenW =Pk�1j=1 W (rj) is a lower bound on the
ontribution to N ik+1.It is
lear that the �rst k requests after rj are not faults on pj. Thus, when
al
ulatingW (rj), we only need to worry about requests to pj that are to the left of rj . Let dj be thedistan
e between rj and the last request to pj to the left of rj , i.e., if hrj is the index of rj andhlj is the index of the last request to pj before rj, then dj = hrj � hlj . W (rj) = minfk+1; djg.Note that hlj � q < hrj , and let dlj = q � hlj and drj = hrj � q, see Figure 4.11. Then,k�1Xj=1 dj = k�1Xj=1 dlj + k�1Xj=1 drj � 2 k�1Xj=1 j:

4.5. THE AVERAGE-MODEL 41pjhlj q pjhrj psi+1z }| {dlj z }| {drj| {z }djFigure 4.11: �[hlj ℄: Last request to pj before �[q℄. �[q℄: Causes p to be evi
ted. �[hrj ℄: First requestto pj after �[q℄. �[si+1℄: First fault on p after �[q℄ � phase P i+1 begins.Let S be the set of requests su
h that dj � k + 1, and let m = jSj. Then,W = k�1Xj=1W (rj) � (k � 1�m)(k + 1) + Xrj2S dj� k2 � 1�m(k + 1) + 2 mXj=1 j = k2 � 1 +m2 � km:This lower bound on W is minimized, when m = k2 , if k is even, and when m = k�12 , if k isodd. Inserting these values, we getW � 8><>:34k2 � 34 = 34(k � 1)(k + 1); k odd;34k2 � 1 = 34(k � 1)(k + 1)� 14 ; k even;and FLFD(f) � 8>>><>>>: 4M � 4k4M � k � 3 f(k + 1)k + 1 ; k odd4M � 4k4M � k � 3� 1k+1 f(k + 1)k + 1 ; k even:Lower BoundFor some n 2 N,
onsider the sequen
e UpDownnM as de�ned in Se
tion 4.5.4. This sequen
eis
onsistent with the
on
ave� fun
tionf(`) = (minf`; Av1M (`) + Mn�1g; 1 � ` � 2M � 3;M; ` � 2M � 2:For n su�
iently large and k odd,f(k + 1) = Av1M (`) + Mn� 1 = k + 1� k2 � 14M � 4 + Mn� 1= 4(M � 1)(k + 1)4(M � 1) � (k � 1)(k + 1)4(M � 1) + Mn� 1 = (4M � k � 3 + ")(k + 1)4(M � 1) ;

42 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCEwhere " = 4(M�1)k+1 Mn�1 . Similarly, for k even and n su�
iently large,f(k + 1) = k + 1� k24(M � 1) + Mn� 1= 4(M � 1)(k + 1)4(M � 1) � (k � 1)(k + 1) + 14(M � 1) + Mn� 1= (4M � k � 3� 1k+1 + ")(k + 1)4(M � 1) :It is easily veri�ed that, within the �rst half of a phase, LFD faults on the �rst requestand the last M � k � 1 requests. The same is true for the se
ond half of a phase. Hen
e,FLFD(UpDownnM) = M � kM � 1 f(k + 1)f(k + 1)= 8>><>>:M � kM � 1 4(M � 1)4M � k � 3 + " f(k + 1)k + 1 ; k oddM � kM � 1 4(M � 1)4M � k � 3� 1k+1 + " f(k + 1)k + 1 ; k even= 8>><>>: 4(M � k)4M � k � 3 + " f(k + 1)k + 1 ; k odd4(M � k)4M � k � 3� 1k+1 + " f(k + 1)k + 1 ; k even.4.6 ExperimentsIn this se
tion we present some results of our experimental study in whi
h we
omparedthe worst-
ase fault rates developed in the previous se
tions to the fault rates observed onreal pro
essor tra
es. We analyzed memory referen
e tra
es from the New Mexi
o StateUniversity Tra
e Base [63℄ that
ontains standard ben
hmarks. We sele
ted tra
es from VAXand SPARC platforms. More spe
i�
ally, we
hose the ATUM VAX tra
es and a bundleof SPARC tra
es that were
olle
ted while running the SPEC92 ben
hmark suite. The sets
onsist of a
olle
tion of 9 respe
tively 13 memory referen
e tra
es from single pro
esses. Therequest sequen
es
ontain both data read/write requests and instru
tion fet
hes. The SPARCtra
es were trun
ated after 10 million referen
es, whereas the VAX tra
es vary in length,but are all about 400;000 requests. We worked with a page size of 512 bytes for the VAXar
hite
ture and a page size of 2048 bytes for the SPARC ar
hite
ture.We �rst analyzed the maximum and average working set size in windows of up to 100;000requests. Figure 4.2 in Se
tion 4.3 presents the results for four spe
i�
 tra
es, two VAX tra
esand two SPARC tra
es.In the se
ond part of the experiments, we evaluated the fault rates of LRU, FIFO, and LFDon the various tra
es and
ompared the values to the
orresponding bounds we developed forboth the Max- and the Average-Model. We performed the
omparison for
a
he sizes rangingfrom 1 to the maximum working set size. Figure 4.12 presents the results for the VAX Pas
aland the SPARC Compress tra
es. The left part of the �gure shows the results for LRU andFIFO. The two lower
urves represent the empiri
al fault rates of LRU and FIFO, while the

4.6. EXPERIMENTS 43

0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 250 300 350 400 450 500

F
au

lt
R

at
e

Cache Size k

Bound FIFO/LRU (Average-Model)
Bound FIFO (Max-Model)
Bound LRU (Max-Model)

FIFO
LRU

(a) VAX, PASCAL � FIFO and LRU. 0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 250 300 350 400 450 500

F
au

lt
R

at
e

Cache Size k

Bound (Average-Model)
Bound (Max-Model)

LFD

(b) VAX, PASCAL � LFD

0

0.05

0.1

0.15

0.2

0.25

50 100 150 200

F
au

lt
R

at
e

Cache Size k

Bound FIFO/LRU (Average-Model)
Bound FIFO (Max-Model)
Bound LRU (Max-Model)

FIFO
LRU

(
) SPARC, COMPRESS � FIFO and LRU. 0

0.05

0.1

0.15

0.2

0.25

50 100 150 200

F
au

lt
R

at
e

Cache Size k

Bound (Average-Model)
Bound (Max-Model)

LFD

(d) SPARC, COMPRESS � LFD.Figure 4.12: Measured fault rates and upper bounds on the fault rates for FIFO, LRU and LFD. Thefast memory size k varies in the range of 1 up to the total number of distin
t pages requested in theentire sequen
e.two
urves in the middle show the
orresponding theoreti
al upper bounds in the Max-Model.The upper
urve depi
ts the bound in the Average-Model. The right part of Figure 4.12 showsthe bounds for LFD in the same relative order.Sin
e the fault rate as de�ned in 4.4 is a worst-
ase measure, we
annot expe
t that thetheoreti
al bounds on the fault rates mat
h the empiri
al values
ompletely. Nevertheless,the gap is not large and
onsiderably smaller than in the
ase of
ompetitiveness. On realworld tra
es, the �empiri
al
ompetitiveness� of LRU and FIFO is typi
ally no larger then 4.This was observed in [18, 103℄ and also shown in our experiments. On the other hand, the
ompetitive ratios from theory are k. Thus, the gap between the theoreti
al and empiri
al
ompetitiveness is k=4. In our paging model, the gaps are
onsiderably smaller. For theSPARC COMPRESS tra
e the gap is, expressed as a fun
tion linear in k, usually betweenk=50 to k=30. For some of the tra
es we examined, the values were even below k=1000.We also remark that, throughout our experiments, the fault rates predi
ted in the Max-Model were
loser to the empiri
al fault rates than those of the Average-Model. This
orre-sponds to some extent to the intuition we gained by working on the models. In the Average-Model, the adversary seems to be less limited than in the Max-Model; in the Average-Model,

44 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCEthe adversary
an give any sequen
e he likes, and then pad it with a su�
ient number ofrequests to only one page.

Chapter 5Edge Coloring with a Fixed Numberof ColorsIn [49℄ we study the maximization version of edge
oloring, i.e., the version where only alimited number of
olors are available, and the aim is to
olor as many edges as possible. This
hapter des
ribes the results.5.1 AlgorithmsWe mainly
onsider the
lass of fair algorithms, i.e., algoithms that never reje
t edges thatthey are able to
olor. However, one of the results is valid for any algorithm, fair or not fair,deterministi
 or randomized. To denote an arbitrary algorithm for edge
oloring with a �xednumber of
olors, we use the term on-lineR. An algorithm that is fair and might be randomizedis
alled fairR. Similarly, we let fairD and on-lineD denote deterministi
 algorithms that arefair, might not be fair, respe
tively. We let o�-line denote an optimal o�-line algorithm.We also
onsider two spe
i�
 fair algorithms, First-Fit and Next-Fit. First-Fit always usesthe lowest numbered
olor possible. Next-Fit uses the
olors in a
y
li
 order. It
olors the�rst edge with the
olor 1. Whenever it uses a
olor
, it will
olor the next edge e with the�rst
olor in the sequen
e h
 + 1; : : : ; k; 1; : : : ;
 � 1i not used on edges adja
ent to e, if any.Intuitively, the Next-Fit strategy is a poor strategy, and as
an be seen in the next se
tion,Next-Fit has the worst possible
ompetitive ratio among fair algorithms. Thus, we in
lude itonly to prove that the impossibility results for fair algorithms are tight. The First-Fit strategyseems more reasonable, sin
e it tries to save the higher numbered
olors until it really needsthem. Unfortunately, it turns out that First-Fit is not mu
h better than Next-Fit.5.2 ResultsWe have analyzed the
ompetitive ratio of the algorithms and
lasses of algorithms de�ned inthe previous se
tion. The results are shown in Table 5.1. For general graphs the results arerather pessimisti
. No algorithm
an be more than 47 -
ompetitive and no fair deterministi
algorithm
an be more than 12 -
ompetitive. There is not mu
h room for variation amongfair deterministi
 algorithms, sin
e any fair algorithm is more than (2p3 � 3)-
ompetitive(2p3 � 3 � 0:4641). Next-Fit has the worst possible
ompetitive ratio. For most values of kit is
lose to 2p3� 3, and there are values of k for whi
h it gets arbitrarily
lose to 2p3� 3.45

46 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORSComp. Ratio Fair Det. Fair, Det. Any Next-Fit First-FitGeneral C � 2p3� 3 C � 12 C � 47 C = 2p3� 3 C � 29 (p10� 1)� 0:4641 = 0:5 � 0:5714 � 0:4641 � 0:4805k-Colorable C � 12 C � 23 12 � C � 23 C = 12 C = k2k�1Table 5.1: Competitive ratios C of the algorithms and
lasses of algorithms
onsideredThough, intuitively, First-Fit is a more reasonable algorithm than Next-Fit, we proved thatthe
ompetitive ratio of First-Fit is at most 29 (p10 � 1) � 0:4805, and hen
e it
annot bemu
h better than Next-Fit.In the spe
ial
ase where the input graphs are all k-
olorable, there might be more variation.The best upper bound we
ould prove is 23 for deterministi
 algorithms. The lower bound of12 for fair algorithms on k-
olorable graphs is only a little higher than the lower bound in thegeneral
ase. Again, Next-Fit is used to prove that the bound is tight. For small values of k,First-Fit is signi�
antly better than Next-Fit, but the di�eren
e tends to zero as k in
reases.Analyzing the spe
ial
ase of k-
olorable graphs is analogous to analyzing the spe
ial
asefor the seat reservation problem, where all request sequen
es
an be a

ommodated o�-line.The di�eren
e between a

ommodating sequen
es and general sequen
es is, however, far fromas dramati
 as for the seat reservation problem. The lower bound for fair algorithms is onlyraised a little. For small values of k, the
ompetitive ratio of First-Fit is signi�
antly betterthan that of Next-Fit, for k = 2, their respe
tive ratios are 12 and 23 , but for large k, thedi�eren
e is insigni�
ant.However, analyzing k-
olorable graphs has the extra advantage that the analysis of k-
olorable graphs in some
ases
an serve as a stepping stone to the more general analysis withno restri
tions on the graphs. This was in parti
ular the
ase for the lower bounds for fairalgorithms.5.3 GraphsAs des
ribed in the previous se
tion, we study the general
ase as well as the spe
ial
asewhere all input graphs are known to be k-
olorable. The performan
e guarantees proven arevalid even if we allow multigraphs, i.e., graphs that may have parallel edges, but no loops. Theadversary graphs used for proving impossibility results are all simple graphs. Furthermore,the adversary graphs are all bipartite ex
ept one that
ould easily be
hanged to a bipartitegraph. Thus, the impossibility results are all valid, even if the input graphs are known to besimple, bipartite graphs.5.4 Basi
sA k-
oloring is a
oloring using at most k
olors. We label the
olors 1; 2; : : : ; k. For anyi; j 2 f1; 2; : : : ; kg, we let Ci;j denote the subset fi; i + 1; : : : ; jg of the k
olors.A bipartite graph is a graph whose vertex set
an be partitioned in two sets X and Y ,su
h that no two verti
es within the same set are adja
ent. In a
omplete bipartite graph ea
hvertex in X is
onne
ted to ea
h vertex in Y .

