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Chapter 1

Introduction

On-Line Problems. Many real-life problems are on-line, i.e., information is revealed in
smaller pieces and it is necessary to take action on each piece of information without knowing
the rest. Hence, on-line algorithms differ from off-line algorithms in that they make decisions
on an incomplete basis. On-line problems come in two variants, maximization problems where
the aim is to maximize benefit and minimization problems where the aim is to minimize cost.
Chapter 2 gives a short survey of on-line problems relevant to this thesis.

Measuring On-Line Algorithms. The standard measure for the quality of an on-line al-
gorithm is the competitive ratio, which is, roughly speaking, the ratio of the performance (i.e.,
the cost/benefit) of the on-line algorithm to an optimal off-line algorithm, i.e., an algorithm
that knows the whole input in advance and has all the time it needs to compute an optimal
solution. The competitive ratio is defined formally in Section 3.1.

The strength and the weakness of the competitive ratio is that it is a very general measure.
Since it is so general and since it is a worst case measure, it cannot be expected to give very
detailed information. Indeed, for some problems it fails to reflect reality in that it gives
results that are very pessimistic compared to empirical results and/or it does not distinguish
algorithms that are known to perform very differently in practice.

This has motivated many researchers to look for more specialized measures. Many of these
can be seen as refinements of the competitive ratio. Section 3.3 gives a short survey of such
specialized measures. The direction taken in this thesis is to exploit knowledge about the
input, since very often it is overly pessimistic to assume that nothing can be predicted about
it.

Clearly, if something is known about the input, taking this into account yields a more
precise analysis. Furthermore, studying special cases with restricted input can sometimes
serve as a stepping stone to the more general (and probably harder) analysis.

On-Line Problems Studied in this Thesis. Chapters 4, 5, 6, and 7 are based on the
papers [4, 49, 43, 42, 44| included in Appendix B. The aim has been to give intuition and
overview rather than describing all technical details, since these can be found in the papers.

In Chapter 4 we study the paging problem. It is well-known that input sequences to
the paging problem exhibit locality of reference, i.e., depending on which pages have been
requested lately, the next page requested is likely to belong to a relatively small set of pages.
Our way of modeling locality of reference is inspired by Denning’s working set model. The
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model is very simple, and it enables us to use the fault rate as the quality measure. This is a
more natural measure than the competitive ratio, and our results seem to be much closer to
reality than those obtained for the competitive ratio.

In Chapter 5 we study a version of the edge coloring problem, where a limited number of
colors are available, and the aim is to color as many edges as possible. Edges arrive one by
one, and each edge must be colored or rejected without knowledge about future edges. This
problem has not been studied before. We study the general case as well as the case, where the
number of colors available are sufficient for an optimal off-line algorithm to color all edges of
the graph.

In Chapter 6 we study dual bin packing in variable sized bins. That is, a fixed number
of bins, possibly of unequal sizes, are given, and the goal is to maximize the number of items
packed in the bins. We study a very natural class of algorithms, namely those that never
reject an item unless it does not fit in any bin. Since, on general sequences, no such algorithm
can pack a constant fraction of the items in the worst case, we restrict the input sequences to
those that can be packed completely by an optimal off-line algorithm.

Finally, in Chapter 7 we study a simple scheduling problem. The input is a sequence of jobs
to be scheduled on two machines with possibly different speeds. The goal is to minimize the
time it takes to complete all jobs. We study preemptive scheduling as well as non-preemptive
scheduling. In preemptive scheduling it is allowed to break a job in smaller pieces and run the
pieces in disjoint time intervals, possibly on different machines. We give optimal algorithms
for the special case, where the job sizes are non-increasing.

For the general case, optimal algorithms have already been identified. However, these have
not been generalized to optimal algorithms for any number of machines. For non-preemptive
scheduling, algorithms with a constant competitive ratio have been devised. For preemptive
scheduling, nothing is known so far except for the case of non-decreasing speed ratios.

Danish Summary. A Danish summary can be found in Appendix A.

Notation. For any algorithm A and any input sequence o, A(o) denotes the cost/benefit of
running A on o. Similarly, OPT(o) denotes the optimal solution to o, i.e., the cost/benefit of
running an optimal off-line algorithm on o.

Hj, denotes the kth harmonic number, i.e., Hy = Zle +~In(k+1).



Chapter 2

On-Line Problems

The on-line problems investigated in this thesis are Paging with Locality of Reference, Edge
Coloring with a Fixed Number of Colors, Dual Bin Packing in Variable-Sized Bins, and
Scheduling on Two Related Machines to Minimize Makespan, see Chapters 4, 5, 6, and 7.
In this section we define these problems and a few other on-line problems that are relevant to
this thesis and give a brief description of previous results. For a more thorough description,
see [54], where many of these problems are surveyed.

When talking about performance guarantees for algorithms for minimization (maximiza-
tion) problems, we mean upper (lower) bounds on the competitive ratio. Similarly, impossi-
bility results are lower (upper) bounds on the competitive ratio.

2.1 Paging

In the paging problem, we are dealing with two levels of memory that can store pages of equal
sizes. There is a large, slow memory and a smaller, fast memory, often called the cache. The
cache can hold k pages. The input is a sequence of requests to pages of the slow memory.
Whenever a page is requested that is currently not in the cache, it must be brought from the
slow memory to the cache at a cost of 1. This is called a page fault. To make room for the
new page, a page must be evicted from the cache. The page to be evicted must be chosen
without any knowledge of future requests.
Some well-studied paging algorithms are the following.

LRU (Least Recently Used) On a page fault, LRU evicts the page that has not been
requested for the longest time.

FIFO (First In First Out) On a page fault, FIFO evicts the page that has been in cache
for the longest time.

Marking Algorithms This is a whole class of algorithms that work in phases. Each phase
contains requests to exactly k distinct pages, and the first page of a phase is not requested
in the previous phase. Thus, phases are maximal in the sense that if a phase is extended
to “the right”, it will contain more than k distinct pages.

Each time a page is requested, it is marked (unless it is already marked). Only unmarked
pages are evicted. At the end of a phase, all pages in the cache are marked. The marks

3
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are all erased, and a page can be evicted to make room for the first page requested in
the next phase.

A popular randomized marking algorithm is the algorithm MARKg that chooses the
unmarked page to be evicted uniformly at random.

Note that LRU is a marking algorithm and FIFO is not. A rather primitive marking algorithm
is the algorithm FWF (Flush When Full). When a phase ends, it simply evicts all pages from
the cache.

For the paging problem, the results of competitive analysis are very negative compared to
what is observed in practice. Any deterministic on-line paging algorithm has a competitive
ratio of at least k [95], the size of the cache, and any randomized algorithm has a competitive
ratio of at least Hy [51].

Several deterministic algorithms are k-competitive, i.e., they have optimal competitive
ratio. These include FIFO and any marking algorithm [73]. This does not reflect reality well,
since empirical results show that LRU is better than FIFO. Moreover, it seems unnatural that
an algorithm as primitive as FWF is optimal.

The randomized marking algorithm MARKg is 2Hj-competitive [51] (the exact competitive
ratio of MARKg is 2Hy — 1 [1]). There are more complicated randomized paging algorithms
that achieve the optimal competitive ratio of Hy [85, 1].

2.2 The k-Server Problem

The k-server problem is a generalization of the paging problem and was proposed in [83]. A
metric space and k servers are given. The servers are placed on points in the metric space.
The input is a sequence of requests to points in the metric space. Each request must be served
by moving a server to the requested point (unless a server is already placed on that point).
Each request must be served without knowledge of future requests. The cost to be minimized
is the total distance traveled by the k servers.

The paging problem is a special case of the k-server problem, since it can be modelled by
a uniform metric space with one point for each page in the slow memory and one server for
each slot in the fast memory. Fetching a page to the fast memory corresponds to putting a
server on the corresponding point.

The work function algorithm is (2k — 1)-competitive in any metric space [78]. Since the
k-server problem is a generalization of the paging problem, clearly k is a lower bound on the
competitive ratio for the problem. It has been conjectured that the competitive ratio of the
problem is k [83].

2.3 Metrical Task Systems

This problem was formulated in [21]. Again, we have a metric space, but only one server. The
points of the metric space are called states. Let N denote the number of states. The input is
a sequence of tasks. A task is characterized by an N-ary vector giving the cost of servicing
the task in each state. Each task must be served without any knowledge of future tasks. For
each task, the server is moved to a new state (or stays where it is) at a cost corresponding to
the distance between the old and the new state. The task is then processed in the new state
at a cost given by the cost vector of the task.
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Metrical task systems generalize many on-line problems. To see that the k-server problem
is a special case, consider a metric space constructed from a given k-server problem in the
following way. The metric space has exactly one point for each subset of the k-server metric
space of size k. It can be assumed without loss of generality that the k servers always occupy &
distinct points. Thus, the points of the new metric space correspond to the possible placements
of the k servers. The distance between two points in the new metric space is the minimum cost
of moving the servers from the configuration corresponding to one point to the configuration
corresponding to the other point.

The work function algorithm has an optimal competitive ratio of 2N — 1 [21]. Since the
problem is very general, there are several important special cases for which this does not yield
a good ratio. For instance, for the paging problem it gives a ratio of 2(]\];[) — 1, if M is the size
of the slow memory.

2.4 Scheduling

In the basic scheduling problem, m machines/processors are given and the input is a sequence
of jobs, each characterized by its size (running time). The goal is to schedule each job on a
machine, such that the time it takes to complete all jobs is minimized. This time is called
the makespan. In the on-line version, each job must be scheduled without any knowledge of
future jobs.

This basic problem has many applications and has been studied in several papers [3, 7, 12,
30, 31, 41, 45, 48, 55, 59, 60, 94, 92, 99]. Let m be the number of machines. The algorithm List
Scheduling schedules each job on a currently least loaded machine. This algorithm was studied
in [60] for the off-line problem, but since it schedules each job without exploiting any knowledge
of the future jobs, it also works for the on-line problem. It was shown to have a competitive
ratio of 2 — L (though it was not called the competitive ratio). For m = 2 and m = 3, this is
best possible for deterministic algorithms [48]. For m > 2, the algorithm M2 described in [3]
is 1.923-competitive. For m > 13, this is better than 2 — % If m > 64, the algorithm MR
presented in [55] is even better. Its competitive ratio tends to 1 + /(1 +1n2)/2 < 1.9201 as
m tends to infinity. For m > 4, the competitive ratio of any deterministic algorithm is at least
1.707 [48], and for m > 80, it is more than 1.853 [59].

On two machines, the optimal competitive ratio for randomized algorithms is % [12].

There are many variations on the basic scheduling problem. For instance, the machines
may have different speeds. In this case, List Scheduling is defined such that it schedules each
job on a machine where it will finish earliest possible. In the case of identical machines, the
two definitions are equivalent. If each machine has a certain speed, independent of the jobs,
the machines are said to be uniformly related.

For deterministic algorithms, the case of m = 2 is closed; in this case List Scheduling is
optimal. Let g be the speed ratio, i.e., assume that one machine is ¢ times faster than the
other. The competitive ratio is 1 + q-(ll-l for ¢ < ¢ and 1+ % for ¢ > ¢ (¢ =~ 1.618 is the
golden ratio). Thus, the highest (worst) competitive ratio is ¢ and is attained at ¢ = ¢. The
performance guarantees as well as the overall impossibility result (the maximum competitive
ratio of ¢) are given in [31], the other impossibility results are given in [45]. The latter paper
also shows the following. For ¢ > 2, the impossibility results are true even for randomized
algorithms. For ¢ < 2, there are randomized algorithms with a better competitive ratio than
that of List Scheduling.
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Non-Preemptive

Identical Related
1+ L <
Deterministic || C' =15 (LS) | C = - o+ i< (LS)
Randomized C=1.333... C <1.53
m — 00 C <1920 (MR) C e 0(1)
Deterministic
m > 80 C > 1.853 Ce0(1)
Preemptive
Identical Related
_ _ _ q
m > 2 C:%—)Fzzl582

Table 2.1: Known bounds on the competitive ratio C

For general m, there are simple algorithms with constant competitive ratios |7], but the
exact overall competitive ratio has not been determined.

It may be allowed to preempt jobs, i.e., it may be allowed to split a job in smaller pieces
and run the pieces in disjoint time intervals, possibly on different machines. This variant of
scheduling is called preemptive scheduling.

The competitive ratio of preemptive scheduling on m identical machines is

mm

mm—(m—1)m"
That is, any algorithm, deterministic or randomized, has competitive ratio at least %
[30, 94], and there exists a deterministic algorithm with this competitive ratio [30, 92]. This
ratio tends to —“5 ~ 1.582 as m tends to infinity.

For preemptive scheduling on two related machines with speed ratio ¢, the competitive

ratio is 1+ 7L [45, 99], for deterministic algorithms as well as randomized. This function

attains its maximum value of % when ¢ = 1.

For the general case of more machines, nothing is known so far. However, [41] gives the
optimal competitive ratio as a function of all the speeds in the case where the speed ratios are
non-decreasing (that is, if the speeds are s1 < 85 < ... < 8y, then j—; < 2—; <...< 5;"—7;1)

The results are summarized in Table 2.1.

Note that while some of the non-preemptive variants of the scheduling problem described
here have randomized algorithms with a better competitive ratio than the optimal competitive
ratio for deterministic algorithms, this is not the case for the preemptive variants. Indeed,
it has been proven that the competitive ratios of the best deterministic algorithms are also
best possible for randomized algorithms. This is rather natural, since the strategy of the best
deterministic algorithms is to maintain certain relative levels of the machines (the level of a
machine is the time it needs to complete the jobs assigned to it so far). For non-preemptive
scheduling randomization helps “spread out” the jobs over the machines. For preemptive
scheduling, this can be done more precisely without randomization.
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2.5 Bin Packing

The classical bin packing problem is the following. The input is a sequence of items of sizes
between 0 and 1. The items must be packed in unit sized bins such that the sum of sizes of
the items packed in each bin is at most 1. In the on-line version, each item must be packed
without any knowledge of future items. The goal is to pack the items in as few bins as possible.
Thus, this problem is a minimization problem.

In [101] a lower bound of 1.5 for any deterministic bin packing algorithm is proven using a
sequence with items of three different sizes. In [82] items of 5 different sizes are used to prove
a better lower bound of approximately 1.536. [98] gives a tight analysis of the construction
from [82] yielding a lower bound of approximately 1.540. In [28] it is argued that these lower
bounds are true for randomized algorithms too.

In [91] the best known algorithm, HARMONIC++, is given and proven to be 1.58889-
competitive. It is also proven that the algorithm HARMONIC+1 of [90] that was previously
thought to be the best algorithm is at best 1.59217-competitive.

Some simpler, classical algorithms are First-Fit and Best-Fit. First-Fit orders the bins
according to the order in which they were opened. Each time an item arrives, First-Fit puts
it in the first bin in which it fits. If it does not fit in any bin, a new bin is opened. Best-Fit
puts the item in the bin in which it leaves the least empty space. If it does not fit in any bin,
Best-Fit opens a new bin. The competitive ratio of First-Fit and Best-Fit is 1.7. The upper
bound for First-Fit was proven in [57], and the lower bound was shown in [70].

An even simpler algorithm is Next-Fit. Next-Fit packs each item in the last opened bin if
it fits there. Otherwise, it opens a new bin and puts the item there. Next-Fit has competitive
ratio 2 [68, 69].

First-Fit and Best-Fit belong to the class of algorithms called Any-Fit algorithms. An
Any-Fit algorithm never packs an item in an empty bin, if the item fits in a non-empty bin.
[69] shows that such an algorithm has a competitive ratio between 1.7 and 2. Only a small
further restriction is needed to obtain an upper bound matching the lower bound of 1.7. Let
the level of a bin denote the total size of the items packed in the bin. An Almost-Any-Fit
algorithm is an Any-Fit algorithm that never packs an item in a non-empty bin with lowest
level, unless there are other bins with the same level, or the bin is the only non-empty bin in
which the item fits. Any Almost-Any-Fit algorithm has a competitive ratio of 1.7 [69].

The lower bound for Any-Fit algorithms shows that, to beat First-Fit and Best-Fit, it is
sometimes necessary to open a new bin even though the current item fits in an already open
bin. On the other hand, for practical applications it may be desirable to sometimes close a
bin even though it is not filled completely. A bin is said to be open, if it contains at least one
item, and it may still receive more items. A bin is said to be closed, if it contains at least
one item, and it will not be considered when packing future items. A bin packing algorithm
is said to use bounded space, if the maximum number of open bins at any time is bounded by
some constant.

[80] proves that the bounded-space algorithm HARMONIC has a competitive ratio that
approaches 1.691 as the number of open bins increases, and that this is the best possible
competitive ratio of a bounded-space on-line bin packing algorithm.'

'The precise figure is heo = >0, —1—, where u1 = 2 and w41 = u;(u; — 1) + 1,0 > 1.

i=1u;—1°
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2.6 Dual Bin Packing

The dual bin packing problem is a maximization problem. Again, the input is a sequence of
items of sizes between 0 and 1. A fixed number of unit sized bins is given, and the aim is
to pack as many items in the bins as possible. In [27] this problem is reported to have been
named Dual Bin Packing in [81].

A fair algorithm for this problem is an algorithm that never rejects an item unless it does
not fit in any bin. If the items can be arbitrarily small, no fair algorithm can be competi-
tive [25].

[25] considers the case where all input sequences can be packed completely by an optimal
off-line algorithm. In this case, any fair algorithm has a competitive ratio of at least %, and
First-Fit and Best-Fit have a competitive ratio of at least g [25]. Furthermore, First-Fit’s
competitive ratio is at most 2 [8], if the number of bins can be arbitrarily large. [8] also gives
a general upper bound of 0.809 for fair deterministic algorithms, when there can be arbitrarily
many bing, and an upper bound of % for unfair algorithms. Furthermore, an unfair algorithm
is devised that has a competitive ratio that tends to % when the number of bins goes to infinity.

Note that the name dual bin packing is also sometimes used to refer to bin covering. In
this problem, a bin is covered if the items packed in it have a total size of at least 1, and the
goal is to cover as many bins as possible.

2.7 Variable-Sized Bin Packing

The classical bin packing problem as well as the dual bin packing problem can be generalized
such that there are more than just one bin size. The set of bin sizes is given as a part of the
problem.

For the classical bin packing problem with variable-sized bins, there is an unlimited number
of bins of each given size. The goal is to minimize the total size of the bins used. For this
problem, [34] designs an on-line algorithm VARIABLE HARMONIC based on HARMONIC. Like
HARMONIC it uses bounded space. The competitive ratio of this algorithm is the same as the
competitive ratio of HARMONIC for identical bins. For some combinations of bin sizes, the
competitive ratio is even better. If there are only two sizes, 1 and 0.7, the competitive ratio of
the problem is at most 1.4, which is smaller than the optimal competitive ratio for identical
bins. Hence, in this case, the on-line algorithm “benefits more” from having two sizes of bins
to choose from than the off-line algorithm it is measured against.

In Chapter 6 we investigate dual bin packing with variable-sized bins.

2.8 The Seat Reservation Problem

This problem was introduced in [24]. A train has n € N seats and travels from station 1 to
station k£ € N. The input to the problem is a sequence of requests consisting of a start and
an end station. Each request must be assigned a seat without any knowledge of the rest of
the sequence. Two requests can be assigned the same seat if the start station of one request
is the same as or later than the end station of the other request. Requests have to be treated
in a fair manner, i.e., if a request can be assigned a seat, it must be assigned a seat. In this
case, we say that the request is accepted. Otherwise, it is rejected.
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There are two versions of the problem. Either the profit of accepting a request is propor-
tional to the length between its start and end station, or all requests have unit profit. For the
proportional price problem, any deterministic on-line algorithm has a competitive ratio pro-
portional to the inverse of the number of stations, even in the case where the input sequences
are restricted to those that can be fully accommodated by an optimal off-line algorithm [24].
Thus, depending on the number of stations, the competitive ratio can be arbitrarily bad.
For the unit price problem, the situation is the same in the general case, where we have no
restriction on the input sequences. For sequences that can be fully accommodated by an op-
timal off-line algorithm, any deterministic algorithm has a competitive ratio of at least % [24],
and if the ratio of the number of stations to the number of seats can be arbitrarily large, no
deterministic algorithm has a competitive ratio larger than $ [10].

2.9 Edge Coloring

The classical edge coloring problem is to color the edges of a graph using as few colors as
possible, under the constraint that no two adjacent edges may receive the same color. In the
on-line version, edges arrive one by one and each edge must be colored before the next edge
is seen.

For any graph, let A be the maximum vertex degree. In [11] it is shown that the optimal
competitive ratio of 2A — 1 is achieved by the algorithm that numbers the colors and colors
each edge with the color of lowest possible number. (This is the algorithm called First-Fit in
Chapter 5.)

2.10 Edge Coloring with a Fixed Number of Colors

As far as we know, this variant of the edge coloring problem has not been studied earlier. A
limited number of colors are available, and the aim is to color as many edges as possible, again
under the constraint that no two adjacent edges may receive the same color. In the on-line
version, each edge must be either colored or rejected before the next edge is seen.

This modification of the edge coloring problem is analogous to the modification of the
vertex coloring problem made in [24] when defining the seat reservation problem. Assigning
seats to requests is equivalent to assigning colors to the vertices of an interval graph.

2.11 Dial a Ride

The dial a ride problem is about transporting objects from one point in a metric space M to
another. There is one server available for this. For every pair of points in M, there is a path
of a given length. A request consists of a release time, a startpoint, and an endpoint. The
release time is the time when the request becomes known to the on-line algorithm. To serve
a request, the server must travel from the startpoint to the endpoint. Once an object has
been picked up at its startpoint, it cannot be left anywhere else than at its destination point.
Thus, if serving one request has been begun, it must be completed before any other request
can be served. The server starts at a special point, the origin, and has to end in this point
after serving all requests.
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The dial a ride problem differs from the other on-line problems described here in that new
requests can be released while some of the already released requests have not yet been served
and more requests can be released at the same time.

There are several possible object functions for this problem. If the goal is to minimize
the total completion time, which is the time when all requests have been served and the
server is back in the origin, there exist competitive algorithms [6]. The algorithms IGNORE
and REPLAN are both %—competitive. An algorithm called SMARTSTART is 2-competitive,
which is best possible for deterministic algorithms. This algorithm is sometimes “deliberately”
idle, i.e., it chooses to do nothing for a while even though there are unserved requests.

If the goal is to minimize the average time from a request is released until it has been
served, no on-line algorithm is competitive [62]. This objective is called the average flow time.



Chapter 3

Quality Measures

By the quality of an on-line algorithm, we mean the quality of the output of the algorithm. The
time complexity of an on-line algorithm is rarely discussed. One might argue that especially
for on-line algorithms, time complexity is an important issue. On the other hand, most on-line
algorithms studied in the literature are fairly efficient.