5.5. K-COLORABLE GRAPHS 47The degree of a vertex x is the number of edges in
ident to x. The
olored degree of x isthe number of edges in
ident to x
olored by the on-line algorithm under
onsideration.An r-regular graph is a graph in whi
h all verti
es have degree r.By König's Theorem [100, p. 209℄, any bipartite graph with maximum degree d is d-
olorable, i.e., it
an be
olored using at most d
olors.The following
laim is useful when
onstru
ting adversary graphs for Next-Fit.Claim 5.1 Any
oloring in whi
h ea
h
olor is used on exa
tly n or n + 1 edges, for somen 2 N,
an be produ
ed by Next-Fit, for some ordering of the input sequen
e. The
olors justneed to be permuted so that the
olors used on n+ 1 edges are the lowest numbered
olors.5.5 k-Colorable GraphsWe start out investigating the spe
ial
ase, where all input graphs are k-
olorable. Proving theperforman
e guarantee for fair algorithms on k-
olorable graphs is rather simple and servesas a stepping stone to proving the
orresponding guarantee for general graphs. The adversarygraphs proving that Next-Fit is worst possible, on k-
olorable graphs and in the general
ase,have the same overall stru
ture. However, in the
ase of k-
olorable graphs, the graphs are
onstru
ted su
h that the vertex degrees are as similar as possible. In the general
ase, thevertex degrees are determined in a more
ompli
ated way.5.5.1 A Performan
e Guarantee for Fair AlgorithmsFor any vertex x, let d
(x) denote the number of edges in
ident to x that have been
olored byfairR. Similarly, let du(x) denote the number of edges in
ident to x that have not been
oloredby fairR. We will take the on-line algorithm's perspe
tive and
all these edges un
olored edges.To prove that any fair algorithm
olors at least half of the edges of any k-
olorable graph, weneed only two simple observations.(1) For any vertex x, d
(x) + du(x) � k, sin
e o�-line
olors all edges in
ident to x using atmost k
olors.(2) For any un
olored edge (x; y), d
(x)+d
(y) � k, sin
e the algorithm is fair and the edgewas not
olored.Assume that one unit of some value is put on ea
h edge
olored by fairR. If the total value
an be redistributed to the un
olored edges su
h that ea
h un
olored edge re
eives at leastone unit, there are at least as many
olored as un
olored edges. The redistribution is done inthe following way. Ea
h vertex re
eives half a unit from ea
h
olored edge in
ident to it. Inthis way, ea
h vertex x re
eives 12d
(x). After that, ea
h vertex splits its value equally amongthe un
olored edges in
ident to it. Ea
h un
olored edge (x; y) re
eives the value12 �d
(x)du(x) + d
(y)du(y)� (1)� 12 � d
(x)k � d
(x) + d
(y)k � d
(y)�(2)� 12 � d
(x)k � d
(x) + k � d
(x)d
(x) �� 1:

48 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORSG1 G2
Y2 X1 Y1 X2 Y2Figure 5.1: The graph GNF when k = 5. Note that the two leftmost verti
es are the same as the tworightmost verti
es.The last inequality holds, sin
e x+ 1x � 2 for any x > 0.Note that the fairness property is only used to
on
lude (2). Thus, the performan
eguarantee is valid for the larger
lass of algorithms that never reje
t an edge e, unless it hasalready
olored k edges adja
ent to e.5.5.2 Next-Fit is Worst PossibleWhen k is even, the
ompetitive ratio of Next-Fit exa
tly mat
hes the lower bound for fairalgorithms. When k is odd, it almost mat
hes the lower bound. This is proven by the followingadversary strategy.The adversary starts out giving the edges of two
omplete bipartite graphs, G1 = (X1 [Y1; E1) with jX1j = jY1j = dk2e, and G2 = (X2 [Y2; E2) with jX2j = jY2j = bk2
.Consider a
oloring where G1 is
olored with C1;dk=2e and G2 is
olored with Cdk=2e+1;k.Ea
h
olor in C1;dk=2e is represented at ea
h vertex in G1 and ea
h
olor in Cdk=2e+1;k isrepresented at ea
h vertex in G2. By Claim 5.1, this
oloring
an be obtained by Next-Fit.Next, ea
h vertex in Y1 is
onne
ted to ea
h vertex in X2 and ea
h vertex in Y2 is
onne
tedto ea
h vertex in X1, thus
reating a �
y
le� of
omplete bipartite graphs, where ea
h bipartitegraph shares its left verti
es with its left neighbor and its right verti
es with its right neighbor.The resulting graph GNF is depi
ted in Figure 5.1. The new edges between G1 and G2 are
alled E12. After
oloring E1 with C1;dk=2e and E2 with Cdk=2e+1;k, Next-Fit
annot
olor anyof the edges in E12.The whole graph is k-regular and bipartite (X1 [X2 forming one set and Y1 [Y2 formingthe other). Thus, by König's Theorem, it
an be k-
olored. Hen
e, the
ompetitive ratio ofNext-Fit on k-
olorable graphs is at mostjE1j+ jE2jjE1j+ jE2j+ jE12j = dk2e2 + bk2
2dk2 e2 + bk2
2 + 2dk2 ebk2
 ;whi
h redu
es to 12 when k is even, and to 12 + 12k2 when k is odd.5.5.3 First-Fit is a Little BetterFor any k-
olorable graph, let E be the edge set. For any
 2 C1;k, let E
 denote the set ofedges that First-Fit
olors with the
olor
, and let E1;
 = [
i=1Ei. We will prove by indu
tionon
 that, for all
 2 C1;k, jE1;
j �
2k�1 jEj. Letting
 = k, this proves the lower bound on the

5.5. K-COLORABLE GRAPHS 49
ompetitive ratio of First-Fit on k-
olorable graphs. We only need the following three simpleobservations.(1) By the de�nition of First-Fit, any edge in E
 is adja
ent to at least one edge in Ei,i = 1; : : : ;
� 1.(2) By the de�nition of First-Fit, any un
olored edge is adja
ent to at least one edge of ea
h
olor.(3) Sin
e the graph is k-
olorable, ea
h vertex has degree at most k. Thus, any edge isadja
ent to at most 2(k � 1) other edges.For the base
ase,
onsider
 = 1. By (1) and (2), ea
h edge in E nE1 is adja
ent to at leastone edge in E1. Thus, by (3), jEj � 2(k�1)jE1j+ jE1j, whi
h is equivalent to jE1j � 12k�1 jEj.For the indu
tion step, let
 2 C2;k. By (1), ea
h edge in E
 is adja
ent to at least
 � 1edges in E1;
�1. Thus, ea
h edge in E
 is adja
ent to at most 2(k � 1)� (
� 1) = 2k �
� 1edges in EnE1;
. On the other hand, by (1) and (2), ea
h edge in EnE1;
 is adja
ent to at leastone edge in E
. Therefore, jE n E1;
�1j � (2k �
� 1)jE
j+ jE
j, or jE
j � 12k�
 jE n E1;
�1j.Thus,jE1;
j = jE1;
�1j+ jE
j � jE1;
�1j+ jEj � jE1;
�1j2k �
 = jEj+ (2k �
� 1)jE1;
�1j2k �
� jEj+ (2k �
� 1)
�12k�1 jEj2k �
 ; by the indu
tion hypothesis= jEj �
�12k�1 jEj2k �
 +
� 12k � 1 jEj = (2k � 1)� (
� 1)(2k � 1)(2k �
) jEj+
� 12k � 1 jEj=
2k � 1 jEj:To prove that the lower bound is tight, we will
onstru
t a graph for whi
h the analysisleading to the bound is tight, i.e., we will
onstru
t a graph with the following properties.(1) Ea
h edge in E
 is adja
ent to exa
tly one edge in Ei, i = 1; : : : ;
� 1.(2) Ea
h un
olored edge is adja
ent to exa
tly one edge of ea
h
olor.(3) Ea
h vertex has degree k. Thus, ea
h edge is adja
ent to exa
tly 2(k � 1) other edges.More pre
isely, we will
onstru
t a bipartite k-regular graph GFF, where ea
h edge is adja
entto exa
tly one edge of ea
h
olor. Sin
e the graph is bipartite and k-regular, it is k-
olorable.The building blo
ks of GFF are dk=2e bipartite biregular graphs G1; : : : ; Gdk=2e. Ea
hgraph Gi has vertex partition (Xi; Yi). Xi
ontains one vertex for ea
h subset of C1;k of sizek + 1 � i, and Yi
ontains one vertex for ea
h subset of C1;k of size i. The subset of C1;kasso
iated with a vertex x is denoted C(x).For ea
h vertex x 2 Xi, there are exa
tly k+1�i verti
es y 2 Yi su
h that jC(x)\C(y)j = 1.Similarly, for ea
h vertex y 2 Yi, there are exa
tly i verti
es x 2 Xi su
h that jC(x)\C(y)j = 1.Ea
h vertex x 2 Xi is
onne
ted to the k+ 1� i verti
es y 2 Yi, for whi
h jC(x)\C(y)j = 1.Thus, ea
h vertex in Xi has degree k + 1 � i and ea
h vertex in Yi has degree i. Figure 5.2shows the graphs G1 and G2 when k = 4.

50 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORSG1:
f1; 2; 3; 4g f4gf3gf2gf1g

X1 Y1
G2:f2; 3; 4gf1; 3; 4gf1; 2; 4gf1; 2; 3g

f1; 2gf1; 3gf1; 4gf2; 3gf2; 4gf3; 4gX2 Y2Figure 5.2: The graphs G1 and G2 when k = 4. Next to ea
h vertex v the
olor set C(v) is shown.Consider the
oloring of the graphs G1; : : : ; Gdk=2e in whi
h ea
h edge (x; y) is
oloredwith the
olor in C(x)\C(y). An edge (x; y) with the
olor
 is adja
ent to one edge of ea
h
olor in C(x) n f
g through the vertex x and one edge of ea
h
olor in C(y) n f
g throughthe vertex y. Thus, ea
h edge with
olor
 is adja
ent to exa
tly one edge of ea
h
olor inC1;k n f
g. Hen
e, for ea
h Gi, this
oloring results if First-Fit is given the edges in order ofnon-de
reasing number.For ea
h i, 1 � i � dk=2e, the adversary
onstru
ts a bipartite graph GLi
onsisting ofa number of
opies of Gi. Let ni be the number of
opies of Gi in GLi . Then, n1 = 1, andni+1 = k�ii ni, for 1 � i � dk=2e� 1. For 1 � i � bk=2
, the adversary also
onstru
ts a graphGRi isomorphi
 to GLi .Note that, for ea
h pair of verti
es y 2 Yi and x 2 Xi+1, jC(y)j + jC(x)j = k. For ea
hy 2 Yi, there is exa
tly one vertex x 2 Xi+1 su
h that C(x) [C(y) = C1;k. After giving theedges of the graphs GL1 ; : : : ; GLdk=2e and GR1 ; : : : ; GRbk=2
, the adversary
onne
ts the k graphsin the following way. Ea
h vertex y 2 Y Li is
onne
ted to k � i verti
es x 2 Xi+1, for whi
hC(y) [C(x) = C1;k. Sin
e ni+1=ni = k�ii and jXi+1j=jYij = � kk�i�=�ki� = �ki�=�ki� = 1, this
an be done su
h that ea
h vertex in XLi+1 is
onne
ted to i verti
es in Y Li . In this way,ea
h vertex in XL1 ; : : : ;XLdk=2e and Y L1 ; : : : ; Y Ldk=2e�1 ends up having degree k. The verti
es ofGR1 ; : : : ; GRbk=2
 are
onne
ted the same way.Finally, ea
h vertex in yL 2 Y Ldk=2e is
onne
ted to bk=2
 verti
es in yL 2 Y Rbk=2
, for whi
hC(yL) [C(yR) = C1;k. This is done in a way su
h that ea
h vertex in Y Rbk=2
 is
onne
ted toexa
tly dk=2e verti
es in Y Ldk=2e. If k is even, this is
learly possible, sin
e jY Lk=2j = jY Rk=2j. Ifk is odd, it is also possible, sin
e jY Ldk=2ej=jY Rbk=2
j = ndk=2enbk=2
 = k�bk=2
bk=2
 = dk=2ebk=2
 . The resultinggraph for k = 4 is shown in Figure 5.3.Ea
h of the new edges is adja
ent to exa
tly one edge of ea
h
olor. Hen
e, none of theseedges are
olored by First-Fit.5.5.4 An Impossibility Result for Deterministi
 AlgorithmsNo deterministi
 algorithm has a
ompetitive ratio of stri
tly more than 23 . To see this,
onsider the following adversary strategy. The adversary starts out giving the edges of a largedk2 e-regular bipartite graph G = (X [Y;E). Sin
e the on-line algorithm is deterministi
, the

5.5. K-COLORABLE GRAPHS 51

GL1 GL2 GR2 GR1GL GRFigure 5.3: The graph GFF when k = 4adversary knows the set of
olors represented at ea
h vertex after giving all edges of G. Sin
eon-lineD uses at most k
olors and ea
h vertex has degree dk2 e, there are at most Pdk=2ei=0 �ki�di�erent
olor sets.For ea
h
olor set C, the adversary partitions the verti
es in X with
olor set C in sets,su
h that at most one set has less than k verti
es and the rest have exa
tly k verti
es ea
h.The same is done to the verti
es in Y . For ea
h
olor set, at most 2(k � 1) verti
es are notin a set of size k. Thus, if the number of verti
es in G is mu
h larger than 2(k � 1) timesthe number of
olor sets, we
an ignore these verti
es. For ea
h set V of size k, the adversaryadds a set U of bk2
 new verti
es to the graph and
onne
ts ea
h vertex in V to ea
h vertexin U . See Figure 5.4. The resulting graph is
alled GDet. Note that GDet is bipartite and hasmaximum degree k, and thus is k-
olorable.Let d denote the number of
olors represented at ea
h vertex in V , and re
all that d � dk2e.At most k � d edges in
ident to ea
h vertex in U
an be
olored. Hen
e, the total
oloreddegree of verti
es in U [V is at most kd+2 � bk2
(k�d), whi
h redu
es to k2, if k is even, and

52 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORS
V U

G...

...X YFigure 5.4: A part of the graph GDet when k = 4.to k2 � k+ d � k2 � k+ dk2e = k2 � 12k+ 12 , if k is odd. The total degree of verti
es in U [Vis k2 + bk2
k, whi
h redu
es to 32k2, if k is even, and to 32k2 � 12k, if k is odd. Summing thedegrees of all verti
es in a graph, we get two times the number of edges. Thus, the
ompetitiveratio of on-lineD is at mostCon-lineD(k) � 8>>><>>>: k232k2 = 23 ; if k is evenk2 � 12k � 1232k2 � 12k = 23 � k � 39k2 � 3k � 23 ; if k � 3 and odd.5.6 General GraphsNow we turn to general graphs. That is, there may be some edges that are not
olored byo�-line. We need to distinguish edges that are
olored by the on-line algorithm only andedges
olored by both the on-line algorithm and o�-line. Thus, let dd(x) denote the numberof edges in
ident to x that are �double-
olored�, i.e.,
olored by both the on-line algorithmand o�-line. As before, d
(x) denotes the number of edges
olored by the on-line algorithmand du(x) denotes the number of edges
olored by o�-line only. We will not need to
onsideredges
olored by neither algorithm. Note that the double-
olored edges are a subset of the
olored edges.5.6.1 A Performan
e Guarantee for Fair AlgorithmsThe performan
e guarantee for fair algorithms is only a little worse than in the spe
ial
aseof k-
olorable input graphs. As in the
ase of k-
olorable graphs we need only two simpleobservations.(1) For any vertex x, dd(x) + du(x) � k, sin
e o�-line
olors at most k edges in
ident to x.

5.6. GENERAL GRAPHS 53(2) For any un
olored edge (x; y), d
(x)+d
(y) � k, sin
e the algorithm is fair and the edgewas not
olored.Observation (2) is the same as in the proof for k-
olorable graphs, and (1) is analagous toObservation (1) in the proof for k-
olorable graphs.Our goal is to �nd a C su
h that any fair algorithm is C-
ompetitive. Sin
e Next-Fit has a
ompetitive ratio of 12 , even in the spe
ial
ase of k-
olorable graphs, we know that 0 � C � 12 .As in the proof for k-
olorable graphs, we start out putting one unit of some value on ea
hedge
olored by fairR. If the total value put on
olored edges is enough to �pay� the fra
tionC of a unit for ea
h edge
olored by o�-line, the number of edges
olored by fairR is at leastthe fra
tion C of the number of edges
olored by o�-line. We start out by paying C for ea
hedge
olored by both fairR and o�-line. This is done by removing the fra
tion C of a unitfrom ea
h of these edges. The remaining value on the
olored edges must be distributed tothe edges
olored by o�-line only, su
h that ea
h of these edges re
eives at least the fra
tionC of a unit. As for k-
olorable graphs, the value on ea
h
olored edge is split equally betweenits endpoints, and ea
h vertex splits its value equally among the un
olored edges in
ident toit. In this way, ea
h un
olored edge (x; y) re
eives the value12 �d
(x)�Cdd(x)du(x) + d
(y)� Cdd(y)du(y) � (1)� 12 �d
(x)� Cdd(x)k � dd(x) + d
(y)� Cdd(y)k � dd(y) � :By (2), it
an be assumed without loss of generality that d
(y) � k2 . Thus, d
(y) � Ck, andthe term d
(y)�Cdd(y)k�dd(y) is minimized when dd(y) is minimized, i.e., when dd(y) = 0.Similarly, if d
(x) � Ck, d
(x)�Cdd(x)k�dd(x) is maximized when dd(x) = 0. If d
(x) � Ck,d
(x)�Cdd(x)k�dd(x) is maximized when dd(x) is maximized, i.e., when dd(x) = d
(x).Thus, if d
(x) � Ck, the un
olored edge (x; y) re
eives at least12 �d
(x)k + d
(y)k � (2)� 12 � C:If d
(x) < Ck, (x; y) re
eives at least12 �d
(x)�Cd
(x)k � d
(x) + d
(y)k � (2)� 12 �(1� C)d
(x)k � d
(x) + k � d
(x)k � ;whi
h is greater than or equal to C as long asC � k2 + (d
(x))2 � kd
(x)2k2 � kd
(x) :Hen
e, CfairR � mind2C1;k �k2 + d2 � kd2k2 � kd � � mind2[1;k℄�k2 + d2 � kd2k2 � kd � = 2p3� 3 � 0:4641:The minimum value of 2p3� 3 is obtained when d = (2�p3)k � 0:27k.