When evaluating the quality of algorithms, two main approaches come to mind, worst
case and average case analysis. Worst case analysis has the disadvantage that there might
be a few rather contrived input sequences giving a performance much worse than the typical
sequences. In this sense, average case analysis seems more reasonable. However, this requires
a statistical model of the input. Realistic models can be difficult to devise. Furthermore, the
analysis tends to be more challenging than worst case analysis.

3.1 Competitive Analysis

The quality measure that has become the standard measure for on-line algorithms is a worst
case measure. However, for many problems the worst case performance as an absolute measure
does not make sense. For instance, the worst case fault rate of any deterministic paging
algorithm is 1. Competitive analysis solves this problem by measuring the performance of the
on-line algorithm relative to an optimal off-line algorithm, i.e., an algorithm that knows the
whole input sequence from the beginning and has all the time it needs to compute the optimal
solution. For many on-line problems, the off-line version is NP-hard. Thus, sometimes, efficient
on-line algorithms are measured against an off-line algorithm that cannot even be polynomial,
unless NP=P.

The competitive ratio was used already in [95], and in [73] it was named the competitive
ratio. The competitive ratio for deterministic algorithms is formally defined in the following
way.

Definition 3.1 For any ¢ > 1, an on-line algorithm A for a minimization problem is c-
competitive, if there exists a constant b such that

A(o) < ¢-OPT(o) + b, for any input sequence o,
The competitive ratio of A is C' = inf{c | A is c-competitive}.

11
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Definition 3.2 For any ¢ < 1, an on-line algorithm A for a maximization problem is c-
compeltitive, if there exists a constant b such that

A(o) > c¢-OPT(o) + b, for any input sequence o.
The competitive ratio of A is C = sup{c | A is c-competitive}.

If the inequality holds with b = 0, the algorithm is said to be strictly c-competitive.

If C is independent of the input sequence, the algorithm is said to be competitive.

The competitive ratio of an on-line problem is the competitive ratio of the best possible
on-line algorithm for the problem. For clarity, this is sometimes referred to as the optimal
competitive ratio. Let C' be the competitive ratio of some on-line problem. Any algorithm
with a competitive ratio ¢ € O(C) is said to be strongly competitive.

Note that some authors define c-competitiveness for maximization problems as OPT(o) <
c-A(o)+b, for any input sequence o. In this way, a good competitive ratio is a low ratio for both
maximization and minimization problems. However, the definition chosen here is consistent
with most literature on approximation algorithms. To avoid confusion, we will often use
the terms performance guarantee and impossibility result instead of the more common terms
upper bound and lower bound.

Competitive analysis is often interpreted as a game between the on-line algorithm and an
adversary who chooses the input sequence and serves it using an optimal off-line algorithm.

When analyzing randomized algorithms, one must decide on an adversary type. In [15]
three types of adversaries for randomized algorithms are defined.

The most commonly used adversary is the oblivious adversary. This adversary constructs
the input sequence knowing the definition of the algorithm but without knowing the outcome
of the random choices made by the algorithm. This adversary is the only adversary considered
in this thesis.

A more powerful adversary is the adaptive on-line adversary. This adversary may define
each request based on the on-line algorithm’s answer to all previous requests, but it must serve
the request without knowing the random choices made by the on-line algorithm as answer to
future requests. This adversary is at least as strong as the oblivious adversary, since it is
allowed to define the whole sequence in advance and compute an optimal solution before
giving the sequence.

The third adversary, is the adaptive off-line adversary. This adversary may define each
request based on the on-line algorithm’s answer to all previous requests and it serves each
request knowing the whole sequence. This adversary is the most powerful of the three. In-
deed, against this adversary, no randomized algorithm for a given problem can have a better
competitive ratio than the best deterministic algorithm for the problem [15].

When analyzing randomized algorithms, we address the exzpected benefit/cost E[A(o)] of
the algorithm.

Definition 3.3 For any ¢ > 1, a randomized on-line algorithm A for a minimization problem
is c-competitive, if there exists a constant b such that

E[A(0)] < ¢-OPT(o) + b, for any input sequence o.

The competitive ratio of A is C' = inf{c | A is c-competitive}.
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Definition 3.4 For any ¢ < 1, an on-line algorithm A for a maximization problem is c-
compeltitive, if there exists a constant b such that

E[A(0)] > ¢-OPT(o) + b, for any input sequence o.

The competitive ratio of A is C' = sup{c | A is c-competitive}.

3.2 Limitations of Competitive Analysis

For some on-line problems, competitive analysis yields very pessimistic results. Furthermore,
it sometimes fails to distinguish algorithms that are known to perform very differently in
practice. Some examples of this were given Chapter 2. Motivated by this, many researchers
have proposed refinements to competitive analysis (see the next section).

[14] proves some counterintuitive properties of the competitive ratio. For instance, on-line
algorithms for the k-server problem must remember the past to be constant competitive, but
knowing a finite part of the future does not help:

e To be constant competitive, any on-line algorithm for the k-server problem must decide
how to serve each request based not only on the current request but also on what has
happened in the past. Depending on the distances of the metric space, the amount of
memory needed can be arbitrarily large.

This is counterintuitive, since in standard competitive analysis, we do not assume that
future requests depend in any way on past requests.

e For the k-server problem, lookahead does not help. That is, knowing the next ¢ requests
at each point in time does not improve the competitive ratio, for any finite £.

This is counterintuitive, since what makes the off-line algorithm so much more powerful
than any on-line algorithm is merely the fact that it knows the future.

The paper also gives an example showing that minimizing the amortized cost, i.e., the total
cost divided by the number of requests, can be in conflict with minimizing the competitive
ratio.

3.3 Refinements of Competitive Analysis

The previous section described some of the drawbacks of competitive analysis. This section de-

scribes a number of refinements of competitive analysis. Some are actually not refinements but

rather alternatives to competitive analysis. Others are refinements of the problem definition.
Most refinements to competitive analysis fall into one of three categories.

e The set of input sequences is restricted in some way and/or the algorithm is given
some information about the input sequence, reflecting that the future is not always
completely unpredictable. Examples (that will be defined later in this section) are the
accommodating function, access graphs, reasonable load, and lookahead.

To some extent, the loose competitive ratio also belongs here. Using the loose compet-
itive ratio, sequences with insignificant cost are ignored. Similarly, sequences that are
bad only for specific values of the problem parameters are “filtered out”.
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In a broader sense, restricting the input set can be interpreted as putting a probability
distribution on the input set. Examples are the statistical adversary and the diffuse
adversary. It can also be argued that the random order competitive ratio belongs here.
Random order competitive analysis corresponds to assuming that, for any multiset of
requests, any permutation is equally likely.

e The on-line algorithm is given more resources than the off-line algorithm it is measured
against (resource augmentation).

e The on-line algorithm is compared to an algorithm (or class of algorithms) less powerful
than the optimal off-line algorithm (the comparative ratio).

The rest of this section describes a number of refinements of competitive analysis. Many
of these are also described in [65] and [53]. Depending on the problem and the aspects one
finds important, different measures may be appropriate.

3.3.1 Resource Augmentation

The idea of resource augmentation is to obtain more optimistic ratios than the standard
competitive ratio by measuring the on-line algorithm relative to an optimal off-line algorithm
with fewer resources than the on-line algorithm.

The use of resource augmentation in the analysis of on-line algorithms was first introduced
in [95], where it is shown, that the competitive ratio of LRU and FIFO is constant, if the on-
line algorithm has a cache that is a constant factor larger than that of the off-line algorithm.
If h is the size of the off-line cache, the competitive ratio of LRU and FIFO is k—LhH Thus, if
the off-line cache has size k(1 — 1), the competitive ratio of LRU and FIFO is smaller than c.

After some years, the concept of resource augmentation was studied again; [9, 16, 26,
40, 71, 72, 79, 88] study resource augmentation for various scheduling problems. [76] studies
resource augmentation for the k-server problem, and [35, 46| study resource augmentation for
the bin packing problem. In [88] the concept was named resource augmentation.

In [71], some scheduling problems with one processor are analyzed using resource augmen-
tation. It is assumed that the on-line processor has speed 1 + ¢, € > 0, whereas the off-line
processor has speed 1. The competitive ratio in this case is denoted the e-weak competitive
ratio.

The paper considers some preemptive scheduling problems for which no on-line algorithm
is competitive. One such problem is the following. A sequence of jobs are to be scheduled on
one processor. Each job has a release time and a length. Each job becomes known only at the
release time, and its length is unknown until it has been run to completion. The problem is
to minimize the average time from a job is released until it has been completed.

Any deterministic on-line algorithm for the problem has a competitive ratio of Q(n!/?) and
any randomized on-line algorithm has a competitive ratio of Q(logn), where n is the number
of jobs in the input sequence [87], in other words, no on-line algorithm for this problem is
competitive. However, there is a deterministic on-line algorithm, BALANCE, that has an e-
weak competitive ratio of at most 1+ % Thus, a constant increase in speed yields a constant
competitive ratio. The same can be achieved, giving the on-line algorithm a processor with
speed 1 and a processor with speed €. On the other hand, the algorithm Round Robin has an
e-weak competitive ratio of Q(n!¢).

Thus, the motivation for analyzing the e-weak competitive ratio is that
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— it is a more optimistic measure than the standard competitive ratio
— it tells us how much more performance we get if we increase the speed of the processor

— it helps distinguish different on-line algorithms.

The first item is further elaborated. If %f&) is bounded for all input sequences o, a

bounded e-weak competitive ratio will imply a bounded competitive ratio, since

OPTi(0)  Aige(0) _ Aite(o)
OPTy,.(0) OPTi(0) OPTy (o) °

Thus, if we consider an input sequence “abnormal”, if the optimal off-line performance decreases
dramatically, when the speed is decreased slightly, the e-weak competitive ratio gives us a hint
about the competitive ratio on “normal” sequences.

In [16], the upper bound on the e-weak competitive ratio of BALANCE is improved to
ﬁ. Thus, if BALANCE has a machine that is more than twice as fast as that of the off-line
algorithm, BALANCE performs better than the optimal off-line algorithm.

3.3.2 Accommodating Function

Like resource augmentation, the accommodating function applies to any problem with some
limited resource. The accommodating function is indeed closely related to resource augmenta-
tion. However, whereas resource augmentation is assuming that the on-line algorithm has more
resources than the off-line algorithm, the accommodating function is computed by assuming
a restricted set of input sequences.

The first step towards defining the accommodating function was taken in [24], where the
seat reservation problem is studied. The situation, where the ticket prices are proportional
to the distance traveled, as well as the situation where the tickets have a unit price, are
studied. For both problems, any deterministic algorithm has a competitive ratio of @(%),
where k is the number of stations. Thus, for a large number of stations, the competitive ratio
is very small. However, if the input sequences are restricted to those that can be completely
accommodated by an optimal off-line algorithm, any deterministic algorithm for the unit
price problem is %—competitive. Such sequences are called accommodating sequences'. This
restriction on the set of input sequences seems to be a realistic assumption, since it is likely
that the management, based on data from earlier years, are able to predict how many cars it
will take to accommodate all passengers, if the requests are all known in advance (the seat
reservation problem is equivalent to vertex coloring an interval graph, which can be done
efficiently). However, this number of cars may not suffice, when the requests are to be served
on-line (if the number of stations is large compared to the number of seats, the competitive
ratio of any deterministic algorithm is close to 3 [10]). Thus, it seems desirable to have more
cars than needed by an optimal off-line algorithm. For other problems it may be more realistic
to assume that the resources supplied are not even sufficient for an optimal off-line algorithm.
This motivates the definition of a-sequences.

Assume that the amount n of resources are available (n could be the number of seats in
the train or the number of bins in the dual bin packing problem). For any « > 0, an input
sequence is said to be an a-sequence, if an optimal off-line algorithm does not benefit from

Tn [24] the competitive ratio on accommodating sequences was called the accommodating ratio. In later
papers this was changed for consistency with common practice in the field
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having more than the amount an of resources. More formally, for any input sequence o,
and any amount m of resources, let OPT,, (o) denote the benefit/cost of an optimal off-line
algorithm on the sequence o when the amount m of resources is given. An input sequence o is
an a-sequence, if OPT,/ (o) = OPT,, (o) for any n’ > an. Thus, accommodating sequences
are l-sequences.

Let A be an on-line algorithm for a maximization problem. The accommodating function
is defined as

Aa(a) = sup{c | A is c-competitive on a-sequences}.

For minimization problems, the accommodating function is defined analogously:
An(a) = inf{c | A is c-competitive on a-sequences}.

For any “normal” on-line problem, the competitive ratio (with no restriction on the set of
input sequences) equals limg_, o A().

When choosing an on-line algorithm for dual bin packing it can be crucial to know some-
thing about the input sequences. If the input sequences are all accommodating, First-Fit is
2-competitive [25], but in the general case, the competitive ratio of First-Fit is ©(s), where
s is the size of the smallest item in the sequence. An algorithm called Log has a competitive
ratio of @(m) in both cases [22]|. Thus, if the sequences are known to be accommodating,
First-Fit is the best choice, but if the sequences are not likely to be a-sequences for any small
«, Log may be the best choice.

For o < 1, the accommodating function is closely related to resource augmentation. As-
sume that the amount n of resources is available. If the input sequences are all a-sequences and
a < 1, the performance of an optimal off-line algorithm would be the same even if the amount
of resources were decreased to an. This means that any performance guarantee proven in the
resource augmentation setting is valid for the accommodating function with a < 1. The con-
trapositive of this observation gives that impossibility results for the accommodating function
with « < 1 carry over to the resource augmentation setting.

The opposite is not true. In [23] some examples are given where analyzing the accommo-
dating function gives results that are much more optimistic than those obtained with resource
augmentation. The competitive ratio of First-Fit for the seat reservation problem does not
change significantly when the on-line algorithm is given more seats than the off-line algo-
rithm. Even if the on-line algorithm has é times as many seats as the off-line algorithm, the
competitive ratio of First-Fit is at most ((1_21/;’;% This fraction tends to 0 as k tends to

infinity. On the other hand, the accommodating function of First-Fit is at least 1 — 2~ 1/
when « < 1. Similarly, the competitive ratio of First-Fit for dual bin packing is at least %
on a-sequences with o < 1, but for general sequences, the competitive ratio of First-Fit is
at most >, even if the on-line algorithm has é times as many bins as the off-line algorithm.
Again, s is the size of the smallest item in the sequence

For those results from resource augmentation that are also valid for the accommodating
function, the accommodating function adds an extra, very natural interpretation.

3.3.3 Access Graphs

For the paging problem, the implicit assumption in standard competitive analysis that any
sequence of requests may occur is particularly unrealistic. Most programs exhibit locality of
reference. When a page is referenced, it is more likely to be referenced in the near future
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(temporal locality), and pages near it in memory are more likely to be referenced in the
near future (spatial locality). Locality of reference is the explanation why LRU works well in
practice. Indeed, two-level memory is only useful if request sequences are not arbitrary.

In [19] a model of locality of reference is introduced. The structure of the program is
represented by a graph that contains a vertex for each page that may be referenced. When
a page p is referenced, the next request must be to p or to one of the pages corresponding to
the neighbors of p in the graph. Access graphs may be directed or undirected. Here, we only
discuss undirected access graphs, since is it sufficient to give a good illustration of the ideas.

In the access graph model, LRU is better than FIFO; on any access graph, the competitive
ratio of LRU is at least as good as that of FIFO [33], and there are graphs where the competitive
ratio of LRU is much better than that of FIFO. For instance it is not difficult to see that, if
the access graph is a line of k + 1 vertices, the competitive ratio of FIFO is at least % (in
fact this is a lower bound on the competitive ratio of FIFO on any access graph with at least
k + 1 vertices [19]) and the competitive ratio of LRU is 1. In general, if the access graph is a
tree, LRU is an optimal deterministic on-line paging algorithm [19].

However, it is clear that there are access graphs for which LRU is not optimal. An example
is a ring graph on k + 1 vertices. [19] gives an algorithm called FAR. Whenever a page must
be evicted, FAR chooses a page whose distance in the graph to the page just requested is
largest possible. For the ring graph, this is clearly a better strategy than the LRU strategy.
[67] shows that FAR is strongly competitive for any access graph.

[50] gives a simple strongly competitive randomized algorithm.

[52] gives paging algorithms that build the access graph on the fly. This means that the
access graph need not be known in advance; the access graph may even change dynamically.
The algorithms require only O(klogn) space, where n is the size of the slow memory. A
deterministic and a randomized algorithm are given. Both are strongly competitive.

The concept of access graphs has been very successful in the sense that it helps distinguish
the performance of different algorithms. However, the results on the actual competitive ratios
are sometimes rather difficult to interpret. Some of the results involve finding a vine decom-
position (see [18, p. 63]) of the access graph or the maximum number of leaves in any subtree
with £ + 1 vertices.

[74] takes the idea of access graphs one step further by introducing probabilities on the
edges. Hence, the algorithm knows not only which pages can be requested next, but also the
probability of each of these pages to be requested next. In this model it is possible to use the
fault rate as the measure instead of measuring the on-line algorithms relative to an off-line
algorithm. The paper gives an algorithm that has a fault rate which is within a constant
factor of the optimal on-line fault rate.

3.3.4 Loose Competitive Ratio

The loose competitive ratio is defined in [103] for the paging problem, but it should be ap-
plicable to other problems as well. In [104] the definition is refined and generalized to file
caching. Here we describe the concept as defined in [104] for the special case of paging, since
it illustrates the ideas.

A paging algorithm A is (e, d)-loosely C-competitive, if for any request sequence o and
any n € N, at least (1 — d)n of the cache sizes k € {1,2,...,n} satisfy

A(o) < max{C-OPT(0), ¢|o|}.
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Thus, the loose competitive ratio does not consider those sequences that we do not worry
about anyway, because they have a low fault rate. Furthermore, sequences that are only bad
for a few cache sizes are not considered, since in real life, the sequences are not generated by
a cruel adversary that knows the exact hardware configuration.

[104] proves the following result, relevant for many deterministic algorithms. For any
0 <ed <1, any k_Lh_H—competitive algorithm is (g, 0)-loosely C-competitive, where C' =
et |Inl]. (Asin Section 3.3.1 on resource augmentation, h is the size of the off-line cache.)
Hence, for constant ¢ and 4, these algorithms have constant competitive ratios. The result is
widely applicable, since FIFO as well as any marking algorithm is %M—competitive.

The following result is relevant for randomized algorithms. For any 0 < ¢,§ < 1, any
O(In k%}m)—competitive algorithm is (e, d)-loosely C-competitive, where C' € O(1 + In§ +
Inlnl).

[65] poses the following open problem. For many scheduling problems, adversary sequences
have been tailormade for the specific number of machines available. (For instance the sequence
against List Scheduling on m identical machines is m(m — 1) jobs of size 1 followed by one
job of size m.) Is it possible to obtain the same impossibility results for the loose competitive
ratio?

3.3.5 Statistical Adversary

The statistical adversary introduced in [89] chooses the input sequence such that it is consistent
with some statistical assumptions. The idea is to measure the worst case absolute performance.
That is, in contrast to competitive analysis, the performance is not measured relative to
another algorithm.

As an example, a problem in investment theory is analyzed. The input to the problem is
a sequence of stock prices, and it is assumed that the mean and standard deviation are given.
The adversary sequence must be chosen among those sequences with the assumed mean and
standard deviation. Furthermore, the prices are bounded from above and below.

The statistical adversary is also studied in [32].

Note that in [53] the term statistical adversary is used to denote the stochastic version of
the rate p adversary defined in [20].

3.3.6 Diffuse Adversary

Assuming that the input sequences are consistent with some specific probability distribution
may be as unrealistic as assuming that nothing is known about the input sequences. As a
middle ground, [77] proposes to use a whole class of distributions. The algorithm knows the
class of distributions, but it does not know which distribution is picked by the adversary. The
competitive ratio of an on-line algorithm against this adversary, called the diffuse adversary,
is its worst case expected performance ratio, over the distributions in the class. Formally, if
A is the set of probability distributions, the performance ratio of algorithm A is

_ Ep[A(o)]
CIA) = max 5 OPT (o))

If A contains all possible distributions, the ratio becomes equal to the standard competitive
ratio; the adversary simply picks a distribution containing only one worst case sequence.
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In particular, [77] considers the set of distributions A, where, in each step, the probability
of any page to be requested next is at most ¢, for some € > 0. They show that LRU is optimal
against such an adversary, but they give no closed form for the competitive ratio for k > 2.

The class A; of distributions is further investigated in [105], where the following is proven.

The competitive ratio of any deterministic on-line algorithm is

k—1 |
> .
Caer 2 Z max{e ! —i,1}

An upper bound is given for the class of deterministic lazy marking algorithms. (A lazy
algorithm is an algorithm that only evicts a page when it has to. Sometimes such algorithms
are called demand paging algorithms.) The bound is

k—1 1
Cm < 2 2.
"= Z max{e~t —i,1} +
=1

For e < k%_l, the same is true for randomized algorithms.

Note that for e = %,

’“z‘:l 1 fH, o —Hy, n>k
max{e~! —i,1} Hy_1+k—-n, n<k.

The upper bound result covers LRU, since it is a lazy marking algorithm, but it does not
cover FIFO, since it is not a marking algorithm, and it does not cover FWF, since it is not
lazy. Indeed, for ¢ > I%}-l’ the competitive ratio of FIFO and FWF is k, just as the standard
competitive ratio.

For e > k%_l, the lower bound for deterministic algorithms is raised to Z;:ll max{gllfm} +
1, and the lower bound for randomized algorithms is Hy, the optimal competitive ratio against
the standard oblivious adversary.

Hence, for ¢ < I%H’ the class of randomized algorithms is no stronger than the class
of deterministic algorithms, and for £ > k+-17 the optimal competitive ratio for randomized
algorithms is the same as against the standard oblivious adversary. This is perhaps not so
surprising. To a great extend, the advantage of randomized algorithms is that the input
sequences “look random” from the algorithms perspective — there are no real worst case
sequences. Hence, if the input is fairly random (this is the case if ¢ is small), it seems
reasonable that randomized algorithms are not much stronger than deterministic algorithms.

On the other hand, if € is large, the adversary does not differ much from the standard adversary.

3.3.7 Random Order

In [75] the Best-Fit algorithm for bin packing is investigated. Normally, when analyzing bin
packing algorithms, the performance is measured using the worst case performance ratio, over
all input sequences. This yields the lower bound of 1.7 for both First-Fit and Best-Fit, which is
rather pessimistic compared to empirical results on Best-Fit’s performance. The lower bound
is due to input sequences with items of very special sizes where the items occur in order of non-
decreasing size. Most permutations of these input sequences give ratios that are significantly
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better. This motivates studying the worst case expected performance ratio, over all multisets
of items, assuming that any permutation of the items is equally likely.