54 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORSG1 G2
Y2 X1 Y1 X2 Y2Figure 5.5: The graph GNF when k = 4 and d = 1, showing that CNF(4) � 1328 � 0:4643.5.6.2 Next-Fit is Worst PossibleTo show that the performan
e guarantee of the previous se
tion is tight, we des
ribe a familyof graphs, for whi
h Next-Fit
olors exa
tly the fra
tion mind2C1;kfk2+d2�kd2k2�kd g of the edges.For ea
h k, the adversary
hooses a d
lose to (2�p3)k and
onstru
ts a graph GNF, where(1) For any vertex x, dd(x) + du(x) = k.(2) For any un
olored edge (x; y), d
(x) = d and d
(y) = k � d.Consider the two bipartite graphs G1 = (X1[Y1; E1) and G2 = (X2[Y2; E2). G1 is d-regularand has jX1j = jY1j = k, and G2 is
omplete and has jX2j = jY2j = k � d. See Figure 5.5.The adversary uses k
opies of ea
h graph, G11; : : : ; Gk1 and G12; : : : ; Gk2 . Consider the
oloring where G11 is
olored with C1;d and G12 is
olored with Cd+1;k. The
oloring of Gi+11and Gi+12 is obtained from the
oloring of Gi1 and Gi2 by shifting the
olors on
e. In this way,ea
h
olor is used on the same number of edges. Hen
e, by Claim 5.1, the
oloring
an beobtained by Next-Fit.Now, for ea
h i, 1 � i � k, ea
h vertex in Y i1 is
onne
ted to ea
h vertex in Xi2, and ea
hvertex in Y i2 is
onne
ted to ea
h vertex in Xi1. These new edges are
alled E12. Next-Fit
annot
olor any of these edges. However, o�-line
olors all edges of E1 and E12. Hen
e, the
ompetitive ratio of Next-Fit is at mostjE1j+ jE2jjE1j+ jE12j = kd+ (k � d)2kd+ 2k(k � d) = k2 � kd+ d22k2 � kd :Considering arbitrarily large values of k, this ratio
an be arbitrarily
lose to 2p3� 3.5.6.3 First-Fit is Not Mu
h BetterThe adversary graph GFF showing that the
ompetitive ratio of First-Fit is at most 29 (p10�1) � 0:4805 is inspired by the adversary graph GNF of the previous se
tion. However, there isno ordering of the edges in E1 and E2 for whi
h First-Fit will
olor G2 with Cd k2 e+1;k, if theedges in E1 and E2 are given before the edges in E12. Therefore, the graph GNF is extendedto
ontain an extra
opy of G2, G02. Ea
h vertex in Y2 is
onne
ted to exa
tly d verti
es inX 02 and vi
e versa. Now, E2 denotes the edges in G2 and G02 and the edges
onne
ting them.Finally, 2k(k�d) new verti
es are added, and ea
h vertex in Y2[X 02 is
onne
ted to k of theseverti
es. Let E3 denote the set of these extra edges. The graph GFF for k = 4 is depi
ted inFig. 5.6.

5.6. GENERAL GRAPHS 55
Y 02 X1 Y1G1 X2 Y2G2 X 02 Y 02G02

E12 E1 E12 E2 E3 E2 E3 E2
Figure 5.6: The graph GFF when k = 4, showing that CFF(4) � 2552 � 0:4808.If the edges in G1 and the edges between Y2 and X 02 are given �rst (one perfe
t mat
hingat a time), followed by the edges in G2 and G02 (one perfe
t mat
hing at a time), First-Fitwill
olor E1 and the edges between Y2 and X 02 with C1;d and the remaining edges in E2 withCd+1;k. After this, First-Fit will not be able to
olor any more edges of GFF. On the otherhand, it is possible to k-
olor the set E1 [E12 [E3 of edges. Thus, the
ompetitive ratio ofFirst-Fit
an be no more thanjE1j+ jE2jjE1j+ jE12j+ jE3j = kd+ 2(k � d)2 + (k � d)dkd+ 2k(k � d) + 2k(k � d) = 2k2 � 2kd+ d24k2 � 3kd :This ratio attains its minimum value of 29(p10 � 1) � 0:4805, when d = 13(4 � p10)k.Thus, for the graph GFF, we
hoose d to be an integer
lose to 13(p10� 1)k, and by allowingarbitrarily large values of k, the ratio
an be arbitrarily
lose to 29(p10� 1).5.6.4 An Impossibility Result for Fair Deterministi
 AlgorithmsThe adversary
onstru
ts a simple graph G = (V1 [V2; E) in two phases. In Phase 1, onlyverti
es in V1 are
onne
ted. In Phase 2, verti
es in V2 are
onne
ted to verti
es in V1. LetjV1j = jV2j = n for some large integer n.In Phase 1, the adversary gives an edge between two un
onne
ted verti
es x; y 2 V1 with a
ommon unused
olor. Sin
e the edge
an be
olored, fairD will do so. This pro
ess is repeateduntil no two un
onne
ted verti
es with a
ommon unused
olor
an be found. At that pointPhase 1 ends.For any vertex x, let C(x) denote the set of
olors not represented at x. At the end ofPhase 1, the following holds true. For ea
h
olor
 and ea
h vertex x su
h that
 2 C(x), x is
onne
ted to all other verti
es y with
 2 C(y). Sin
e
 2 C(x), x is
onne
ted to at most k�1other verti
es. Thus, ea
h of the k
olors are missing at at most k verti
es: Px2V1 C(x) � k2.The edges given in Phase 2 are the edges of a k-regular bipartite graph with V1 and V2forming the two independent sets. Note that, by König's Theorem, su
h a graph
an bek-
olored.In Phase 2, fairD
olors at most k2 edges, but o�-line reje
ts all edges from Phase 1 and
olors all edges from Phase 2, giving a performan
e ratio of at most12(nk � k2) + k2nk = nk + k22nk = 12 + k2n :

56 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORS
H1V1 V1E1 E1H2V2 V2E2 E2... ...Hn�1Vn�1 Vn�1En�1 En�1HnVn VnEn En

Figure 5.7: Stru
ture of the adversary graph for the general impossibility result.This shows that, for any
onstant � > 0, CfairD < 12 + �.Note that the adversary graph
an easily be modi�ed to be a bipartite graph. Simplyrepla
e the vertex set V1 by two sets X1 and Y1, and let the edges of Phase 1
onne
t verti
esin X1 to verti
es in Y1. At the end of Phase 1, ea
h
olor is missing at at most 2k�2 verti
es,be
ause, if a
olor is missing at a vertex in X1, then it
an be missing at at most k�1 verti
esin Y1 and vi
e versa. The verti
es of Phase 2 should also be partitioned in two sets X2 andY2. If, for instan
e, verti
es in X2 are only
onne
ted to verti
es in X1, and verti
es in Y2 areonly
onne
ted to verti
es of Y1, the resulting graph is bipartite.5.6.5 A General Impossibility ResultWe
lose the
hapter with an upper bound of 47 on the
ompetitive ratio of any on-linealgorithm for edge
oloring. The stru
ture of the adversary graph is depi
ted in Figure 5.7. Ifwe allow multigraphs, we
an think of ea
h box as a single vertex and ea
h line as k paralleledges. Otherwise, we
an think of ea
h box as k verti
es, and a line between two boxes meansthat ea
h vertex inside one box is
onne
ted to ea
h vertex inside the other box, thus forminga
omplete bipartite graph. Thus, in this
ase, ea
h line
orresponds to k2 edges. To makethe proof as general as possible we will des
ribe the
ase of a simple graph.The edges of the graph are divided into n levels, Level 1; : : : ; n. The adversary gives theedges, one level at a time, a

ording to the numbering of the levels. Depending on the a
tionsof the on-line algorithm, the adversary might not give all levels of the graph. The edges ofLevel i are given in three
onse
utive phases:1. Hi: Internal (horizontal) edges at Level i. In total k2 edges.2. Vi: Internal (verti
al) edges between Level i and Level i+ 1. In total 2k2 edges.3. Ei: External edges at Level i. In total 2k2 edges.Verti
es that are endpoints of internal edges are
alled internal verti
es.Note that ea
h internal edge
ontributes to the degree of two internal verti
es, whereas anexternal edge
ontributes to the degree of one internal vertex and one external vertex. Sin
eexternal verti
es are no problem � they have a degree of only k � it seems to be better to
olor external edges than internal edges. In parti
ular, an optimal o�-line algorithm
olorsall external edges and no internal edges. We show that no algorithm that
olors at most 17 of

5.6. GENERAL GRAPHS 57the external edges
an be better than 47 -
ompetitive. However, we also show that no on-linealgorithm that
olors more than 17 of the external edges
an be 47 -
ompetitive.Sin
e the on-line algorithm may be randomized we use random variables to
ount thenumber of
olored edges. Let XHi be a random variable
ounting how many edges on-lineRwill
olor from the set Hi, and let XVi and XEi
ount the
olored edges from Vi and Eirespe
tively. For i = 0; : : : ; n, let EXTi and INTi be random variables
ounting the sum ofall external and internal edges, respe
tively,
olored by on-lineR after Level i is given, i.e.,EXTi =Pij=1XEj and INTi =Pij=1(XVj +XHj). Note that EXT0 = INT0 = 0.Sin
e no algorithm
an
olor more than k edges in
ident to one vertex, the total
oloreddegree of the internal verti
es at the �rst i levels, 1 � i � n, is at most 2k2i. Ea
h internaledge (ex
luding Vi)
ontributes two to this number, and ea
h external edge (in
luding edgesin Vi)
ontributes only one. Thus, the expe
ted number of
olored edges on the �rst i levels isE[INTi℄ +E[EXTi℄ = (E[INTi℄�E[XVi ℄) + (E[EXTi℄ +E[XVi ℄)� 12(2k2i�E[EXTi℄�E[XVi ℄) + (E[EXTi℄ +E[XVi ℄)= k2i+ 12(E[EXTi℄ +E[XVi ℄): (5.1)If E[XEi ℄ � 27k2, for all levels i, 1 � i � n, then E[EXTn℄ � 27k2n. Thus, by (5.1), theexpe
ted total number of edges
olored by on-lineR isE[INTn℄ +E[EXTn℄ � k2n+ 12(E[EXTn℄ +E[XVn ℄)= k2n+ 12E[EXTn�1℄ + 12(E[XEn ℄ +E[XVn ℄)� k2n+ 17k2(n� 1) + 122k2= 87k2n+ 67k2:Thus, we get an upper bound on the performan
e ratio of 87k2n+ 67k22nk2 = 47 + 37n , whi
h
an bearbitrarily
lose to 47 , if we allow n to be arbitrarily large.Otherwise, there exists a level i, 1 � i � n, su
h that E[XEi ℄ > 27k2. Assume that Level iis the �rst su
h level. Thus, E[EXTi�1℄ � 27k2(i � 1). Furthermore, sin
e the edges in Vi�1,Hi, Vi, and Ei all
ontribute to the degree of the two internal verti
es at Level i,E[XVi�1 ℄ + 2E[XHi ℄ +E[XVi ℄ � 2k2 �E[XEi ℄ < 127 k2: (5.2)If the adversary stops giving edges after Phase 1 of Level i, o�-line will
olor k2(2i � 1)edges in total. These are the edges in the sets E1;E2; : : : ;Ei�1, and Hi. If the adversary stopsgiving edges after Phase 2 (or 3) of Level i, o�-line will
olor 2k2i edges. These are the edgesin the sets E1;E2; : : : ;Ei�1, and Vi. Thus, if the algorithm is 47 -
ompetitive, the following twoinequalities must hold.E[INTi�1℄ +E[EXTi�1℄ +E[XHi ℄ � 47k2(2i� 1); andE[INTi�1℄ +E[EXTi�1℄ +E[XHi ℄ +E[XVi ℄ � 47k22i:

58 CHAPTER 5. EDGE COLORING WITH A FIXED NUMBER OF COLORSAdding the two inequalities, yields2�E[INTi�1℄ +E[EXTi�1℄�+ 2E[XHi ℄ +E[XVi ℄ � 167 k2i� 47k2:Thus, by (5.1),2k2(i� 1) +E[EXTi�1℄ +E[XVi�1 ℄ + 2E[XHi ℄ +E[XVi ℄ � 167 k2i� 47k2:Now, using (5.2) yields E[EXTi�1℄ > 27k2(i � 1); whi
h is a
ontradi
tion. This proves theupper bound of 47 .

Chapter 6Dual Bin Pa
king in Variable-SizedBinsIn [43℄ we study a variant of dual bin pa
king in whi
h the bins may have di�erent sizes.We assume that the input sequen
es are all a

ommodating, i.e., for ea
h sequen
e, all items
an be pa
ked in the n available bins by an optimal o�-line algorithm. The reason for thisrestri
tion is that, for general sequen
es, no fair on-line algorithm has a
onstant
ompetitiveratio, even in the
ase of identi
al bins [25℄.The problem
an also be seen as a s
heduling problem with n uniformly related ma
hines.Consider a s
heduling problem with a deadline and assume that the aim is to s
hedule asmany jobs as possible before this deadline. If an optimal o�-line algorithm
an s
hedule alljobs of any input sequen
e before the deadline, this problem is equivalent to our problem. Ourproblem
an also be seen as a spe
ial
ase of the multiple knapsa
k problem (see [84, 29℄), whereall items have unit pro�t. (This problem was mainly studied in the o�-line environment.)6.1 AlgorithmsWe study the
lass of fair algorithms. A fair algorithm reje
ts an item, only if the itemdoes not �t in the empty spa
e left in any bin. Some of the algorithms that are
lassi
al forthe
lassi
al bin pa
king problem
an be adapted to the dual bin pa
king problem. Su
h anadaptation was done for identi
al bins in [25℄; the n bins are all
onsidered open from thebeginning, and no new bin
an be opened. We also use this adaptation.Some
lassi
al fair algorithms are First-Fit, Best-Fit, and Worst-Fit. First-Fit is not asingle algorithm but a
lass of algorithms that give an order to the bins. Ea
h item is pa
kedin the �rst bin (in the ordered set of bins) in whi
h it �ts. Among the various versions ofFirst-Fit, two are most natural. Smallest-Fit pa
ks ea
h item in the smallest bin it �ts in.Similarly, Largest-Fit pa
ks ea
h item in the largest bin it �ts in. The two other algorithmsdo not need further adaptation. Thus, Best-Fit pa
ks ea
h item in a bin where it leaves thesmallest possible empty spa
e, and Worst-Fit pa
ks it in a bin where it leaves the largestpossible empty spa
e.We also analyze a
lass of fair algorithms
alled Smallest-Bins-First. The only thing that
hara
terizes these algorithms � apart from being fair � is that whenever an item is pa
kedin an empty bin, the item �ts in no smaller empty bin. Smallest-Fit and Best-Fit belong tothis
lass of algorithms. 59

60 CHAPTER 6. DUAL BIN PACKING IN VARIABLE-SIZED BINS6.2 ResultsWe prove that, on a

ommodating sequen
es, the
ompetitive ratio of any fair deterministi
algorithm is between 12 and 23 . Thus, even though we
onsider a generalization of dual binpa
king in identi
al bins, the performan
e guarantee for fair algorithms mat
hes Worst-Fit'sperforman
e for identi
al bins [25℄. We give a very simple example showing that bothWorst-Fitand Largest-Fit have a
ompetitive ratio of exa
tly 12 on a

ommodating sequen
es.Smallest-Bins-First algorithms are only a little better; on a

ommodating sequen
es, anySmallest-Bins-First algorithm has a
ompetitive ratio of exa
tly n2n�1 , where n is the numberof bins. This is in
ontrast to the
ase of identi
al bins, where First-Fit and Best-Fit are58 -
ompetitive.Finally, any fair randomized algorithm has a
ompetitive ratio of at most 45 , even ona

ommodating sequen
es.6.3 A Tight Performan
e GuaranteeGiven any a

ommodating sequen
e �, any fair algorithm A pa
ks at least half of the itemsin �. Let A be the set of items a

epted by A and let R be the set of items reje
ted by A.We will prove that jAj � jRj. The proof is adapted from the proof of a stronger result foridenti
al bins in [25℄.Let s be the size of the smallest item in R. From � we
onstru
t a new a

ommodatingsequen
e �0 in the following way.� Ea
h item in A of size less than s is removed from �.� Ea
h item in A of size ` � s is repla
ed by b s̀
 items of size s.� Ea
h item in R of size more than s is repla
ed by an item of size s.Clearly, any pa
king of � indu
es a legal pa
king of �0. Sin
e all items in �0 have the same sizes, pa
kings
an only be distinguished by the number of items in ea
h bin. Hen
e, to
al
ulatean upper bound on jRj, we only need to
ount how many items of size s
an be added to thepa
king of �0 indu
ed by the on-line pa
king of �.Consider the on-line pa
king of �. Sin
e A is fair and it reje
ted an item of size s, theempty spa
e in ea
h bin is less than s. Clearly, removing an item of size less than s in
reasesthe empty spa
e in the
orresponding bin by less than s. Similarly, repla
ing an item of size` � s by b s̀
 items of size s in
reases the empty spa
e by less than s. Thus, ea
h time an itemis removed or repla
ed, it makes room for at most one extra item of size s. This proves thatjAj � jRj, and hen
e the algorithm is 12 -
ompetitive on a

ommodating sequen
es.The result is tight due to the performan
e of Worst-Fit and Largest-Fit (see Se
tion 6.5).6.4 Impossibility ResultsThe Stri
t Competitive RatioWe
an easily show that the stri
t
ompetitive ratio on a

ommodating sequen
es is at most23 for any fair algorithm. Consider for example the following instan
e with� 1 bin of size 2

6.4. IMPOSSIBILITY RESULTS 61� 1 bin of size 3� n� 2 bins of size ", 0 < " < 1.The input sequen
e
onsists of two or three items that are all too large for the bins of size ".The �rst item has size 1.Assume �rst that the �rst item is pa
ked in the bin of size 3. In this
ase, an item of size 3arrives next. This item
annot be pa
ked, but
learly both items
ould be pa
ked, if the �rstitem were pa
ked in the bin of size 2.If the �rst item is pa
ked in the bin of size 2, two items of size two will arrive. Only one ofthese two items
an be pa
ked, but the whole sequen
e
ould be pa
ked, if the �rst �rst itemwere pa
ked in the bin of size 3.This gives an upper bound on the stri
t
ompetitive ratio on a

ommodating sequen
esof 23 . Furthermore, applying Yao's inequality [102℄ as des
ribed in [18, 65, 66℄ on these twosequen
es gives an upper bound of 45 for randomized algorithms. In words Yao's prin
iple saysthat the
ompetitive ratio of the best randomized algorithm against an oblivious adversaryequals the
ompetitive ratio of the best deterministi
 algorithm on inputs generated from the�worst� probability distribution.To see that the upper bound of 45 follows from Yao's prin
iple,
onsider the sequen
e wherethe �rst item of size 1 is followed by one item of size 3 with probability p1 = 25 and by twoitems of size 2 with probability p2 = 35 . An algorithm that pa
ks the �rst item in the bin ofsize 3 will have an expe
ted performan
e ratio of at most p1 � 12 + p2 � 1 = 45 . Similarly, analgorithm that pa
ks the �rst item in the bin of size 2, will have an expe
ted performan
eratio of at most p1 � 1 + p2 � 23 = 45 . Thus, no deterministi
 algorithm
an have an expe
tedperforman
e ratio larger than 45 on this sequen
e. This implies an upper bound of 45 on the
ompetitive ratio on a

ommodating sequen
es for randomized algorithms.The Competitive RatioWe are interested in impossibility results that hold for the
ompetitive ratio in general, andnot only for the stri
t
ompetitive ratio. In Se
tion 6.6, it is shown that any fair algorithmreje
ts at most n� 1 items, where n is the number of bins. As long as there is only a
onstantnumber of bins, we
an view the number of reje
ted items as just an additive
onstant, andhen
e any fair algoirthm has
ompetitive ratio 1. Thus, we need to de�ne arbitrarily longsequen
es.Deterministi
 AlgorithmsWe de�ne n bins and an a

ommodating sequen
e
onsisting of 3 � bn2
 items. Let ` = bn2
.For k = 1; 2; : : : ; `, we de�ne the pair of binsB2k with size 2k + 2 � 4k" and B2k�1 with size 2k + 4k";where " � 14n is a positive
onstant. Thus, 4`" � 4n�1" � 14 . If n is odd, the last bin is of size"2 (so that no items are pa
ked in that bin for the sequen
e we de�ne).The sequen
e is de�ned indu
tively in Steps `; `� 1; : : : ; 1. In Step k, two large items aregiven and one small item is de�ned. The small items are all given after Step 1, i.e., after alllarge items have been given. For ea
h step k, the following will hold.

62 CHAPTER 6. DUAL BIN PACKING IN VARIABLE-SIZED BINS

22k �Ek+1 + 4k"
Ek = Ek+1 + 4k"

1 2k �Ek+1
Ek

(a) If the �rst large item is put in B2k�1, thenext large item has size 2k�Ek+1+4k", andEk = Ek+1 + 4k".
12k �Ek+1

Ek
2 2k �Ek+1 � 4k"

Ek = Ek+1 + 2 � 4k"
(b) If the �rst large item is put in B2k, thenext large item has size 2k�Ek+1� 4k", andEk = Ek+1 + 2 � 4k".Figure 6.1: The �rst large item of Step k has size 2k �Ek+1.� The on-line algorithm will pa
k the two large items in B2k and B2k�1, one in ea
h bin.� After pa
king the two large items, the empty spa
e in the two bins have the same sizedenoted Ek. For
onvenien
e we de�ne E`+1 = 0.� The small item will be reje
ted by the on-line algorithm.We �rst present the sequen
e and then prove that this is indeed the
ase.� The �rst large item given in Step k has size 2k � Ek+1. Thus, the very �rst item hassize 2` and the size of the �rst large item of ea
h of the following steps depends on theempty spa
e
reated in the previous step.� The se
ond large item given in Step k has size 2k � Ek+1 + 4k" or 2k � Ek+1 � 4k" asillustrated in Figure 6.1. Note that Ek = Ek+1 + 4k" or Ek = Ek+1 + 2 � 4k".� The small item de�ned in Step k has size Sk = Ek + 4k".Note that if the two large items of Step k are swapped in the on-line pa
king, the small item�ts in B2k. This proves that the sequen
e is a

ommodating. Note also thatEk+1 + 4k" (1)� Ek (2)� Ek+1 + 2 � 4k":By (1), E`+1 < E` < : : : < E1, and by (2),E1 � E`+1 + 2X̀i=1 4i" = 0 + 24`+1 � 13 " < 4`+1" � 1:

6.5. WORST-FIT AND LARGEST-FIT 63This means that both large items given in Step k have a size greater than 2k�1�4k". Thus, toprove that none of these two items �t in B2k�2, it su�
es to prove 2k�1�4k" � 2k�2+2�4k�1".This is equivalent to 1 � 324k", whi
h is true sin
e 4k" � 14 .Finally, by (2), E1 < Ek + 4k" = Sk, 1 � k � `. Thus, all small items are too large evenfor the bins B1 and B2, and hen
e they will be reje
ted.We
on
lude that the sequen
e is a

ommodating and one out three items is reje
ted inea
h step, whi
h proves the bound.Randomized AlgorithmsSin
e the sequen
e just des
ribed was built step by step depending on the on-line
hoi
es, we
annot use it against randomized algorithms. Thus, we des
ribe a simpler sequen
e provingan upper bound of 45 for randomized algorithms. For simpli
ity, we des
ribe the proof fordeterministi
 algorithms �rst. We use� bn2
 bins of size 1 + "� bn2
 bins of size 2� ",where 0 < " < 12 . If n is odd, the last bin has size ".The input sequen
e starts with bn2
 items of size 1. Sin
e the algorithm is fair, all bn2
items are a

epted. Let x be the number of bins of size 1 + " that re
eives an item. Sin
eno bin
an hold two items, x is the number of empty bins of size 2 � ". What happens nextdepends on the size of x.If x � 35 � bn2
, the sequen
e
ontinues with bn2
 items of size 2� ". The on-line algorithma

epts exa
tly x of these. Clearly, the whole sequen
e
ould be pa
ked, but the algorithmpa
ks only the fra
tion bn2
+ x2 � bn2
 � 1 + 352 = 45of the items.Otherwise, the sequen
e
ontinues with bn2
 items of size 1 + " followed by bn2
 items ofsize 1 � ". All items of size 1 + " are a

epted. After that all bins
ontain exa
tly one item.Items of size 1 � "
an only be pa
ked in bins of size 2 � " that
ontain an item of size 1.Thus, bn2
 � x of these items are a

epted. Again, the whole sequen
e
ould be pa
ked, andthe on-line algorithm pa
ks only 3 � bn2
 � x3 � bn2
 < 3� 353 = 45of the items.Now, to get an upper bound for randomized algorithms, let x denote the expe
tation ofthe number of bins of size 1+ " that re
eived an item of size 1. The bound follows by linearityof expe
tation.6.5 Worst-Fit and Largest-FitIn this se
tion we show that, on a

ommodating sequen
es, Worst-Fit and Largest-Fit havethe worst possible
ompetitive ratio among fair algorithms.To see this,
onsider the following set of bins.

64 CHAPTER 6. DUAL BIN PACKING IN VARIABLE-SIZED BINS� 1 large bin of size n� n� 1 small bins of size 1.The input sequen
e is given in two steps:� n� 1 items of size 1� n� 1 items of size 1 + ",where " � 1n is a positive
onstant.Both Worst-Fit and Largest-Fit will pa
k all items of size 1 in the large bin. After that,all bins have an empty spa
e of size 1, whi
h means that the n� 1 items of size 1+ " must bereje
ted. However, the n � 1 items of size 1
an be pa
ked in the n � 1 small bins, and theremaining n� 1 items
an be pa
ked in the large bin, sin
e (n� 1)" < 1.[25℄ shows that, even in the
ase of identi
al bins, the
ompetitive ratio of Worst-Fit is 12 .6.6 Smallest-Bins-First AlgorithmsIn this se
tion we show that any Smallest-Bins-First algorithm has a
ompetitive ratio ofexa
tly n2n�1 on a

ommodating sequen
es.The Impossibility ResultFor the impossibility result,
onsider the set of n bins bi, 1 � i � n, where bi has size 1 + i"and " < 1n is a positive
onstant. The sequen
e is� 1 item of size 1 + (i� 1)", for i = 1; 2; : : : ; n� n� 1 items of size nn�1".For ea
h i, 1 � i � n, any Smallest-Bins-First algorithm assigns the item of size 1+(i�1)"to bi. This leaves an empty spa
e of size " in ea
h bin. Hen
e, all items of size nn�1" must bereje
ted.An optimal o�-line algorithm pa
ks ea
h item of size 1 + (i� 1)", 2 � i � n, in bi�1. Theitem of size 1 and the n� 1 small items
an then be pa
ked in b1.Thus, the sequen
e is a

ommodating, and the algorithms pa
k only n out of 2n�1 items.The Mat
hing Performan
e GuaranteeFor the performan
e guarantee, we prove an upper bound on the number of reje
ted items.We use the fa
t that the total size of the reje
ted items equals the total empty spa
e in theon-line pa
king minus the total empty spa
e in an optimal o�-line pa
king, sin
e all items ofthe sequen
e
an be pa
ked.For any input sequen
e, let B be the set of non-empty bins in some optimal o�-line pa
king,let B be the set of empty bins, and let N = jBj.If the on-line algorithm does not reje
t any items, its pa
king is optimal. Now, assumethat at least one item is reje
ted, and let s be the size of a smallest reje
ted item. Sin
e thealgorithm is fair, the empty spa
e in any bin is less than s. Clearly, the size of a bin is alsoan upper bound on the empty spa
e in that bin. Thus, the total empty spa
e in the on-line

6.6. SMALLEST-BINS-FIRST ALGORITHMS 65pa
king is stri
tly less than Pb2B s +Pb2B size(b) = Ns +Pb2B size(b). Sin
e the totalempty spa
e in the o�-line pa
king is at least Pb2B size(b), the number of reje
ted items isstri
tly less than N , i.e., at most N � 1. In parti
ular, this means that the number of reje
teditems is at most n� 1.Thus, if there are no empty bins in the on-line pa
king, the algorithm has pa
ked at leastn items and reje
ted at most n� 1, yielding a performan
e ratio of at least n2n�1 .Otherwise, let b be a largest empty bin. Let I� be the set of items no larger than b. Sin
ethe algorithm is fair, these items are all a

epted. Let N� be the number of non-empty binsno larger than b in some optimal o�-line pa
king. Then, N� � jI�j, sin
e only the items inI� �t in bins no larger than b.Let n> be the number of bins larger than b. These bins are all non-empty in the on-linepa
king, and by the de�nition of Smallest-Bins-First algorithms, the �rst item pa
ked in ea
hof them is larger than b, i.e., not
ontained in I�. Thus, the on-line algorithm a

epts at leastjI�j+n> items. Let N> be the number of non-empty bins larger than b in the optimal o�-linepa
king, and let N = N�+N> be the total number of non-empty bins in the optimal o�-linepa
king. Then, jI�j + n> � N� + N> = N . Sin
e the number of reje
ted items is at mostN � 1, this gives a ratio of at least N2N�1 � n2n�1 .