This expected performance ratio is shown to lie between approximately 1.08 and 1.5 for
Best-Fit. Thus, using this performance measure, the performance guarantee for Best-Fit is
a little better than the general lower bound on the competitive ratio of any bin packing
algorithm.

3.3.8 Reasonable Load

The notion of reasonable load is very similar to the concept of the rate p adversary defined
in [20] and further investigated in [5]. It also has similarities to the accommodating function.

[62] studies the on-line dial a ride problem with an infinite number of requests. In this case,
the total completion time is meaningless. However, if we want to minimize the average flow
time, competitive analysis does not yield any information as to which algorithm to choose,
since the competitive ratio of any on-line algorithm for this problem is unbounded.

This motivated the authors of [62] to put a restriction on the set of input sequences. Since
all requests must be served, it seems reasonable to require that an optimal off-line algorithm
is able to do so, i.e., the number of released jobs not yet served does not grow unboundedly.
For any A € N, a request sequence is A-reasonable, if any sequence of requests released within
a time period of length T" > A can be served in time at most 7. A request sequence is
reasonable, if there exists a A, such that the sequence is A-reasonable.

On A-reasonable request sequences, the algorihm IGNORE, described in detail in [6], yields
a maximal flow time of at most 2A. On the other hand, there are reasonable request sequences
for which the average flow time of the algorithm REPLAN, also described in [6], is unbounded.

Since the off-line version of the dial a ride problem is NP-hard, it seems desirable that the
sequences are “more” than reasonable. A sequence is (A, p)-reasonable, if requests released
during a period of time T' > A can be served in time at most 7'/p. If the problem is solved
using a p-approximation algorithm, the number of released jobs not yet served will not grow
unboundedly, if the sequence is (A, p)-reasonable, for some bounded A.

Note the similarity between (A, p)-reasonable sequences and %—sequences as defined in
Section 3.3.2.

3.3.9 Comparative Ratio

Motivated by the fact that lookahead cannot improve the competitive ratio of an on-line paging
algorithm, [77] introduces the comparative ratio. Rather than evaluating the performance of
single algorithms, the purpose is to compare the power of classes of algorithms having access
to different amounts of information. For instance it is shown that comparing on-line paging
algorithms, i.e., algorithms that know only the current page requested, to algorithms that
know the current request and the following ¢ — 1 requests gives a ratio of min{k, ¢}.

3.3.10 The Max/Max Ratio

The Max/Max ratio is introduced in [14]. Like the competitive ratio, it is a worst case measure
and it measures the on-line performance relative to the optimal off-line performance. However,
whereas the competitive ratio measures the performance on each input sequence relative to
the performance of an optimal off-line algorithm on that same sequence, the Max/Max ratio
compares the performance on each input sequence o to the worst case performance of an
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optimal off-line algorithm on all sequences of the same length as o. More precisely, the
Max/Max ratio is the ratio of the worst case cost of the on-line algorithm on sequences of
length ¢ to the optimal off-line cost on sequences of length ¢, as £ goes to infinity.

The example problem is the k-server problem with a bounded metric space. For this prob-
lem the Max/Max ratio is the worst case amortized cost of the on-line algorithm normalized
by the amortized optimal off-line cost. This means that the Max/Max ratio of two on-line
algorithms can be compared without referring to an optimal off-line algorithm — the ratio of
their Max/Max ratios is simply the ratio of their worst case performances.

The paper gives an on-line memoryless k-server algorithm that, for any &£ and any bounded
metric space G, has a Max/Max ratio of at most 2k.2 Moreover, the ratio is within a factor of
two of the best possible on-line algorithm. This is in contrast to the competitive ratio which,
depending on the distances in the metric space, can be arbitrarily large, for any memoryless
algorithm for the k-server problem. It is also shown that lookahead does help. Specifically, it
is shown that if the algorithm knows not only the current request but also the following ¢ — 1
requests, the Max/Max ratio is "771, ifn—k </ <mn-—1and n is the number of points in the
metric space. If £ < n — k, a lookahead of size £ does not improve the Max/Max ratio.

Moreover, it is shown that the best possible Max/Max ratio depends on the metric space.
For the uniform metric space with n points, the Max/Max ratio is Z—:k Thus, for the uniform
metric space with £+ 1 points, the Max/Max ratio is k. On the other hand, there exist metric
spaces with arbitrarily many points for which the Max/Max ratio is 1. This is in contrast to
the competitive ratio, since any deterministic k-server algorithm has a competitive ratio of at
least k in any metric space with more than k£ points, and it has been conjectured that this is
the optimal competitive ratio [83].

Thus, even though the definition of the Max/Max ratio is similar to the definition of the
competitive ratio, the Max/Max ratio seems to give more reasonable results for the k-server
problem. Unfortunately, for the paging problem, the Max/Max ratio seems to give even less
information than the competitive ratio. If there is no restriction on the request sequences,
the fault rate of any algorithm (including the optimal off-line algorithm) can be arbitrarily
close to one, depending only on the number of distinct pages that can be requested. Thus,
considering arbitrarily large numbers of distinct pages, the Max/Max ratio of any algorithm
can be arbitrarily close to 1. Moreover, for problems like scheduling to minimize makespan
(or the k-server problem with an unbounded metric space) where a bound on the length of
the input sequence does not yield a bound on the cost, the Max/Max ratio does not directly

apply.

3.3.11 Lookahead

As mentioned in Section 3.2, lookahead cannot improve the competitive ratio of k-server
algorithms. This is true for any metric space, and hence it cannot improve the competititive
ratio of paging algorithms. As a response to this, some stronger versions of lookahead have
been studied.

[2] introduces the notion of strong lookahead. Strong lookahead ¢ means that the algorithm
knows the minimal prefix of the remaining sequence that contains requests to ¢ distinct pages.

>The memoryless algorithm requires some preprocessing consisting in solving an NP-hard problem (the
Minmax radius k-clustering problem). However, a 2-approximation algorithm exists [17]. Using this algorithm
in the preprocessing step yields a Max/Max ratio of at most 4k.
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A version of LRU, generalized to take advantage of lookahead, is studied. When a page
must be evicted, the least recently used page that is not among the pages in the lookahead
is chosen. If such a page does not exist, the page that is requested farthest in the future is
evicted. With a lookahead of size ¢, we call this version of the algorithm LRU(/).

The competitive ratio of LRU(#) is k — ¢, when ¢ < k — 2, and this is best possible among
deterministic paging algorithms.

Often, in real applications, requests arrive in blocks. If the sequence is partioned in blocks
such that each block is a minimal sequence with £ distinct pages, and the algorithm sees
one block at a time, LRU(¢) is (k — ¢ + 1)-competitive and a variant of MARKR is (2Hp—¢)-
competitive, when £ < k — 2.

3.3.12 Total Access Time

Sometimes the problem description itself can be refined to obtain more realistic results. This
is the case for the paging problem. One reason that competitive analysis yields very unrealistic
results for the paging problem is that arbitrarily long sequences exist for which the off-line
algorithm has no faults at all. Hence, in [97] it is assumed that it takes time 1 to access a page
in the fast memory, while fetching a page from the slow memory takes time p > 1. With this
definition of the problem, it is shown that lookahead can give improved competitive ratios.

Since LRU(¢) (as defined in Section 3.3.11) is difficult to analyze, a simpler version is
studied. Instead of using the full lookahead, only those pages in the lookahead contained in
the current marking phase are considered. We call this version LRU(/, k).

The following results are obtained on the refined version of the paging problem.

e Sufficient (finite) lookahead yields algorithms with constant competitive ratios. Specifi-
cally, LRU(kp, k) is 2-competitive.

e On sequences with a significant locality of reference, any marking algorithm has a con-
stant competitive ratio. More precisely, for any input sequence, let L be the average
length of a phase. If L > ak, then the competitive ratio of any marking algorithm is
less than 1+ 2.

In contrast, LFU(¢) (Least Frequently Used) has a competitive ratio of more than p on
sequences with much more locality of reference than what is needed for LRU(¢) to be
2-competitive.



Chapter 4

Paging with Locality of Reference

The most natural quality measure for paging algorithms seems to be the fault rate, i.e., the
number of faults divided by the number of requests. However, if no restriction is put on the
set of input sequences, the worst case fault rate of any deterministic on-line paging algorithm
is 1, since in the worst case, each request is to a page that is currently not in the cache. If the
slow memory is much larger than the cache, even the worst case fault rate of any randomized
on-line algorithm will be close to 1. Modeling locality of reference is one way of restricting
the input sequences. In [4] we study a very simple model of locality of reference.

4.1 The Model

In modeling locality of reference we go back to the working set concept by Denning [37, 38] that
is also used in standard text books on operating systems [36, 96] to describe the phenomenon
of locality. The set of pages that a process is currently using is called the working set. Fixing a
point in a request sequence and determining the working set size in a window of size n starting
at this point in the sequence, one obtains a function of n whose general behavior is depicted
in Figure 4.1. The function is increasing and concave. Denning [37]| shows that this is in fact
a mathematical consequence of the working set model, assuming statistical regularities locally
in a request sequence.

We assume that an application is characterized by a concave function f. The application
generates request sequences that are consistent with f. We will investigate two models. In
the Max-Model a request sequence is consistent with f if the maximum number of distinct
pages referenced in a window of size n is at most f(n), for any n € N. In the Average-Model

Program Size

Working Set
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Window Size

Figure 4.1: Working set size as a function of the window size.
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Figure 4.2: Maximum and average size of the working set in windows of size up to 100,000 requests.
Each diagram’s caption gives the architecture, the name of the trace, and the number of distinct pages
requested in the entire sequence.

a request sequence is consistent with f if the average number of distinct pages referenced in
a window of size n is at most f(n), for any n € N.

In our model the function f characterizes the maximal /average working set size globally in
a request sequence, whereas the original working set model considers working set sizes locally.
The Max-Model is closely related to the original working set model. On the other hand, the
Average-Model permits a larger class of request sequences. It is interesting if an application
changes the working set completely at certain times in a request sequence.

We have performed experiments with traces from standard corpora, analyzing maxi-
mum /average working set sizes in windows of size n, see Section 4.6 for details. The result
for four of these traces are depicted in Figure 4.2. As illustrated by the figure, the behavior
of the working set size proposed by Denning for a single window of increasing size can also be
observed globally, taking the maximum /average working set size over all windows of a request
sequence; the curves have an overall concave behavior. We also observe that, for all window
sizes, the working set size is very small compared to the window size. This suggests that the
model we propose here is indeed reasonable for studying paging algorithms.

Naturally, the functions are not only concave, they are also non-decreasing. Furthermore,
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since windows of size 1 contain exactly one page, f(1) = 1.

If windows of size n contain at most m pages, then a window of size n + 1 can contain
at most m + 1 pages. Thus, in the Max-Model, f is surjective on the integers between 1 and
its maximum value, i.e., for all natural numbers m between 1 and sup{f(n) | n € N}, there
exists an n with f(n) = m.

This is all captured in the following definition (the first inequality in 2. says that the
function is concave, and the last inequality says that it is non-decreasing).

Definition 4.1 A function f: N = Ry is concave® if
1 f(1)=1
2.VneN: f(n+1)—f(n)> f(n+2)—f(n+1)>0.

In the Max-Model, we additionally require that f be surjective on the integers between 1 and
its maximum value.