66 CHAPTER 6. DUAL BIN PACKING IN VARIABLE-SIZED BINS

Chapter 7S
heduling on Two Related Ma
hinesIn [44℄ and [42℄ we study s
heduling on two uniformly related ma
hines, i.e., one ma
hine is afa
tor of q faster than the other. Without loss of generality, we assume that the faster ma
hinehas speed 1, and the other ma
hine has speed q. Thus, a job of size p
an be
ompleted intime p on the fast ma
hine and time qp on the slow ma
hine. We restri
t the input sequen
esto those with non-in
reasing job sizes.The aim is to minimize the makespan. We determine the optimal
ompetitive ratio as afun
tion of q, C(q). This gives as a by-produ
t the overall
ompetitive ratio maxq�1fC(q)g.Let M1 denote the fast ma
hine, and Mq the slow ma
hine. For a given job sequen
eJ1; J2; : : : ; J`, we let p1; p2; : : : ; p` denote the job sizes. The total size of the jobs is denotedby P , i.e., P =Pì=1 pi. The time it takes to
omplete a job on a given ma
hine is
alled theload of the job on that ma
hine.For the �rst k jobs of an input sequen
e, let OPTk denote the optimal makespan and letONLk denote the makespan of the on-line algorithm under
onsideration.7.1 Non-Preemptive S
hedulingSin
e the analysis of the optimal
ompetitive ratio involves long and tedious proofs, the aimof this se
tion is to give an overview of the analysis and the results. The proofs
an be foundin the paper in Appendix B.4.7.1.1 Previous ResultsFor the o�-line problem, the algorithm LPT (Longest Pro
essing Time) has been studied.This algorithm sorts the jobs in non-in
reasing order and then uses List S
heduling. Sin
e,in this
hapter, we assume that the jobs arrive in order of non-in
reasing size, we obtain thesame result using List S
heduling.For m identi
al ma
hines the
ompetitive ratio of LPT is 43 � 13m [61℄. Thus, on twoidenti
al ma
hines, the
ompetitive ratio of LPT is 76 , and this is the optimal
ompetitiveratio [93℄. These ratios should be
ompared to 2 � 1m and 32 for general sequen
es. [93℄ alsoshows that, for m = 3, no deterministi
 algorithm
an have a
ompetitive ratio better than16(1 +p37) � 1:18. Furthermore, the paper gives an 87 -
ompetitive randomized algorithm form = 2 and shows that this is best possible. 67

68 CHAPTER 7. SCHEDULING ON TWO RELATED MACHINES

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3Figure 7.1: The
ompetitive ratio as a fun
tion of qFor m related ma
hines, the overall
ompetitive ratio of LPT is between 1.52 and 53 [56℄.Re
all that for general sequen
es, the
ompetitive ratio is at least 1:853, ifm � 80. In [39℄, theupper bound is improved to 1912 � 1:583 (unfortunately, the proof does not seem
omplete). Ontwo related ma
hines, the overall
ompetitive ratio of LPT is at most 14(1 +p17) � 1:28 [58℄.Re
all that, for general sequen
es, the ratio is � � 1:618. In [86℄, the
ompetitive ratio ofLPT for any speed ratio is given. The interval q � 1 is partitioned in 9 intervals, ea
h with adi�erent fun
tion of q for the
ompetitive ratio.7.1.2 Our ResultsWe give the optimal
ompetitive ratio as a fun
tion of the speed ratio q (see Figure 7.1). Thefun
tion involves 15 distin
t intervals as de�ned below. In some of those intervals, we givegeneral lower bounds whi
h mat
h the upper bounds in [86℄. In those
ases, LPT is optimal.In the other intervals, we design new algorithms and prove that they are optimal. Ex
ept forthe �rst few jobs, the algorithms all work like LPT.We show that, in terms of overall
ompetitive ratio, 14(1+p17) is the optimal
ompetitiveratio a
hieved at q = 14(1 +p17) by LPT. Thus, in terms of overall
ompetitive ratio, LPTis optimal, and as in the
ase of general input sequen
es, the highest
ompetitive ratio equalsthe value of q for whi
h it is attained.The optimal
ompetitive ratio is des
ribed by the following fun
tion.
C(q) = 8>>>>>>>>>>>><>>>>>>>>>>>>:

C1(q); 1 � q � q1 � 1:0401C2(q); q1 � q � q2 � 1:1410C3(q); q2 � q �q 43 � 1:1547C4(q); q 43 � q � 14 (1 +p17) � 1:2808C5(q); 14 (1 +p17) � q � p2 � 1:4142C6(q); p2 � q � 14 (1 +p33) � 1:6861C7(q); 14 (1 +p33) � q � 12 (1 +p7) � 1:8229C(q) =
8>>>>>>>>>>>>><>>>>>>>>>>>>>:
C8(q); 12 (1 +p7) � q � 2C9(q); 2 � q � 12 (1 +p11) � 2:1583C10(q); 12 (1 +p11) < q � q10 � 2:1956C11(q); q10 � q � q11 � 2:3307C12(q); q11 � q � 14 (3 +p41) � 2:3508C13(q); 14 (3 +p41) � q � q13 � 2:5111C14(q); q13 � q � q14 � 2:5704C15(q); q � q14;C1(q) = 23 + 12q , C2(q) = 1 + 12 �4q2 + 4q � 1�p(4q2 + 4q � 1)2 � 4q2�,C3(q) = 6q + 43q + 6 , C4(q) = q, C5(q) = 12 + 1q , C6(q) = 1 + 12q + 2 ,

7.1. NON-PREEMPTIVE SCHEDULING 69C7(q) = 2q + 1q + 2 , C8(q) = 23 + 1q , C9(q) = 1 + 12q + 2 , C10(q) = 3q + 22q + 3 ,C11(q) = q2 + 3 +pq4 � 6q2 + 24q + 96q , C12(q) = q2 , C13(q) = 34 + 1q ,C14(q) = 1 + q2 + 2q � 2�pq4 + 8q + 42q + 4 , C15(q) = 1 + 12q + 1 ,q1 is the largest real root of 84q4 � 24q3 � 80q2 + 6q + 9,q2 is the largest real root of 27q4 + 48q3 � 54q2 � 48q + 8,q10 is the smallest real root of 3q4 � 9q3 � 8q2 + 21q + 18,q11 is the largest real root of q3 � 2q � 8,q13 is the largest real root of 20q4 � 39q3 � 46q2 + 32q + 32,q14 is the largest real root of 4q5 + 2q4 � 24q3 � 23q2 + 6q + 8.7.1.3 Impossibility ResultsThe lower bound on the overall
ompetitive ratio is easily proven. Let q = 14(1 +p17).The adversary �rst gives a job of size 1q . If the algorithm assigns this job to the slowma
hine, it has a
ompetitive ratio of at least q. Thus, assume that it is s
heduled on the fastma
hine. Now, two jobs of size 12 follow. If they are both s
heduled on the slow ma
hine, themakespan is q. Otherwise, it is at least 1q + 12 = q.The optimal s
hedule is obtained by s
heduling the �rst job on the slow ma
hine and thelast two jobs on the fast ma
hine, yielding a makespan of 1.Stri
tly speaking, this example works only for the stri
t
ompetitive ratio, but notingthat the job sizes
ould be s
aled by any fa
tor, we obtain the impossibility result for the
ompetitive ratio in general.We now give the sequen
es proving the impossibility result of ea
h interval. For i � 4,Ci(q) � q. Thus, when proving impossibility results for these intervals, we
an assume thatthe �rst job is s
heduled on the fast ma
hine. For intervals 1�3, we need to
onsider bothpossibilities.Interval 1: 12q , 12q , 13 , 13 , 13 .For intervals 2 and 3, let p1 be the size of the �rst job. If the �rst job is put on the slowma
hine, four more jobs are given. The �rst of these has size 3+2q�2q22q2+q p1 and the last threeall have size q+12q+1 p1. Otherwise, the following two sequen
es are used.Interval 2: 1q � 2q + 1q + 1 p5, 2q + 1q + 1 p5, 1� 2p5, p5, p5,where p5 = q + 12q �4q2 + 4q � 1�p(4q2 + 4q � 1)2 � 4q2�.Interval 3: �3q2 + 4q + 4, q + 2, q + 2, q + 2, 3q2 + q � 2, 3q2 + q � 2.Intervals 4 and 5: 1q , 12 , 12 .Intervals 6 and 9: 2q2 + q � 2, q + 2, q + 1, q + 1.

70 CHAPTER 7. SCHEDULING ON TWO RELATED MACHINESInterval 7: q + 2, �q2 + 2q + 2, q2 � 1, q2 � 1.Interval 8: 1q , 13 , 13 , 13 .Interval 10: 2q + 3, �q2 + 3q + 3, q2 � 1, q2 � 1, q2 � 1.Interval 11: 4q, 4q2 � 3p5, p5, p5, p5, where p5 = 13 �5q2 � 3�pq4 � 6q2 + 24q + 9�.Intervals 12 and 13: 1q , 14 , 14 , 14 , 14 .Interval 14: 1q , 1� 1q � q + 2q + 1 p5, 1q � qq + 1 p5, p5, p5,where p5 = q + 12q(q + 2) �q2 + 2q � 2�pq4 + 8q + 4�.Interval 15:q < 1 +p3: 2q + 1, 2q2 � 2q � 3, q + 1, q + 1 q + 1.q � 1 +p3: 2q2 � 2q � 3, 2q + 1, q + 1, q + 1 q + 1.7.1.4 The New AlgorithmsIn the intervals where the general lower bound mat
hes the
ompetitive ratio of LPT,
learlyLPT is optimal. Those intervals are the following.� q = 1 (for q = 1, the
ompetitive ratio of LPT is 76 [61℄, and this is optimal [93℄).� 16(1 + p37) � q � q9, where q9 � 2:04 is the largest real root of 4q3 � 4q2 � 10q + 3.This is most of interval 4, all of intervals 5�8, and a little of interval 9.� q � q14 � 2:57. This is the last interval (interval 15).This leaves the following intervals to deal with.� Intervals 1�4, not in
luding q = 1 in interval 1, and interval 4 only up to 16 (1 +p37).� Intervals 9�14, interval 9 starting only at q9.For the �rst four intervals, we design the algorithm Slow-LPT. Intuitively, the reason whyLPT fails in the interval 1 < q < 16(1+p37) is that the slow ma
hine is not mu
h slower thanthe faster one. Sin
e the fast ma
hine does not dominate the slow ma
hine so easily, it oftenmakes sense to use the slow ma
hine �rst, and keep the fast ma
hine free for future jobs.Sin
e Slow-LPT is optimal in all of interval 4, this gives an alternative optimal algorithmfor the interval 16 (1 +p37) � q � 14(1 +p17).Algorithm Slow-LPTAssign J1 to Mq. Assign J2 to M1.If q(p1 + p3) � C(q)(p2 + p3), assign J3 to Mq, and otherwise to M1.Assign the rest of the jobs by the LPT rule.In intervals 9 and 10, 13 and 14, we use the algorithm Balan
ed-LPT that s
hedules these
ond job of the sequen
e on the slow ma
hine, unless it might break the ratio.

7.1. NON-PREEMPTIVE SCHEDULING 71Sin
e Balan
ed-LPT is optimal in all of interval 9, this gives an alternative optimal algo-rithm for the interval 2 � q � q9.Algorithm Balan
ed-LPTAssign J1 to M1.If qp2 > C(q)(p1 + p2), assign J2 to M1, and otherwise to Mq.Assign the rest of the jobs by the LPT rule.Finally, for intervals 11 and 12, we introdu
e the algorithm Opposite-LPT that does theopposite of LPT, unless it might violate the ratio. If qp2 < p1 + p2, LPT puts J2 on Mq,so Opposite-LPT puts J2 on M1, unless p1 + p2 > C(q)qp2. Similarly, if qp2 � p1 + p2,Opposite-LPT puts J2 on Mq, unless qp2 > C(q)(p1 + p2).Algorithm Opposite-LPTAssign J1 to M1.Assign J2 to M1 if one of the following holds:qp2 < p1 + p2 � C(q) qp2 or qp2 > C(q)(p1 + p2).Otherwise, assign J2 to Mq.Assign the rest of the jobs by the LPT rule.7.1.5 Performan
e GuaranteesThe proofs of the performan
e guarantees use only a few simple observations.We assume without loss of generality that OPT = 1. Note that P � 1 + 1q , sin
e the totalsize of jobs s
heduled by OPT is at most 1 on M1 and 1q on Mq.We will always assume that the makespan of the on-line algorithm is determined by thelast job, J`, i.e., ONL > ONL`�1, sin
e if ONL = ONL`�1, then ONL`�1OPT`�1 � ONLOPT .Consider an input sequen
e J1; J2; : : : ; J` and assume that J` is s
heduled a

ording to theLPT rule. Let P `�11 and P `�1q be the total size of jobs assigned to M1 and Mq, respe
tively,just before the arrival of J`. Then, by the assumption that J` determines the makespan,ONL = minfP `�11 + p`; q(P `�1q + p`)g.In [86℄ it is noted that ONL � 1 + qq+1 p`. This follows from the following
al
ulationsminnP `�11 + p`; q(P `�1q + p`)o � qq + 1 �P `�11 + p`�+ 1q + 1 q �P `�1q + p`�= qq + 1 �P `�11 + P `�1q + 2p`� = qq + 1 (P + p`)� 1 + qq + 1p`:This implies that, if OPT s
hedules k jobs on M1, then p` � 1k , and ONL � 1 + qk(q+1) .Similarly, if OPT s
hedules k jobs on Mq, then p` � 1qk , and ONL � 1 + 1k(q+1) .This shows that only short sequen
es
an be problemati
. Indeed, the impossibility results
annot be obtained with sequen
es of more than six jobs. This is natural, sin
e the job sizesare non-in
reasing; for long sequen
es the last job is small
ompared to the total job size ofthe sequen
e.

72 CHAPTER 7. SCHEDULING ON TWO RELATED MACHINESIntervals 9 and 10To give the �avor of how these simple observations are used in the analysis, we give the proofof the performan
e guarantee for intervals 9 and 10.Re
all that C9(q) = 1 + 12q+2 and C10(q) = 3q+22q+3 , and that intervals 9 and 10
orrespondto the interval 2 � q � q10 � 2:20. In interval 9, C10(q) � C9(q), and in interval 10,C9(q) � C10(q). Thus, in intervals 9 and 10, C(q) = maxfC9(q); C10(q)g.If OPT runs �ve jobs on M1,ONL � 1 + q5(q + 1) � 1 + 12(q + 1) = C9(q) � C(q); sin
e q5(q + 1) � 12(q + 1) ; for q � 52 :Hen
e, we assume that OPT runs at most four jobs on M1. Similarly, we assume that OPTruns at most one job on Mq, sin
e otherwise ONL � 1 + 12(q+1) = C9(q). Thus, we need only
onsider sequen
es of length at most �ve.If, in the optimal s
hedule, no jobs are assigned to Mq, Balan
ed-LPT will not break theratio. Hen
e, we assume that OPT s
hedules exa
tly one job on Mq and at most four jobs onM1.In intervals 9 and 10, Balan
ed-LPT always assigns J2 to Mq, sin
eC(q) (p1 + p2) � C9(q) (p1 + p2) � 2C9(q) p2 � q p2; for q � 1 +p132 � 2:30:This shows that sequen
es with at most two jobs
annot break the ratio. It also shows that,if the sequen
e
ontains at least three jobs, then ONL � P � p2. If OPT does not run J1 onM1, OPT � P � p2 � ONL. This leaves only the
ase, where OPT runs J1 on Mq and allother jobs on M1.Three jobs. Sin
e OPT runs J1 on M1, OPT � qp1. By the assumption that the last jobdetermines the on-line makespan, ONL � p1 + p3 � 2 p1 � q p1, sin
e ONL runs J2 on Mq.Four Jobs. Sin
e OPT runs J1 onMq and all other jobs onM1, p1 � 1q and p2+p3+p4 � 1.Combining the latter inequality with p4 � p3 � p2 yields p3 + p4 � 23 . Thus,ONL � p1 + p3 + p4 � 1q + 23 = 2q + 33q � 2q + 32q + 2 = C9(q); for q � 2:Five Jobs If Balan
ed-LPT s
hedules at least one of the jobs J3 and J4 on Mq, ONL �P � (p2+ p4) � 1+ 1q � 2p5: Moreover, ONL � 1+ qq+1 p5. Equating these two upper boundsyields p5 = q+13q2+2q , and hen
e,ONL � 1 + qq + 1 q + 13q2 + 2q = 1 + 13q + 2 < C9(q):Otherwise, ONL � q (p2+p5). Sin
e OPT runs the last four jobs onM1, p3+p4+p5 � 1�p2,implying that p5 � 13(1 � p2). Thus, ONL � q3 (1 + 2p2). Furthermore, ONL � P � p2 �1 + 1q � p2. Equating the two upper bounds gives p2 = �q2+3q+32q2+3q . Hen
e,ONL � 1 + 1q + q2 � 3q � 32q2 + 3q = 3q + 22q + 3 = C10(q):