Note that the requirement in the Max-Model that the function be surjective on the integers
between 1 and its maximum value implies that f(n + 1) — f(n) < 1, for all n € N.

For a given application, a good approximation of f is easy to determine. One only has to
scan a sufficiently long request sequence and compute the maximum/average number of pages
in windows of size n, just as it was done to obtain the curves in Figure 4.2. Essentially, for
each trace, we can use any concave function f that is an upper bound on the observed data
points, e.g., we can take the upper convex hull of the points.

For the Max-Model, there might be one small problem; the upper convex hull might not
be surjective on the integers between 1 and the maximum value. This can be fixed without
changing the upper bound too much. Note that the points of the upper convex hull are
points of the original curve. The coordinates of these points are natural numbers and they are
connected by straight line segments. The following two steps sketch how to obtain a concave*
upper bound from the upper convex hull.

1. For each line segment £ with a slope ¢, if there is no m € N such that § = %, choose

m € N such that #_H <3< %, and replace ¢ by two line segments with slopes mL_H

and % Denote the lengths of the projections of these two line segments on the z-
axis by z; and zs. These two lengths are the solutions to the linear equation system
z1(m+ 1)+ zom = b and z1 + 22 = a.

2. For each line segment that was replaced by two line segments in Step 1, let m be the
natural number chosen such that the slope of Z lies between #ﬂ and % If there
are other line segments of the upper convex hull with slopes in the same interval, the

1

segments with slope % should be moved before all of the segments with slope .

See Figure 4.3 for an example illustrating the two steps.
In the analysis of the Max-Model, we need a definition of the inverse of a concave® function.

Definition 4.2 For any concave* function f,let M = sup{|f(n)| | n € N}. Define f 1: {m €
N|m < M} — N by
f7'(m) = min{n € N| f(n) > m}.
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Figure 4.3: In each subfigure, a concave function and an upper bound on the function is shown.

In words, f ' (m) is the smallest possible size of a window containing m distinct pages.

Both in the Max- and the Average-Model, given a concave® function f, we will analyze
the performance of paging algorithms on request sequences that are consistent with f. Prac-
titioners use the fault rate to evaluate the performance of paging algorithms. We will use this
measure, too.

Definition 4.3 The fault rate of a paging algorithm A on an input sequence o is

We are interested in the worst case performance on all sequences that are consistent with f.

Definition 4.4 The fault rate of a paging algorithm A with respect to a concave® function f
is

Fa(f) :=inf{r | 3n € N: Vo, o consistent with f,|o| > n: Fa(o) < r}.

Throughout the analysis, we assume that the functions considered are concave®. Moreover,
we assume that the functions have maximum values of at least k£ + 1, since otherwise the fault
rate of any reasonable paging algorithm is 0.

4.2 Algorithms

The on-line algorithms considered are all deterministic. They are: LRU, FIFO, and the class of
deterministic marking algorithms (see Section 2.1 for the definitions). Furthermore, we study
the optimal off-line algorithm LEFD. On a fault, LFD evicts the page whose next request is
farthest in the future. Since LFD is an off-line algorithm, it cannot be used in practice, but
since it is an optimal off-line algorithm [13], it is interesting to analyze it. Note, however, that
the fault rate of an on-line algorithm divided by the fault rate of LFD does not necessarily
give the competitive ratio of the on-line algorithm on sequences consistent with f.
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Max-Model Average-Model
Any on-line alg. > % > %
FIFO > i S =
Marking < W < %@
H 2 max {reirr) <2 e, (it} & SRR
k4+m<M k+m<M

Table 4.1: Fault rates of the algorithms considered.

4.3 Results

We investigate the Max-Model and the Average-Model in Sections 4.4 and 4.5, respectively.
The results are summarized in Table 4.1. Recall that M is the maximum number of distinct
pages that can be requested in any sequence consistent with f. In the Average-Model, the
exact upper bound on marking algorithms is actually a little smaller than that shown in the
table. Similarly, the fault rate of LED in the Average-Model is slightly larger than that shown
in the table.

In the Max-Model, LRU is optimal. FIFO is not quite optimal; the lower bound on the
fault rate of FIFO is a little larger than the optimal fault rate for most concave* functions.
The upper bound on the fault rate of FIFO (which is almost equal to the lower bound) is
equal to the fault rate of the worst possible marking algorithm.

In the Average-Model, both FIFO and LRU are optimal. A worst possible marking algo-
rithm is about a factor of % from being optimal. As in the Max-Model, the fault rate of LFD
depends on the total number M of pages that may be requested. If M is approximately k,
LFD has a fault rate close to 0, as expected. If M is large compared to k, the fault rate is close

to f(kkj'll). Thus, at first, it might seem that for M > k, the fault rate of LFD is larger than

that of LRU and FIFO, since {41 > JEED-L i p(k 4 1) > k + 1. However, for M > k,
the function giving the lower bound for LFD has f(k + 1) ~ k + 1.

Since we consider worst case fault rate, the fault rates predicted by the Max-Model as well
as those predicted by the Average-Model are higher than those observed in practice. However,
in our experiments, the gap was considerably smaller than the gap between the “theoretical”
competitive ratio and the “empirical” competitive ratio.

Our experiments suggest that fault rates predicted by the Max-Model are closer to reality
than those predicted by the Average-Model (see Section 4.6). Furthermore, the Max-Model
distinguishes LRU and FIFO. On the other hand, only the Average-Model distinguishes FIFO
from the class of marking algorithms — in the Max-Model, the fault rate of FIFO cannot be
distinguished from primitive algorithms like FWF.
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4.4 The Max-Model

In this section we study the Max-Model. Given a concave* function f, f(n) is an upper bound
on the maximum number of distinct pages encountered in any n consecutive requests of an
input sequence.

The proofs of the results of the Max-Model are all rather simple. The upper bound proofs
for the on-line algorithms are similar to the corresponding proofs in competitive analysis. The
idea (for LFD too) is to divide the input sequences into phases with a given number of faults
or a given number of distinct pages and prove a lower bound on the length of a phase.

The sequences of all lower bound proofs for the on-line algorithms contain exactly &k + 1
distinct pages. All lower bound sequences are constructed in phases, each consisting of blocks
of non-decreasing lengths. For all algorithms but FIFO, each block consists of requests to
only one page. Since we are dealing with deterministic algorithms, we can choose the page of
a block to be the one page that is not in cache at the end of the previous phase.

We will assume that f(2) = 2, because if any window of size 2 has requests to less than 2
distinct pages, then the whole sequence has requests to only one page.

In each of the lower bound proofs and in the upper bound proof for LFD, we will need the
following simple proposition (Proposition 1 in [4]).

Proposition 4.5 For any concave* function f, f~' is a strictly increasing function satisfying
that, for all2 <m < M —1,

TN m+1) = f7Hm) > f7H(m) — [ (m 1)

This is where we need that f is surjective on all integers between 1 and M. Consider for
instance the linear function f(n) = % + 2n. For this function, f~!(1) = 1, f~!(2) = 3, and

f713) = 4. Thus, f7'3) - f~12) < f~1(2) - F71(1).

4.4.1 A Lower Bound for Deterministic Algorithms

To prove the general lower bound of %
algorithms, we construct an input sequence containing requests to k + 1 distinct pages pq,
P2,. .., Pkr1- Lhe sequence is constructed in phases each consisting of £ — 1 blocks. The ith
block of a phase consists of f~1(i 4+ 2) — f~'(i + 1) requests to the page that was not in cache
at the end of the previous block. The definition of the block lengths implies that the first ¢

blocks of a phase have a total length of

on the fault rate of deterministic paging

S+ -+ ) =0+ - @) =+ 2) -2
j=1

In particular, it implies that the length of a phase is f~!(k+1) — 2. Since the algorithm faults
on the first request of each block, this gives the claimed fault rate.

To complete the proof, we must show that the constructed sequence is consistent with f.
Thus, for any number n, 1 < n < k+ 1, we must show that any window containing n distinct
pages has a length of at least f~'(n). For 1 < n < 2, any window with n distinct pages
has length at least f~'(n). By Proposition 4.5, the block length is non-decreasing within a
phase. Thus, to find a shortest possible window with n distinct pages, 3 < n < k+ 1, we
should search at the beginning of phase. More specifically, we consider the first n — 2 blocks
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of a phase P, the first request of the (n — 1)st block of P and the last request before P. This
subsequence contains at most n distinct pages, and since the first n — 2 blocks of a phase have
a total length of f~!(n) — 2, the subsequence has a length of f~!(n). Note that if n = k 41,
the first n — 1 blocks of P will constitute all of P.

4.4.2 LRU is Optimal

To prove that LRU is optimal, we partition any input sequence o consistent with f into phases,
such that each phase contains exactly k—1 faults, and each phase starts with a fault. Consider
an arbitrary phase P. We argue that the subsequence of o starting at the last request before
P and ending at the first request after P (including that request) contains k+ 1 distinct pages.
This implies that P has a length of at least f~'(k + 1) — 2, which gives the upper bound.

Let p be the page referenced by the last request before P. Phase P and the first request
after P include k page faults. If these page faults are on distinct pages different from p, we
are done. If not, then

e one of the k faults is on p, or
e two of the k faults are on the same page.

Note that p is in cache at the beginning of the phase. Thus, if one of the k faults is on p, p is
evicted at some point within P. At that point, p is the least recently used page in the cache,
which means that k pages different from p are requested within the phase. If the window
contains two faults on one page, the same argument applies.

4.4.3 FIFO is Not Quite Optimal

In the proof of the upper bound for LRU, we used the fact that between any request to a page
p and a fault on p there are requests to at least k other pages. This is not necessarily the
case for FIFO. However, between any pair of faults on a page p, there are faults on at least k
other pages. Therefore, when we partition the input sequence into phases, we include k faults
in each phase instead of only £ — 1. As for LRU, each phase starts with a fault. Thus, any
window containing a whole phase and the first request of the next phase contains k + 1 faults
on k + 1 distinct pages. Hence, a phase has a length of at least f~'(k 4+ 1) — 1, which gives
an upper bound on the fault rate of

k

To prove an almost matching lower bound, we use a sequence constructed of blocks, phases,
and super phases. The sequence contains requests to k + 1 distinct pages pg, p1,-..,pr. Each
block consists of a number of requests to pg followed by one request to another page. The
pages p;, i # 0, are requested in cyclic order. Each phase consists of & — 1 blocks.

Assume first that, f1(4) — £~ 1(3) > £ 1(3) — f%(2). In this case, the length of the first
block of a phase is f~1(3) — f~1(2) + 1 = f~1(3) — 1, and for 2 < i < k, the length of the ith
block of a phase is f (i +2) — f'(i + 1). A super phase consists of k& phases. For k = 5, a
super phase might look as illustrated in Figure 4.4.

FIFO faults on each request to a page p; # po, and each time all k pages p;, 1 <1 < k, have
been requested, the next request to pg is a fault. This gives a total of (k+1)(k —1) = k> — 1
faults per super phase.



30 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE

‘po pl‘po pQ‘po Po ps‘po Po Po p4‘

‘po p5‘p0 pl‘po Po pQ‘po Po Po p3‘

o P1|Po P5|Po Po P1 Po Po Po P2

o p3|Po Pa|Po Po Ps|Po Po po p1

‘po pQ‘po p3‘p0 Po p4‘p0 Po Po p5‘

Figure 4.4: An example super phase, k = 5.