7.2. PREEMPTIVE SCHEDULING 73
1

1.05

1.1

1.15

1.2

1 2 3 4 5 6 7 8 9 10Figure 7.2: The
ompetitive ratio as a fun
tion of q7.2 Preemptive S
heduling[93℄ gives the exa
t
ompetitive ratio of preemptive s
heduling of non-in
reasing sequen
es onidenti
al ma
hines. The ratio tends to 12(1 +p3) � 1:366 as m tends to in�nity. The resultis valid for deterministi
 as well as randomized algorithms.On general sequen
es, the
ompetitive ratio for preemptive s
heduling on two relatedma
hines is 1 + qq2+q+1 (see Chapter 2). In this se
tion we prove that, if the job sizes arenon-in
reasing, the
ompetitive ratio isC(q) = 8><>:1 + 13q + 2 ; for 1 � q � 31 + q � 12q2 + q + 1 ; for q � 3;for randomized as well as deterministi
 algorithms. This result is depi
ted in Figure 7.2. Asfor general sequen
es, the
ompetitive ratio attains its maximum at q = 1. The maximum is65 � a little lower than the maximum of 43 for general sequen
es.We design two
lasses of algorithms, one for q � 2 and one for q > 2. The �rst
lass ofalgorithms do not use idle time and resemble previously known algorithms. The se
ond
lassof algorithms introdu
e idle time when s
heduling the �rst job. This is in
ontrast to earlieralgorithms. In non-preemptive s
heduling idle time is
learly not useful. However, in previouswork on preemptive s
heduling of general or non-in
reasing sequen
es [30, 41, 45, 92, 93, 99℄,idle time has not been used either. As observed in [30℄, idle time is never ne
essary in the
aseof identi
al ma
hines. We prove that any optimal algorithm for s
heduling non-in
reasingsequen
es on two related ma
hines with a speed ratio of more than 2 must introdu
e idletime when s
heduling the �rst job. It seems reasonable that, for preemptive models wherethe exa
t
ompetitive ratio is not yet known, introdu
ing idle time
ould lead to the designof algorithms with optimal
ompetitive ratio. However, it is not
lear how this
an be done.Our algorithms introdu
e idle time only when s
heduling the �rst job (when s
heduling laterjobs, no additional idle time is introdu
ed). This
onstru
tion is simple enough to analyze,and leads to algorithms of optimal
ompetitive ratio.Note that the break point in the
ompetitive ratio is q = 3 and not q = 2. Even though thealgorithms for q � 2 and 2 < q � 3 are di�erent, they have the same fun
tion as
ompetitiveratio.

74 CHAPTER 7. SCHEDULING ON TWO RELATED MACHINES7.2.1 PreliminariesIn the proofs of the performan
e guarantees, and when proving that idle time is needed whenq > 2, we need the following spe
ial
ase of a result from [64℄. For any input sequen
e, theoptimal makespan is maxfp1; qq+1 Pg. This means that if P � q+1q p1, the optimal makespanis qq+1 P .We let r1 = 1+ 13q+2 and r2 = 1+ q�12q2+q+1 denote the optimal
ompetitive ratio that weare going to prove for q � 3 and q � 3, respe
tively. In Se
tion 7.2.3, we let ri denote r1 orr2, depending on whi
h range of q is
onsidered.7.2.2 Algorithms for q � 2The algorithms for q � 2 work similarly to the algorithm in [30℄. The �rst job J1 is s
heduledon the fast ma
hine. Without loss of generality we assume that it has size 1.As long as the total size of jobs does not ex
eed 1+ 1q , OPT = 1. These jobs are s
heduledbetween time 1 and r1 on the fast ma
hine �rst and then from time 0 on the slow ma
hine.We stop when the total size rea
hes 1+ 1q (some job may be partially assigned, denote this jobJp). At this point, the load on the slow ma
hine does not ex
eed 1. Hen
e, even if a job wassplit between the two ma
hines, its two parts do not overlap in time. We have the followingsituation.The loads are r1 = 3q + 33q + 2 (fast)and (1 + 1q � r1)q = 2q + 23q + 2 (slow).Note that the ratio of the loads is 3 : 2. Mq M1 1r1J1
From now on, we keep the ratio of 3 : 2 between the loads, so that the fast ma
hine isalways more loaded. The remaining part of Jp (if any) as well as any new arriving job of sizep will be split in two pie
es of size 3q3q+2 p (fast ma
hine) and 23q+2 p (slow ma
hine). The ratiobetween the extra loads is 3 : 2 as required.Sin
e the total size of s
heduled jobs is at least 1 + 1q , OPT = qq+1 P , and ONL = 3q3q+2 P .Hen
e, the
ompetitive ratio of r1 is kept. To
omplete the proof, we must prove the following.(a) The remaining part of Jp is s
heduled properly.(b) Any future job J is s
heduled properly.We prove (a) �rst. Let p be the size of the remaining part of Jp. The proof is split intotwo
ases.Jp is the se
ond job in the sequen
e. Sin
e Jp is s
heduled on the fast ma
hine noearlier than time 1, we just need to show that, on the slow ma
hine, it will be
ompleted nolater than time 1.The part of Jp s
heduled onMq adds 2q3q+2 p to the load ofMq. Sin
e the size of the se
ondjob is at most 1, and 1q of it has already been s
heduled, p � 1� 1q . Thus, after s
heduling all

7.2. PREEMPTIVE SCHEDULING 75of Jp, the load on Mq is2q + 23q + 2 + 2q3q + 2 p � 2q + 23q + 2 + 2q3q + 2 �1� 1q� = 4q3q + 2 � 1; sin
e q � 2:Jp arrives as the third job or later. In this
ase, the se
ond job has size less than 1q ,and so have later jobs. As in the previous
ase, an invalid s
hedule
annot o

ur, unless Jpruns on the slow ma
hine after time 1. Hen
e, assume that Jp runs on Mq after time 1. Sin
ep < 1q , this implies that Jp is not s
heduled on M1 before time r1. Thus, it su�
es to showthat the load on Mq does not ex
eed r1.If the load on Mq ex
eeds r1, the total size of the jobs is more thanr1q + 32 r1 = 2 + 3q2q r1 = 2 + 3q2q 3q + 33q + 2 = 3q + 32q = 32 q + 1q = 32 �1 + 1q�> 1 + 1q + 1q > 1 + 1q + p;whi
h is impossible.Now we prove (b). Let p be the size of J and let P be the total size of previous jobs.Just before s
heduling J , the load on M1 is 3q3q+2 P and the load on Mq is 2q3q+2 P . Thus,we just need to show that the part of J s
heduled on Mq has size at most 13q+2 P , i.e.,23q+2 p � 13q+2 P . This is true, sin
e at least two jobs of size at least p have been given beforeJ , and hen
e p � 12 P .7.2.3 Algorithms for q > 2The only real di�eren
e between the algorithms for q > 2 and those for q � 2 is in the waythe �rst job is s
heduled.Assume without loss of generality that the �rst job has size 1. We split this job in twopie
es of sizes q�riq�1 and ri�1q�1 . Sin
e q > 2, both fra
tions are positive. The �rst pie
e iss
heduled on the fast ma
hine from time 0, and the other is s
heduled on the slow ma
hinefrom time q�riq�1 until time q�riq�1 + ri�1q�1 q = ri.In general, future jobs (or parts of jobs) assigned to the fast ma
hine will be s
heduled oneafter the other without any idle time. Jobs (or parts of jobs) assigned to the slow ma
hinewill be s
heduled at the �rst idle time. On
e no idle time is left, they will be s
heduled afterri (it might be ne
essary to split some job and
ontinue it after time ri).Similarly to the algorithms for q � 2, as long as the total size is at most 1 + 1q , new jobsare s
heduled on the fast ma
hine between time q�riq�1 and ri, and then on the slow ma
hine,starting at time 0.At the time when the total size of jobs is exa
tly 1 + 1q , the fast ma
hine is o

upied fromtime 0 until time ri, sin
e ri�1q�1 + ri � 1 + 1q , for q � 2. On the slow ma
hine, there is stillidle time, sin
e the total size of jobs is stri
tly less than ri(1 + 1q).

76 CHAPTER 7. SCHEDULING ON TWO RELATED MACHINES
Mq M1

riJ1J1
From this time on, OPT = qq+1 P . If q � 3, we will keep the ratio 3 : 2 between the loadsof the fast and the slow ma
hines, whi
h gives the desired
ompetitive ratio, just as in the
aseq � 2. If q � 3, we keep the ratio 2 : (1 + 1q), leading to an on-line makespan of 2q22q2+q+1 P .This gives the desired
ompetitive ratio of2q22q2 + q + 1 = qq + 1 = 2q(q + 1)2q2 + q + 1 :We again need to show that the leftover of the job for whi
h the total size rea
hed 1 + 1qis assigned properly, and that future jobs are assigned properly. As soon as J1 has beens
heduled, the free time slots on the two ma
hines before time ri are disjoint. Therefore, thereis no di�eren
e between a
omplete job and the leftover of a job.Denote the (leftover of a) job that is being s
heduled by J . As earlier, let p denote thesize of J and let P denote the total size of earlier jobs.2 � q � 3: As in the proof of (b) for q � 2, we just need p � 12 P . If J is at least thethird job in the sequen
e, we
an use the same argument as in the
ase q � 2. Otherwise, Jis the leftover of a job. Sin
e 1q of this job has already been s
heduled, p � 1� 1q . For q � 3,1� 1q � 12(1 + 1q) � 12 P holds true.q � 3: In this
ase, the loads are 2q22q2+q+1 P (fast) and q2+q2q2+q+1 P (slow). Thus, the timeinterval available for a new job on the slow ma
hine is of length q2�q2q2+q+1 P , and the load ofJ on the slow ma
hine is q2+q2q2+q+1 p. Hen
e, we just need p � q�1q+1 P . If J is the third job ormore, then p � 12 P whi
h is at most q�1q+1 P , sin
e q � 3. Otherwise, as in the
ase 2 � q � 3,p � 1� 1q . Sin
e P � 1 + 1q , we getp � 1� 1q = q � 1q = q � 1q + 1 q + 1q � q � 1q + 1 P:Idle Time is Ne
essaryIn this se
tion we prove that any optimal algorithm must introdu
e idle time when s
hedulingthe �rst job. Assume for the sake of
ontradi
tion that an optimal algorithm exists that doesnot use idle time. Consider su
h an algorithm and a sequen
e of two unit jobs.After the arrival of the �rst job, OPT = 1. Sin
e ri < 2, the job
annot be s
heduled
ompletely on the slow ma
hine, sin
e this would break the ratio, and splitting the job wouldintrodu
e idle time. Hen
e, the job must be s
heduled
ompletely on the fast ma
hine.

7.2. PREEMPTIVE SCHEDULING 77After the arrival of the se
ond job, OPT = 2qq+1 . Hen
e the time interval that the algorithm
an use on the fast ma
hine is 2qq+1 ri�1. If it uses all of that time interval, it
an only s
hedulethe job between time 0 and time 1 on the slow ma
hine. This means that the maximal sizethat
an be s
heduled is 2qq + 1 ri � 1 + 1q :For 2 < q � 3, this is 3q2 + q + 23q2 + 2q ;and for q � 3, it is 2q3 + q2 + 12q3 + q2 + q :For q > 2, both are less than 1.7.2.4 General Impossibility ResultsTo prove that the algorithms of Se
tions 7.2.2 and 7.2.3 are optimal we use the followingsimpli�ed version of a lemma in [47℄.Consider a sequen
e of at least two jobs, where J`�1 and J` are the last two jobs. The
ompetitive ratio of any preemptive on-line algorithm, deterministi
 or randomized, is at leastqPOPT`�1 + qOPT` :As in [93℄, we show that the most di�
ult
ases are sequen
es of identi
al jobs.Consider two sequen
es
onsisting of two and three unit size jobs. The optimal makespanis 1 after the �rst job, 2qq+1 after the se
ond job, and 3qq+1 after the third job (if it arrives).Thus, the sequen
e of two jobs gives a lower bound of2q1 + q 2qq+1 = 2q2 + 2qq + 1 + 2q2 = 1 + q � 12q2 + q + 1 = r2;and the sequen
e of three jobs gives the lower bound3q2qq+1 + 3q2q+1 = 3(q + 1)2 + 3q = 1 + 13q + 2 = r1:

78 CHAPTER 7. SCHEDULING ON TWO RELATED MACHINES

Chapter 8Con
lusionIn this thesis, we have given a survey of measures for the quality of on-line algorithms.Furthermore, we have studied �ve on-line problems with restri
ted input. Below is asummary and a short dis
ussion of the results.Paging with Lo
ality of Referen
e. We assume that, for ea
h possible window length `,an upper bound on the maximum/average number of distin
t pages within windows of length` is given. This enables us to use the fault rate as the quality measure. We studied LRU,FIFO, the
lass of deterministi
 marking algorithms, and the optimal o�-line algorithm LFDand proved tight or nearly tight upper and lower bounds on the fault rates. Throughoutour experiments, the results of both models were far
loser to reality than the results of
ompetitive analysis. The fault rates predi
ted in the Max-Model were
loser to reality thanthose of the Average-Model, supporting our intuition that in the Max-Model, the adversary ismore restri
ted than in the Average-Model.Edge Coloring with a Fixed Number of Colors. We �rst studied the
ase of k-
olorablegraphs, i.e., the input graphs
an be
olored
ompletely with the k
olors available. Any fairdeterministi
 algorithm has a
ompetitive ratio between 12 and 23 . Next-Fit has a
ompetitiveratio mat
hing the lower bound, and the
ompetitive ratio of First-Fit is k2k�1 . Thus, for smallk, First-Fit is signi�
antly better than Next-Fit, but for large k, their
ompetitive ratios
anhardly be distinguished.Some of the proofs for k-
olorable graphs
an be generalized to the
ase of general graphs,with sligthly di�erent results. Thus, we proved that any fair algorithm has a
ompetitive ratioof at least 2p3�3 � 0:4641, and that this bound is mat
hed by the upper bound for Next-Fit.Though, intuitively, First-Fit is a more reasonable algorithm than Next-Fit, we proved thatthe
ompetitive ratio of First-Fit is at most 29 (p10 � 1) � 0:4805, and hen
e it
annot bemu
h better than Next-Fit.Both First-Fit and Next-Fit perform a little worse in the general
ase than in the
ase ofk-
olorable graphs. In neither
ase did we �nd an algorithm signi�
antly better than Next-Fit.In the general
ase, su
h an algorithm would have to be unfair or randomized, be
ause nofair deterministi
 algorithm is more than 12 -
ompetitive. However, even if we
onsider unfairand/or randomized algorithms, no algorithm
an be more than 47 -
ompetitive in the
ase ofgeneral graphs. 79

80 CHAPTER 8. CONCLUSIONBin Pa
king in Variable-Sized Bins. When studying bin pa
king in variable-sized bins,we
onsidered only input sequen
es that
an be pa
ked
ompletely by an optimal o�-linealgorithm, sin
e for general sequen
es, no fair algorithm is
ompetitive. The situation forfair algorithms is similar to the situation for fair edge
oloring algorithms in the
ase of k-
olorable graphs, with the number n of bins
orresponding to k. The
ompetitive ratio of anyfair deterministi
 algorithm is between 12 and 23 . The lower bound is tight due to Worst-Fit.A
lass of algorithms (Smallest-Bins-First) in
luding First-Fit and Best-Fit have
ompetitiveratio n2n�1 .The
ompetitive ratio of Worst-Fit is the same as in the
ase of identi
al bins, but the
ompetitive ratio of First-Fit and Best-Fit is worse than for identi
al bins � in the
ase ofidenti
al bins they have a
ompetitive ratio of at least 58 . Thus, in the more general
ase ofvariable-sized bins, the variation is mu
h smaller.An interesting open problem is to �nd an algorithm with a
ompetitive ratio signi�
antlybetter than 12 for any number of bins or to show that it does not exist. It
ould also beinteresting to determine whether su
h an algorithm would have to be unfair.S
heduling on Two Related Ma
hines. We study the
ase, where the job sizes are non-de
reasing. As expe
ted, this gives a better
ompetitive ratio than in the
ase of generalsequen
es.Non-preemptive s
heduling: We have determined the ranges of q for whi
h LPT is optimalamong deterministi
 algorithms. For the intervals, where LPT is not optimal, we have devisedoptimal deterministi
 algorithms. The range q � 1 is divided in 15 intervals with di�erentfun
tions des
ribing the
ompetitive ratio, and our proof is divided into
ases, mostly
overingonly two intervals. This does not lend mu
h hope to generalizing our results to the
ase ofmore ma
hines. One
ould hope that there are simpler results for randomized algorithms.Preemptive S
heduling: We give optimal algorithms, one for the interval 1 � q � 2 and onefor q � 2. The
ompetititive ratio
onsists of two fun
tions, one for the interval 1 � q � 3 andone for q � 3. The algorithms are deterministi
, and we prove that no randomized algorithm
an have a better
ompetitive ratio.We prove that for q > 2, any optimal on-line algorithm must introdu
e idle time whens
heduling the �rst job. This is the �rst on-line s
heduling problem, where idle time has beenproven to be required. Even though we do not know how to use idle time for other variants ofthe s
heduling problem, the use of idle time might be a step towards optimal algorithms forthose variants, where the exa
t
ompetitive ratio has not yet been determined.

Bibliography[1℄ D. A
hlioptas, M. Chrobak, and J. Noga. Competitive Analysis of Randomized PagingAlgorithms. Theoreti
al Computer S
ien
e, 234:203�218, 2000. Also in ESA 96, pages419�430.[2℄ S. Albers. On the In�uen
e of Lookahead in Competitive Paging Algorithms. Algorith-mi
a, 18:283�305, 1997. Also in ESA 93, pages 1�12.[3℄ S. Albers. Better Bounds for Online S
heduling. SIAM Journal on Computing, 29:459�473, 1999.[4℄ S. Albers, L. M. Favrholdt, and O. Giel. On Paging with Lo
ality of Referen
e. In 34thAnnual ACM Symposium on the Theory of Computing (to appear), 2002.[5℄ M. Andrews, B. Awerbu
h, A. Fernández, F. T. Leighton, Z. Liu, and J. M. Kleinberg.Universal-Stability Results and Performan
e Bounds for Greedy Contention-ResolutionProto
ols. Journal of the ACM, 48(1):39�69, 2001.[6℄ N. As
heuer, S. O. Krumke, and J. Rambau. Online Dial-a-Ride Problems: Minimiz-ing the Completion Time. In 17th International Symposium on Theoreti
al Aspe
ts ofComputer S
ien
e, volume 1770 of Le
ture Notes in Computer S
ien
e, pages 639�650,2000.[7℄ J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-Line Load Balan
ing withAppli
ations to Ma
hine S
heduling and Virtual Cir
uit routing. Journal of the ACM,44(3):486�504, 1997.[8℄ Y. Azar, J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen. Fairversus Unrestri
ted Bin Pa
king. Algorithmi
a (to appear).[9℄ Y. Azar, L. Epstein, and R. van Stee. Resour
e Augmentation in Load Balan
ing.In 7th S
andinavian Workshop on Algorithm Theory, volume 1851 of Le
ture Notes inComputer S
ien
e, pages 189�199, 2000.[10℄ E. Ba
h, J. Boyar, L. Epstein, L. M. Favrholdt, T. Jiang, K. S. Larsen, G.-H. Lin, andR. van Stee. Tight Bounds on the Competitive Ratio on A

ommodating Sequen
es forthe Seat Reservation Problem. Journal of S
heduling (to appear).[11℄ A. Bar-Noy, R. Motwani, and J. Naor. The Greedy Algorithm is Optimal for On-LineEdge Coloring. Information Pro
essing Letters, 44:251�253, 1992.81

82 BIBLIOGRAPHY[12℄ Y. Bartal, A. Fiat, H. Karlo�, and R. Vohra. New Algorithms for an An
ient S
hedulingProblem. Journal of Computer and System S
ien
es, 51(3):359�366, 1995.[13℄ L. A. Belady. A Study of Repla
ement Algorithms for Virtual Storage Computers. IBMSystems Journal, 5:78�101, 1966.[14℄ S. Ben-David and A. Borodin. A New Measure for the Study of On-Line Algorithms.Algorithmi
a, 11(1):73�91, 1994.[15℄ S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson. On the Power ofRandomization in On-Line Algorithms. Algorithmi
a, 11:2�14, 1994.[16℄ P. Berman and C. Coulston. Speed is More Powerful than Clairvoyan
e. Nordi
 Journalof Computing, 6(2):181, 1999.[17℄ M. Bern and D. Eppstein. Approximation Algorithms for Geometri
 Problems. InDorit S. Ho
hbaum, editor, Approximation Algorithms for NP-Hard Problems,
hapter 8,pages 296�345. 1997.[18℄ A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. CambridgeUniversity Press, 1998.[19℄ A. Borodin, S. Irani, P. Raghavan, and B. S
hieber. Competitive Paging with Lo
alityof Referen
e. Journal of Computer and System S
ien
es, 50(2):244�258, 1995. Also inSTOC 91, pages 249�259.[20℄ A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson. AdversarialQueueing Theory. Journal of the ACM, 48(1):13�38, 2001. Preliminary version in STOC96, pages 376�385.[21℄ A. Borodin, N. Linial, and M. E. Saks. An Optimal On-Line Algorithm for Metri
alTask Systems. Journal of the ACM, 39:745�763, 92. Also in STOC 87, pages 373�382.[22℄ J. Boyar, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen. The Competitive Ratiofor On-Line Dual Bin Pa
king with Restri
ted Input Sequen
es. Nordi
 Journal ofComputing, 8(4):463�472, 2001.[23℄ J. Boyar, L. M. Favrholdt, K. S. Larsen, and M. N. Nielsen. Extending the A

ommodat-ing Fun
tion. In Eighth Annual International Computing and Combinatori
s Conferen
e(to appear), 2002.[24℄ J. Boyar and K. S. Larsen. The Seat Reservation Problem. Algorithmi
a, 25:403�417,1999.[25℄ J. Boyar, K. S. Larsen, and M. N. Nielsen. The A

ommodating Fun
tion � a General-ization of the Competitive Ratio. SIAM Journal of Computation, 31(1):233�258, 2001.Also in WADS 99, pages 74�79.[26℄ M. Brehop, E. Torng, and P. Uthaisombut. Applying Extra Resour
e Analysis to LoadBalan
ing. Journal of S
heduling, 3:273�288, 2000.[27℄ J. L. Bruno and P. J. Downey. Probabilisti
 Bounds for Dual Bin Pa
king. A
ta Infor-mati
a, 22:333�345, 1985.

BIBLIOGRAPHY 83[28℄ B. Chandra. Does Randomization Help in On-Line Bin Pa
king. Information Pro
essingLetters, 43:15�19, 1992.[29℄ C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsa
k Problem. In 11th AnnualACM-SIAM Symposium on Dis
rete Algorithms, pages 213�222, 2000.[30℄ B. Chen, A. van Vliet, and G. J. Woeginger. An Optimal Algorithm for PreemptiveOn-Line S
heduling. Operations Resear
h Letters, 18(3):127�131, 1995.[31℄ Y. Cho and S. Sahni. Bounds for List S
hedules on Uniform Pro
essors. SIAM Journalon Computing, 9(1):91�103, 1980.[32℄ A. Chou, J. R. Coopersto
k, R. El-Yaniv, M. Klugerman, and F. T. Leighton. TheStatisti
al Adversary Allows Optimal Money-Making Trading Strategies. In Sixth Sym-posium on Dis
rete Algorithms, pages 467�476, 1995.[33℄ M. Chrobak and J. Noga. LRU is Better than FIFO. Algorithmi
a, 23(2):180�185, 1999.[34℄ J. Csirik. An On-Line Algorithm for Variable-Sized Bin Pa
king. A
ta Informati
a,26:697�709, 1989.[35℄ J. Csirik and G. J. Woeginger. Resour
e Augmentation for Online Bounded Spa
e BinPa
king. In 27th International Colloquium on Automata, Languages and Programming(to appear), 2000.[36℄ H. M. Deitel. Operating Systems. Addison-Wesley, 1990.[37℄ P. J. Denning. The Working Set Model of Program Behavior. Communi
ations of theACM, 11:323�333, 1968.[38℄ P. J. Denning. Working Sets Past and Present. IEEE Transa
tions on Software Engi-neering, 6:64�84, 1980.[39℄ G. Dobson. S
heduling Independent Tasks on Uniform Pro
essors. SIAM Journal onComputing, 13(4):705�716, 1984.[40℄ J. Edmonds. S
heduling in the Dark. In 31st Annual ACM Symposium on the Theoryof Computing, pages 179�188, 1999.[41℄ L. Epstein. Optimal Preemptive On-Line S
heduling on Uniform Pro
essors with Non-De
reasing Speed Ratios. Operations Resear
h Letters, 29(2):93�98, 2001. Also in STACS2001, pages 230�237.[42℄ L. Epstein and L. M. Favrholdt. Optimal Preemptive Semi-Online S
heduling to Mini-mize Makespan on Two Related Ma
hines. Operations Resear
h Letters (to appear).[43℄ L. Epstein and L. M. Favrholdt. On-Line Maximizing the Number of Items Pa
kedin Variable-Sized Bins. In Eighth Annual International Computing and Combinatori
sConferen
e (to appear), 2002.[44℄ L. Epstein and L. M. Favrholdt. Optimal Non-Preemptive Semi-Online S
heduling toMinimize Makespan on Two Related Ma
hines. In 27th International Symposium onMathemati
al Foundations of Computer S
ien
e (to appear), 2002.

84 BIBLIOGRAPHY[45℄ L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger. Randomized OnlineS
heduling on Two Uniform Ma
hines. Journal of S
heduling, 4(2):71�92, 2001.[46℄ L. Epstein, S. S. Seiden, and R. van Stee. New Bounds for Variable-Sized and Re-sour
e Augmented Online Bin Pa
king. In 29th International Colloquium on Automata,Languages and Programming (to appear), 2002.[47℄ L. Epstein and J. Sgall. A Lower Bound for On-Line S
heduling on Uniformly RelatedMa
hines. Operations Resear
h Letters, 26(1):17�22, 2000.[48℄ U. Faigle, W. Kern, and G. Turán. On the Performan
e of On-Line Algorithms forPartition Problems. A
ta Cyberneti
a, 9:107�119, 1989/90.[49℄ L. M. Favrholdt and M. N. Nielsen. On-Line Edge-Coloring with a Fixed Numberof Colors. In Foundations of Software Te
hnology and Theoreti
al Computer S
ien
e,volume 1974 of Le
ture Notes in Computer S
ien
e, pages 106�116, 2000.[50℄ A. Fiat and A. R. Karlin. Randomized and Multipointer Paging with Lo
ality of Ref-eren
e. In 27th Annual ACM Symposium on the Theory of Computing, pages 626�634,1995.[51℄ A. Fiat, M. Karp, M. Luby, A. M
Geo
h, D. D. Sleator, and N. E. Young. CompetitivePaging Algorithms. Journal of Algorithms, 12(4):685�699, 1991.[52℄ A. Fiat and M. Mendel. Truly Online Paging with Lo
ality of Referen
e. In 38th AnnualSymposium on Foundations of Computer S
ien
e, pages 326�335, 1997.[53℄ A. Fiat and G. J. Woeginger. Competitive Odds and Ends. In A. Fiat and G. J.Woeginger, editors, Online Algorithms: The State of the Art, volume 1442 of Le
tureNotes in Computer S
ien
e. Springer-Verlag, 1998.[54℄ A. Fiat and G. J. Woeginger. Online Algorithms: the State of the Art, volume 1442 ofLe
ture Notes in Computer S
ien
e. 1998.[55℄ R. Fleis
her and M. Wahl. On-Line S
heduling Revisited. Journal of S
heduling,3(6):343�353, 2000.[56℄ D. K. Friesen. Tighter Bounds for LPT S
heduling on Uniform Pro
essors. SIAMJournal on Computing, 16(3):554�560, 1987.[57℄ M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. Yao. Resour
e ConstrainedS
heduling as Generalized Bin Pa
king. Journal of Combinatorial Theory � Series A,21:257�298, 1976.[58℄ T. Gonzalez, O. H. Ibarra, and S. Sahni. Bounds for LPT S
hedules on Uniform Pro-
essors. SIAM Journal on Computing, 6(1):155�166, 1977.[59℄ T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating Adversaries forRequest-Answer Games. In 11th Annual ACM-SIAM Symposium on Dis
rete Algo-rithms, pages 564�565, 2000.[60℄ R. L. Graham. Bounds for Certain Multipro
essing Anomalies. Bell Systems Te
hni
alJournal, 45:1563�1581, 1966.