For 2 < i <k — 1, the first 7 blocks of a phase have a total length of

IO -1+> (' G+ -G +) = @) -1+ +2) - 73
j=2
= fi+2) -1

Thus, the length of a phase is f ' (k+1)—1, and the length of a super phase is k(f~'(k+1)—1).
This gives a fault rate of

1
k2 —1 k— ¢

E(f~'(k+1)—-1) flk+1)-1

To prove that this is a valid lower bound on the fault rate of FIFO, we must show that
the constructed sequence is consistent with f. Since we assume that f—'(4) — f~1(3) >
f71(3) — f~1(2), the second block of a phase is at least as long as the first block of a phase.
Thus, by Proposition 4.5, the block lengths are non-decreasing within a phase. Therefore, a
shortest possible window containing n distinct pages, 3 < n < k + 1, can be found by taking
the first n — 2 blocks of a phase and the last request of the previous phase. Such a window
has a length of at least f~'(n) — 1+ 1= f~!(n).
This proves that, if f=1(4) — f71(3) > f~1(3) — f~1(2), the fault rate of FIFO is at least
%. This fault rate is larger than that of LRU, if
k— 1 N k-1
Y k+1)—-1" f~Yk+1)—2"

which is equivalent to f~!(k+1) > k+2. Roughly speaking, this will be the case for sequences
that exhibit locality of reference within windows of length at least k& + 3.

For completeness, consider also the case f~1(4) — f1(3) = £ 1(3) — £ (2). In this case,
the sequence just described is not consistent with f. Let s = min{i > 4 | f~'(i+1)— f~'(i) >
frE) — f716 — 1)} For 1 < i < min{s — 2,k — 1}, we let the ith block of a phase have
length f~'(i +2) — f~'(i + 1) + 1. For min{s — 2,k — 1} +1 < i < k— 1, we let the
ith block have length f~!(i +2) — f~'(i + 1) as before. This results in a phase length of
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f Y E+1)—1+min{s -3,k -2} = f Y(k+ 1)+ min{s — 4,k — 3} and a fault rate of
1
k—%
7Y k+1)+min{s — 4,k -3} ~
Assume that s < k. Then, the fault rate of FIFO is larger than that of LRU, if

k-1 N k—1
fUE+1)+s—4 7 fH(k+1) -2

This is equivalent to f1(k+1) > (s —=2)k+ 2. If s > k+ 1 and f(3) = 3, then f(k+1) =
FR+F,(f+1) = f() =2+ X5, 1 =k +1, and the fault rate of any algorithm with
respect to fis 1. If s > k41 and f!(3) > 3, then the fault rate of FIFO is larger than that
of LRU, if

k— 1 k-1
> )
Y e+1)+k-3" fl(k+1)-2
which is equivalent to f~!'(k + 1) > k% — k + 2. For large values of k, even this amount of
locality of reference does not seem unrealistic.

4.4.4 Marking Algorithms

To prove an upper bound on the fault rate of any marking algorithm, we partition the input
sequence into phases corresponding to the marking phases. In each phase, exactly k distinct
pages are requested, and each page causes at most one fault. When all pages in the cache are
marked, a new phase starts when a page not in cache is requested. Thus, the first page of a
phase is a page that was not requested in the previous phase. We conclude that a phase has
a length of at least f !(k + 1) — 1. Since each phase contains at most k faults, the fault rate
is at most

k
Y k+1) -1

To see that the upper bound is best possible, consider the following class of marking
algorithms. On the first fault within a phase, the page that was requested last in the previous
phase is evicted. Clearly, this class contains FWF.

The lower bound sequence contains k distinct pages and is constructed in phases, each
consisting of k blocks. The ith block of a phase consists of f~'(i + 1) — f (i) requests to
the page that was not in cache at the end of the previous block. Thus, the algorithm faults &
times per phase, and the length of a phase is Zle(ffl(i + 1) —f @) =f Y k+1) -1,

To see that the sequence is consistent with f, note that the page requested in the second
block of a phase is the page that was requested in the last block of the previous phase.
Furthermore, by Proposition 4.5, the block lengths are non-decreasing within a phase. Thus,
a shortest possible window containing n distinct pages can be found taking the first n — 1
blocks of a phase (the first block contains only one page) and the first request of the nth block
of the phase (the first block of the following phase, if n = k + 1). This shows that the length
of a window containing requests to n distinct pages is at least

n—1

SN+ —fHE) +1=(f ) =) +1=f(n),

=1

which proves the consistency with f.
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4.4.5 LFD

To prove an upper bound on the fault rate of LFD, we partition any input sequence into
phases, such that each phase contains requests to exactly k distinct pages. For each phase i,
let m; be the number of new pages, i.e., pages that were not requested in phase 7 — 1. Consider
the off-line algorithm that evicts only pages that are not requested in the next phase. This
is possible, since the cache can hold k£ pages. This algorithm has at most m; faults in phase
1, which gives an upper bound on the average number of faults per phase of m = % oy mi,
where n denotes the number of phases. Since LFD has the best possible fault rate, this is an
upper bound on the average number of faults of LFD.

Any two consecutive phases i — 1 and i have a length of at least f ' (k+m;). This gives a
lower bound on the length of the sequence of approximately % S 7Nk + my), which is at
least gn - fL([L 3", (k +m;)]) (by Proposition 2 in the paper). Thus, the average phase
length is at least £~ (|2 Y% ,(k 4+ m;)]). This gives an upper bound on the fault rate of

n

a PR R R (s 2
IR (ES SRS ) B AR 2klf$§@{f1<k+m>}'

We now prove a lower bound that is essentially a factor of two away from the upper bound
just proven. Choose an m € N such that W is maximized, and let N = k+m. We
construct a sequence containing N distinct pages in phases consisting of N — 1 blocks each.
Each block contains requests to only one page, and the N pages are requested in a cyclic order.
The page requested in the last block of a phase P; is not requested in the following phase
Pj 4. Since this page is in the cache at the end of P;, at most k£ — 1 of the pages requested in
Pjy1 are in cache at the end of P;. Thus, LFD has at least N —1 — (k — 1) = N — k faults
in each phase. The ith block of a phase has a length of f~'(i +2) — f~'(i + 1). Thus, the
length of a phaseis f '(N +1)—1= f '(k+m+1) — 1. The argument that the sequence is
consistent with f is analogous to that of the proof of the general lower bound for deterministic
on-line algorithms. This gives a lower bound of

m
men {f—l(k+m+1) —1}'
k4+m<M

4.5 The Average-Model

The proofs of the results of the Average-Model tend to be more complicated than those of the
Max-Model. Only the upper bound for LRU is extremely simple to prove.

All bounds on the fault rates of the Average Model are tight in some sense. The general
lower bound for deterministic algorithms matches the upper bound on the fault rate of LRU
and FIFO with respect to any concave® function. For LFD, there exists a concave® function f
such that the fault rate of LFD with respect to this f matches the upper bound on the fault
rate of LFD. As to the class of marking algorithms, there is a marking algorithm M and a
concave® function f such that the fault rate of M with respect to f matches the general upper
bound for marking algorithms.

We need some additional notation. For any sequence o of page requests, o[i] denotes the
ith request r in o as well as the page requested by r, 1 <i < |o|. For 1 <i < |o| —£+1, let
o¢[i] be the subsequence (window) (of[i],o[i + 1],...,0[i + £ — 1]). Let Ny(i) be the number
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Figure 4.5: A(¢), an upper bound on Av({).

of distinct pages in oy[i], and let N, = ZQ;EH Ny(i). Let Av(#) be the average number of

distinct pages in windows of length £, i.e., Av(¢) = ‘a‘iviéﬂ i

A sequence o consistent with a given concave* function f has Av(¢) < f(¢), 1 < £ <|o|.

4.5.1 A Lower Bound for Deterministic Algorithms

To prove the general lower bound of w, we construct an input sequence consisting of
requests to k4 1 distinct pages p1,p2,...,prr1- The sequence consists of two parts. For some

large integer m, the first part consists of n(k + 1) requests that will all make the algorithm
fault. To ensure that the sequence is consistent with f, a second part is added. For some
integer m dependent on n and f, this part consists of m requests to only one page.

Since the algorithm faults on each of the n(k + 1) first requests, the fault rate will be at
least % For any m such that o is consistent with f, this fraction yields a valid lower
bound on the fault rate of any deterministic algorithm. To find a such m, we should calculate
the average function for the sequence, or at least an upper bound on the average function.

Among all sequences of length n(k + 1) containing k + 1 distinct pages, the sequence o =
(p1,p2,- .-, Prr1)" has the highest possible average number of distinct pages, for each possible
window length. Thus, the sequence we will investigate is o = (p1,p2, ..., Prr1)" (Prr1)™. The
average function Av for this sequence is an upper bound on the average function for any
sequence constructed as described.

We will prove that the function A defined below is an upper bound on Av. The function
consists of three linear parts (see Figure 4.5):

m
1 1- -1 1<¢< 1
+( n(k—l—l)—l—m—l)(g ) <t<k+
AO=Vk+1- b i 0= (k+1)), k+1<l<k 1
k+1, k+m41<0<]|of

Clearly, Av(1) = 1. Thus, to calculate an upper bound on Av(¢) for 1 < ¢ < |o|, it suffices to
calculate an upper bound on Av(£ + 1) — Av(¢) for 1 </ <|o| — 1.

We first consider small £. Assume 1 < £ < k. The sequence contains |o| — £ + 1 windows
of length ¢. The first n(k + 1) — £+ 1 of these windows contain ¢ distinct pages each, the last
m — £+ 1 windows contain only one page each, and for each 7, 2 <1 < £ — 1, there is exactly
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n(k+1) m
pr - : . : : - Dk Pk+1Pk4+1 - . : - Pk
-
~ A —
nk+1)—¢-1 /+1
Figure 4.6: ¢ < k: The windows oy[1],...,0¢[n(k + 1) — ¢] will each contain one new page, when / is
incremented.
n(k+1) m
pr - : : - pr - Pk+1Pk+1 - . . - DPk+1
(n—1)(k+1) k+1

Figure 4.7: k4+1 < £ < k+m+ 1: The windows o¢[1],...,0¢[(n — 1)(k 4+ 1) + 1] contain k + 1 pages
each. The windows o¢[n(k + 1)],...,0/n(k + 1) — £ + 1] contain one page each. For 2 < i < k, the
window o¢[n(k + 1) — i + 1] contains i pages.

one window containing exactly ¢ distinct pages. When extending the window length from ¢ to
241, the first n(k 4+ 1) — £ windows will contain one additional page. The number of distinct
pages in each of the rest of the windows will remain unchanged (see Figure 4.6). Thus, if n
is much larger than k, Av(¢ + 1) — Av(¢) is close to %
exact upper bound on Av(£+ 1) — Av(¥).

For 1 </ <k, Av(£ + 1) — Av(?¢) is a slightly decreasing function of ¢, since in each step,
one window less has its number of distinct pages increased. Thus, for 1 </ < k,

. However, we will calculate an

(nk+1)-1)-24+m-1
n(k+1)+m—1

Av(+1) — Av(¢) < Av(2) — Av(1) =
1_n(k+1)+m—1'

1

For k4+1 < ¢ < k+ m, Av(¢) is still an increasing function. This can be seen in the
following way. When /£ is incremented, the number of windows with only one page decreases
by one, whereas the number of windows with & + 1 distinct pages stays the same (and for
each i, 2 < ¢ < k, the number of windows with exactly i pages remains one). See Figure 4.7.
(When the window length reaches & + 1 + m, all windows have k 4 1 distinct pages.)