BIBLIOGRAPHY 85[61℄ R. L. Graham. Bounds on Multipro
essing Timing Anomalies. SIAM Journal on AppliedMathemati
s, 17(2), 1969.[62℄ D. Hauptmeier, S. O. Krumke, and J. Rambau. The Online Dial-a-Ride Problem underReasonable Load. Theoreti
al Computer S
ien
e (to appear). Prelimiary version in CIAC2000.[63℄ Homepage of New Mexi
o State University Tra
eBase (Online). Available:http://tra
ebase.nmsu.edu/tra
ebase.html.[64℄ E. C. Horvath, S. Lam, and R. Sethi. A Level Algorithm for Preemptive S
heduling.Journal of the Asso
iation for Computing Ma
hinery, 24(1):32�43, 1977.[65℄ S. Irani. Competitive Analysis of Paging. In A. Fiat and G. J. Woeginger, editors,Online Algorithms: The State of the Art, volume 1442 of Le
ture Notes in ComputerS
ien
e. Springer-Verlag, 1998.[66℄ S. Irani and A. R. Karlin. Online Computation. In Dorit S. Ho
hbaum, editor, Approx-imation Algorithms for NP-Hard Problems,
hapter 13, pages 521�564. 1997.[67℄ S. Irani, A. R. Karlin, and S. Phillips. Strongly Competitive Algorithms for Paging withLo
ality of Referen
e. SIAM Journal on Computing, 25(3):477�497, 1996. Also in FOCS92, pages 228�236.[68℄ D. S. Johnson. Near-Optimal Bin Pa
king Algorithms. PhD thesis, MIT, Cambridge,MA, 1973.[69℄ D. S. Johnson. Fast Algorithms for Bin Pa
king. Journal of Computer and SystemS
ien
es, 8:272�314, 1974.[70℄ D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst-CasePerforman
e Bounds for Simple One-Dimensional Pa
king Algorithms. SIAM Journalon Computing, 3:299�325, 1974.[71℄ B. Kalyanasundaram and K. Pruhs. Speed is as Powerful as Clairvoyan
e. In 36thAnnual Symposium on Foundations of Computer S
ien
e, pages 214�221, 1995.[72℄ B. Kalyanasundaram and K. Pruhs. Maximizing Job Completions Online. In EuropeanSymposium on Algorithms, pages 235�246, 1998.[73℄ A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive SnoopyCa
hing. Algorithmi
a, 3(1):79�119, 1988.[74℄ A. R. Karlin, S. J. Phillips, and P. Raghavan. Markov Paging. In 33rd Annual Symposiumon Foundations of Computer S
ien
e, pages 208�217, 1992.[75℄ C. Kenyon. Best-Fit Bin-Pa
king with Random Order. In 7th Annual ACM-SIAMSymposium on Dis
rete Algorithms, pages 359�364, 1996.[76℄ E. Koutsoupias. Weak Adversaries for the k-Server Problem. In 40th Annual Symposiumon Foundations of Computer S
ien
e, pages 444�449, 1999.

86 BIBLIOGRAPHY[77℄ E. Koutsoupias and C. H. Papadimitriou. Beyond Competitive Analysis. In 35th AnnualSymposium on Foundations of Computer S
ien
e, pages 394�400, 1994.[78℄ E. Koutsoupias and C. H. Papadimitriou. On the k-Server Conje
ture. Journal of theACM, 42(5):971�983, 1995.[79℄ T. W. Lam and K. K. To. Trade-O�s between Speed and Pro
essor in Hard-DeadlineS
heduling. In 10th Annual ACM-SIAM Symposium on Dis
rete Algorithms, pages 623�632, 1999.[80℄ C. Lee and D. Lee. A Simple On-Line Bin Pa
king Algorithm. Journal of the ACM,32:562�572, 1985.[81℄ J. Y. Leung. Fast Algorithms for Pa
king Problems. PhD thesis, Pennsylvania StateUniversity, 1977.[82℄ F. M. Liang. A Lower Bound for On-Line Bin Pa
king. Information Pro
essing Letters,10(2), 1980.[83℄ M. S. Manasse, L. A. M
Geo
h, and D. D. Sleator. Competitive Algorithms for On-Line Problems. In 20th Annual ACM Symposium on the Theory of Computing, pages322�333, 1988.[84℄ S. Martello and P. Toth. Knapsa
k Problems. John Wiley and Sons, Chi
hester, 1990.[85℄ L. A. M
Geo
h and D. D. Sleator. A Strongly Competitive Randomized Paging Algo-rithm. Algorithmi
a, 6(6):816�825, 1991.[86℄ P. Mireault, J. B. Orlin, and R. V. Vohra. A Parametri
 Worst Case Analysis of theLPT Heuristi
 for Two Uniform Ma
hines. Operations Resear
h, 45:116�125, 1997.[87℄ R. Motwani, S. Phillips, and E. Torng. Non-Clairvoyant S
heduling. Theoreti
al Com-puter S
ien
e, 130:17�47, 1994.[88℄ C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal Time-Criti
al S
heduling ViaResour
e Augmentation. Algorithmi
a, 32:163�200, 2002. Also in STOC 97.[89℄ P. Raghavan. A Statisti
al Adversary for On-Line Algorithms. In On-line algorithms:Pro
eedings of a DIMACS workshop, volume 7 of DIMACS Series in Dis
rete Mathe-mati
s and Theoreti
al Computer S
ien
e, pages 79�83, 1992.[90℄ M. B. Ri
hey. Improved Bounds for Harmoni
-Based Bin Pa
king Algorithms. Dis
reteApplied Mathemati
s, 34:203�227, 1991.[91℄ S. S. Seiden. On the Online Bin Pa
king Problem. In 28th International Colloquiumon Automata, Languages and Programming, volume 2076 of Le
ture Notes in ComputerS
ien
e, pages 237�248, 2001.[92℄ S. S. Seiden. Preemptive Multipro
essor S
heduling with Reje
tion. Theoreti
al Com-puter S
ien
e, 262(1�2):437�458, 2001.[93℄ S. S. Seiden, J. Sgall, and G. J. Woeginger. Semi-Online S
heduling with De
reasingJob Sizes. Operations Resear
h Letters, 27(5):215�221, 2000.

BIBLIOGRAPHY 87[94℄ J. Sgall. A Lower Bound for Randomized On-Line Multipro
essor S
heduling. Informa-tion Pro
essing Letters, 63(1):51�55, 1997.[95℄ D. D. Sleator and R. E. Tarjan. Amortized E�
ien
y of List Update and Paging Rules.Communi
ations of the ACM, 28(2):202�208, 1985.[96℄ A. S. Tanenbaum. Modern Operating System. Prenti
e Hall, 1992.[97℄ E. Torng. A Uni�ed Analysis of Paging and Ca
hing. Algorithmi
a, 20:175�200, 1998.[98℄ A. van Vliet. An Improved Lower Bound for On-Line Bin Pa
king Algorithms. Infor-mation Pro
essing Letters, 43(5):277�284, 1992.[99℄ J. Wen and D. Du. Preemptive On-Line S
heduling for Two Uniform Pro
essors. Oper-ations Resear
h Letters, 23(3�5):113�116, 1998.[100℄ D. B. West. Introdu
tion to Graph Theory, page 209. Prenti
e Hall, 1996.[101℄ A. C. Yao. An Improved Lower Bound for On-Line Bin Pa
king Algorithms. Journal ofthe ACM, 27:277�284, 1980.[102℄ A. C. Yao. Towards a Uni�ed Measure of Complexity. In 12th Annual ACM Symposiumon the Theory of Computing, pages 222�227, 1980.[103℄ N. E. Young. The k-Server Dual and Loose Competitiveness for Paging. Algorithmi
a,11(6):525�541, 1994.[104℄ N. E. Young. On-Line File Ca
hing. In Ninth Annual ACM-SIAM Symposium onDis
rete Algorithms, pages 82�86, 1998.[105℄ N. E. Young. On-Line Paging against Adversarially Biased Random Inputs. Journal ofAlgorithms, 37:218�235, 2000.

88 BIBLIOGRAPHY

Appendix AResuméDenne PhD-afhandling omhandler on-line algoritmer. En on-line algoritme er en algoritme,der får input i små bidder og må reagere på hver bid uden at vide, hvad der følger efter.Et kendt eksempel er paging-problemet, hvor man arbejder med to hukommelses-niveauer;der er en stor, langsom hukommelse og en lille, hurtig hukommelse,
a
he'en. Input til prob-lemet er anmodninger om sider fra den langsomme hukommelse. Hvis den ønskede side ikkeallerede er i
a
he, skal den hentes ind fra den langsomme hukommelse. Samtidig skal enanden side smides ud af
a
he'en for at gøre plads til den nye. Det tager tid at hente siderfra den langsomme hukommelse, så det ønsker man at gøre så sjældent som muligt. Derforgælder det om at vælge den side, der skal smides ud, med omhu.Men hvordan måler man, hvilken strategi der er bedst? Et standardmål for kvaliteten afon-line algoritmer er
ompetitive ratio. Kort fortalt er
ompetitive ratio worst
ase forholdetmellem on-line algoritmens omkostning og omkostningen af en optimal løsning � d.v.s. denløsning man ville vælge, hvis man kendte hele input-sekvensen fra starten og havde al den tid,man havde brug for, til at �nde frem til den allerbedste løsning.Fordelen og svagheden ved
ompetitive ratio er, at det er et meget generelt mål. Det eren fordel, at det kan anvendes på enhver on-line algoritme, man kan komme i tanker om.Til gengæld giver
ompetitive ratio tit ikke så meget information som mere spe
ialiseredemål. F.eks. giver
ompetitive ratio meget lidt information om forskellige paging-algoritmerskvalitet. Enhver deterministisk paging-algoritme har en
ompetitive ratio, der er mindst ligeså stor som størrelsen k af
a
he'en. Det er et ekstremt pessimistisk resultat sammenlignetmed empiriske resultater. Samtidig er der adskillige algoritmer, som alle har
ompetitive ratiok, selvom man har observeret, at der i praksis er meget stor forskel på, hvor godt de fungerer.Dette har motiveret mange forskere til at �nde mere spe
iali
erede kvalitetsmål. Afhan-dlingen giver en oversigt over resultaterne af disse bestræbelser. Derudover gengives resultaterfra fem artikler, som jeg har været medforfatter til. Vores tilgang har været at opnå mere re-alistiske resultater ved at udnytte viden om input. Tit er det nemlig ikke realistisk at antage,at intet vides om input på forhånd.Den første artikel handler om paging-problemet. Vi giver en meget simpel model for detfænomen, at input-sekvenser til paging-problemet ofte udviser en bestemt struktur kaldet�lo
ality of referen
e�. Denne model giver os mulighed for at bruge fault rate (hvor tit er vinødt til at hente en side fra den langsomme hukommelse) som kvalitetsmål. Dette er en meredirekte måde at måle algoritmerne på, og vi opnår resultater, som er langt mere realistiskeend dem man opnår, når man analyserer
ompetitive ratio.89

90 APPENDIX A. RESUMÉDen næste artikel handler om kant-farvning af grafer. Vi går ud fra, at der kun er etbegrænset antal farver til rådighed. Målet er at farve så mange kanter i grafen som muligt,under forudsætning af, at to nabokanter aldrig får den samme farve. Kanterne dukker open efter en, og hver kant skal farves � eller afvises � inden den næste kant afsløres. Viundersøger det generelle tilfælde såvel som det tilfælde, hvor grafen ville kunne farves med detantal farver, man har til rådighed, hvis man kendte hele grafen fra starten.I den tredje artikel undersøger vi en variant af bin pa
king. Et begrænset antal kasser ergivet, og input er en sekvens af elementer, som skal pakkes i kasserne. Såvel kasserne somelementerne har en en-dimensionel størrelse. Elementerne ankommer et efter et, og hvertelement skal pakkes i en kasse � eller afvises � uden nogen viden om elementerne, som evt.kommer efter. Det gælder om at pakke så mange elementer som muligt uden at overfyldenogen kasse. Vi ser på det tilfælde, hvor kasserne ikke nødvendigvis har samme størrelse. Vibetragter udelukkende sekvenser af elementer, som kan pakkes fuldstændigt i de givne kasser,d.v.s. der er plads til dem alle, hvis de bliver pakket rigtigt. I dette spe
ialtilfælde �ndes deralgoritmer, som altid kan pakke en konstant brøkdel af elementerne. Det er tidligere blevetbevist, at ingen fair algoritme � d.v.s. en algoritme, som aldrig afviser et element, hvis denkan få plads til det i en kasse � kan garantere at pakke nogen bestemt brøkdel af elementerne,medmindre man indfører en begrænsning på mængden af input-sekvenser.De sidste to artikler handler om planlægningsproblemer. Man har to maskiner eller pro-
essorer og et antal jobs, som skal afvikles på de to maskiner, som evt. ikke er lige hurtige.Hvert job har en given størrelse, som svarer til den tid, det tager at afvikle det på en maskinemed hastighed 1. Målet er at fordele jobs'ne på de to maskiner, så man tidligst muligt bliverfærdig med samtlige jobs. Jobs'ne ankommer et efter et, og for hvert job skal man beslutte,hvilken af de to maskiner, det skal afvikles på, uden at kende fremtidige jobs. Vi antager, atjobs'nes længde er ikke-stigende. Man kan enten antage, at et job kun må køre på den enemaskine, eller at man må splitte jobbet op i mindre dele, som ikke behøver at køre på densamme maskine. I begge tilfælde konstruerer vi algoritmer med optimal
ompetitive ratio forenhver kombination af hastigheder.

Appendix BPapersPaging with Lo
ality of Referen
eOn-Line Edge Coloring with a Fixed Number of ColorsOn-Line Maximizing the Number of Items Pa
ked in Variable-Sized BinsOptimal Non-Preemptive Semi-Online S
heduling on Two Related Ma
hinesOptimal Preemptive Semi-Online S
heduling on Two Related Ma
hines

91

92 APPENDIX B. PAPERSB.1 Paging with Lo
ality of Referen
e

B.1. PAGING WITH LOCALITY OF REFERENCE 93

94 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 95

96 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 97

98 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 99

100 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 101

102 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 103

104 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 105

106 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 107

108 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 109

110 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 111

112 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 113

114 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 115

116 APPENDIX B. PAPERS

B.1. PAGING WITH LOCALITY OF REFERENCE 117

118 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 119
B.2 Edge Coloring with a Fixed Number of Colors

120 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 121

122 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 123

124 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 125

126 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 127

128 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 129

130 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 131

132 APPENDIX B. PAPERS

B.2. EDGE COLORING WITH A FIXED NUMBER OF COLORS 133

134 APPENDIX B. PAPERS

B.3. ON-LINEMAXIMIZINGTHE NUMBEROF ITEMS PACKED IN VARIABLE-SIZED BINS135
B.3 On-Line Maximizing the Number of Items Pa
ked in Variable-Sized Bins

136 APPENDIX B. PAPERS

B.3. ON-LINEMAXIMIZINGTHE NUMBEROF ITEMS PACKED IN VARIABLE-SIZED BINS137

138 APPENDIX B. PAPERS

B.3. ON-LINEMAXIMIZINGTHE NUMBEROF ITEMS PACKED IN VARIABLE-SIZED BINS139

140 APPENDIX B. PAPERS

B.3. ON-LINEMAXIMIZINGTHE NUMBEROF ITEMS PACKED IN VARIABLE-SIZED BINS141

142 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES143
B.4 Optimal Non-Preemptive Semi-Online S
heduling on TwoRelated Ma
hines

144 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES145

146 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES147

148 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES149

150 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES151

152 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES153

154 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES155

156 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES157

158 APPENDIX B. PAPERS

B.4. OPTIMAL NON-PREEMPTIVE SEMI-ONLINE SCHEDULING ON TWORELATEDMACHINES159

160 APPENDIX B. PAPERS
B.5 Optimal Preemptive Semi-Online S
heduling on Two Re-lated Ma
hines

B.5. OPTIMAL PREEMPTIVE SEMI-ONLINE SCHEDULINGON TWORELATEDMACHINES161

162 APPENDIX B. PAPERS

B.5. OPTIMAL PREEMPTIVE SEMI-ONLINE SCHEDULINGON TWORELATEDMACHINES163

164 APPENDIX B. PAPERS

B.5. OPTIMAL PREEMPTIVE SEMI-ONLINE SCHEDULINGON TWORELATEDMACHINES165

166 APPENDIX B. PAPERS

B.5. OPTIMAL PREEMPTIVE SEMI-ONLINE SCHEDULINGON TWORELATEDMACHINES167

168 APPENDIX B. PAPERS

B.5. OPTIMAL PREEMPTIVE SEMI-ONLINE SCHEDULINGON TWORELATEDMACHINES169

170 APPENDIX B. PAPERS