As / increases, the number of windows of length ¢ decreases. Hence, the drop in the
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number of windows with requests to only one page means more and more. In other words,
between k + 1 and k +m + 1, Av(¢) grows faster and faster. Thus, the straight line between
(k+1L,k+1- W) and (k+m + 1,k + 1) is an upper bound on Av in this interval.
This line has a slope of

k
k+1— <k+1_ n(k-l—l)?—m—l) . k
E+m+1—(k+1) Conk+ 1) 4+m—1"

What remains to be done is to determine m such that the sequence o is consistent with
a given concave® function f. Since A is an upper bound on Av, o is consistent with f, if
A(l) < f(#), for all £, 1 < £ < |o|. Since f is concave*, it is sufficient to prove

A1) < f(1)
2. A(k+1) < f(k+1)
3. Ak+m+1)< f(k+m+1).

1. follows immediately from A(1) =1 = f(1).
2. is equivalent to

E+1— < f(k+1),
which in turn is equivalent to

Jktl-fk+1)

kE+1)—1).
m> gy o1 k=)
Thus, we let
E+1—f(k+1)
= k+1).
frrn—1 "k
+1)-1
If f(k+ 1) =k + 1, any deterministic paging algorithm has a fault rate of 1 = UG k)

If flk+1)<k+1,m grows linearly with m. Thus, there exists an ng € N such that, for
allm >ng, k+m+1> f Y(k+1). Since A(k—l—m—l—l) = k + 1, this shows that n can be
chosen such that 3. is fulfilled.

We obtain a lower bound on the fault rate of any deterministic paging algorithm of

nk+1) 1 _ flE+1) 1
B k+1—f(k+1) :
n(k+1)+m 1+f(k+71()71) k

4.5.2 Upper Bounds

So far we have focused on windows, e.g., counting the number of distinct pages within windows
of a given length or windows containing & faults. In the upper bound proofs of the Average-
Model we will instead focus on pages. Assume that the input sequence contains requests to
n distinct pages p1,pa,...,pn. For 1 <1 < mn, let wy(i) be the number of windows of length /¢
containing a request to p;. Then, Ny = Y1 | wy(i). We will say that p; contributes wy(i) to
Np.



36 CHAPTER 4. PAGING WITH LOCALITY OF REFERENCE
1 i+ k
o || P70 7

]

Figure 4.8: For each position j such that N; ,(j) < Ngy1(j), the page requested just after the
window oy, [j] is different from each page requested inside the window.

4.5.3 LRU and FIFO are Optimal

In the Average Model, both LRU and FIFO are optimal. For LRU, this can be seen in the
following way. Whenever a page p is requested, the next k requests cannot incur a fault on
p. Thus, each fault on p is contained in k + 1 windows of length k£ + 1 containing no other
faults on p. Furthermore, each request to p that does not incur a fault is the first request of
a window of length k 4 1 containing no fault on p. This shows that (except for the first and
last k requests) each fault contributes k 4+ 1 to Nj,; and each request that does not incur a
fault contributes at least 1 to Nii. This gives approximately

Nj+1 > (k+1)-LRU(0) + (Jo| = LRU(0)) = k-LRU(0) + o],
and

k-LRU(o) + |o]|

o]

Av(k+1) > = k- Fru(o) + 1.

Since o is consistent with f,
f(k + 1) > AV(k + 1) > k- FLRU(U) + 1.

Solving for the fault rate, we obtain an upper on the fault rate of LRU matching the general
lower bound.

When it comes to FIFO, we cannot say that there are at least k requests between each
pair of requests to a given page p. We can only say that, between two faults on p, there are
at least k requests. Let the term free request denote a request that is not a fault. We must
find an alternative way to prove that free requests contribute to Ny 1.

Assume that we remove all free requests from the sequence and then we put them back
into the sequence one by one. We show that for each request put back into the sequence,
Ni1 increases by at least one. This is illustrated in Figure 4.8: A request to a page p is
inserted just before the (74 k)th request of the sequence o, for some 7. The resulting sequence
is denoted o”.

We study windows of length k+1in ¢ and o'. For each j <i—1, oy 41[j] = 0, [5] and for

each j > i+k, og41[j] = 03,1 [7+1], so we need only consider the windows o 1[i], ..., opq1[i+
k—1] and o} [i],..., 05 [i + k]. To prove Nj_ ;> Ny + 1, it suffices to prove

i+k i+k—1

ZN],C-i-l(j) > 1+ Z Ne41(7) -

Let i < j <i+k— 1. The window o} ,[j] contains the requests of o%[j] and the new
request to p. Therefore, Ni11(j) and Ny, (j) can differ by at most one. Let n be the number
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of positions j for which Nyi1(j) > N, ,(j). We just need that Ny (i +k) > n + 1. If
Nis1(j) > Niyq(5), the last page ofj + k] requested in oyy1[j] contributes to Nj1(j) and
p does not contribute to Ny ,(j). This means that ofj + k] is different from each page in
oklj] and from p. Assume that the windows shown in Figure 4.8 are those windows of o
containing fewer distinct pages than the corresponding windows in ¢. For each such window,
the request immediately after the window is different from each request inside the window.
Thus, the shaded requests are all to distinct pages different from p. This means that the
window o}, [i + k] contains at least n 4 1 distinct pages, namely p and those shaded in the
figure. This completes the proof that each free request contributes at least one to Ng1.

4.5.4 The Worst Marking Algorithm

We already know that there exists at least one optimal marking algorithm, namely LRU.
There exists, however, a marking algorithm M and a concave® function f such that the fault
rate of M with respect to f is approximately % that of LRU. More precisely, the fault rate is

4k @ k even
Foy — 3k+2 kK’
o 4k f(k) k odd
3k+2—-1/k k '

As we shall see, this is the worst possible fault rate of any marking algorithm with respect to
any concave® function.

Lower bound

Consider the sequence UPDOWN} = (p1,D2,. .., Ph—1,PhsPh—1,---,P2)", hyn € N. Such a
sequence will also be used for proving the lower bound on the fault rate of LFD. A subse-
quence (D1,P2, -+, Ph_15PhsPh_1,---,D2) is called a phase. When n goes to infinity the average
number of distinct pages in windows of length ¢ goes to

(£—-1)°
N ) </ < _
L i =1) 1 <4< 2h—3, £odd,
Avio(l) = ’ (-1 -1
——— 2</¢<2nh—-3,¢
=1y </< 3, ¢ even,
h, > 2h—2.

For the windows starting in one of the first n — 1 phases of UPDOWN}, the average number
of distinct pages in a window of length ¢ is Avy°(¢). The sum of the number of distinct pages
in all windows of length ¢ contained in the last UPDOWN} phase is at most 2(h — 1)h. Thus,

2(h —1)(n — 1)Av°(£) + 2(h — 1)k
Av(l) < n-2(h—1};—€+1
- 2(h = 1)(n = DAVR(O) +2(h — Dh
= 2(h — 1)(n — 1)
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Figure 4.9: A phase containing k¥ = 10 requests and the first and last window associated with the
phase.

Let ¢ = % Then, it is clear that the function

1, (=1
flO) = SAVR(0) +¢e, 2<L<2h—3,
h, 0> 2h—2

is an upper bound on Av(¥), but this function is not concave*, since f(2)—f(1) =24+e—1 > 1.
Therefore, we use the tighter upper bound
o) = min{/, Avi°(¢) +¢e}, 1<¢<2h-3,
| A, 0> 2h—2.
Consider now the marking algorithm M that uses the LIFO rule on the unmarked pages.

That is, when a page must be evicted, M chooses the unmarked page that has been in the
cache for the shortest time. M will fault on each request of UPDOWN} ;. Thus,

_ 1= . (k) _ k . F(k)
! = f(k) k even.

k41 ’
3k+2+45 Kk
Note that the proof of the lower bound is also valid for FWF.

Upper Bound

The lower bound is best possible as can be seen by the following. Fach phase contains requests
to exactly k distinct pages. We will count how many windows of length k each of these pages
is contained in.

Assume first that & is even. Consider a phase P containing the requests o[i], ..., o[j]. To
ensure that nothing is counted twice, we will consider only the windows op[i — % +1],..., 005 —
% + 1]. Figure 4.9 illustrates which windows are considered; the first and the last window are
shown. Note that the second and the last request of the phase are contained in % + 1 of the
windows considered. The third and the second to last request of the phase are contained in
% + 2 of the windows considered, and so on. The (% + 1)st request is contained in & of the
pages considered. The first page p requested in the phase is not requested in the previous
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Figure 4.10: A phase containing k = 9 requests and the first and last window associated with the
phase.

phase, so this page is contained in k£ windows containing no other requests to p. Thus, the
total contribution from a phase is at least

k/2

Eo\ 3., 1

This is at least %k + % per fault, since each phase contains at most £ faults. Thus, Niy; >
(3k + 3)M(o), and

f(k) > Av(k) >

(k+ DMlo) _ (3k+3) Pato)
4

o] 2

Hence,

f (k) Ak (k)
Fiu < — .
MESE 4yl T3k +2 &

Assume now that k is odd (see Figure 4.10). The first request contributes to k& windows of
length k. The second and the second to last request contribute to % + 2 each. The %th

request contributes to k£ windows. The last request contributes to % windows. Thus, each
phase contributes
k=1
E+1 k-1 3, 1 1
2 —_— — ti=- —k— .
kit = +; s i= gk gk -

Doing the same calculations as in the case of k even, we arrive at

Ak f(k)

Fu <
M= Bkt2-1 k

4.5.5 LFD

In this section we prove an upper bound on the fault rate of LED of approximately % %

and give a concave® function with respect to which the fault rate of LFD exactly matches the
upper bound.

Upper Bound

Consider any request sequence o consistent with some concave* function f. Again we will
analyze the contribution from faults and free requests to Ng, . Like in the case of LRU and
FIFO, no page generates more than one fault within a window of length k+ 1, and hence each
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fault contributes k + 1 to Niyi. Determining the contribution from free requests is a little
more complicated, and we postpone that a little.

We partition the sequence into phases P!, P2, ..., P®. The phase P! starts with the first
request in the sequence and, for 2 < i < n, phase P’ starts with the first fault on a page that
was evicted in phase P*~!. Thus, within a phase, there is at most one fault on each page,
and the k pages that are in fast memory at the beginning of a phase do not generate a fault
within the phase. Hence, each phase contains at most M — k faults.

For 1 <i <m,let F® be ‘Fhe number of faults in phase P?, and let N,iﬂ be the contribution
to N1 from requests in P*. Let W be a lower bound on the contribution to Ny, from free
requests within one phase.

Then, .
Ny S (k+1)F1+W> (k+1)(M—k)+W
Fr = Fi - M -k '
Solving for F' yields
. M — .
F' < k Ny, and

S r )M k)W

n—2

LFD(0) = Z}F S GEDM R+ W ;Nkﬂ S I DM =R W Ve
Thus,
M —k M —k
Fuo(o) < omyar—maw YEY < opar—naw TETD

To finish the proof we must determine a lower bound W on the contribution to Ny, from
the free requests of one phase.

First observe that any phase P’ must contain free requests to at least k — 1 distinct pages.
This can be seen in the following way. Let p be the first page requested in phase P!, and let
si4+1 be the index of this request. Then p is evicted at some point during phase P’. Assume
that this happens as a result of a request with index ¢. Since p is the page to be evicted,
the k — 1 other pages p1,...,pg_1 in the cache are requested at some point between o[g] and
o[si1]. Each of these requests must be free, because otherwise P* would contain a fault on a
page that had been evicted earlier in the phase and this would contradict the definition of a
phase.

For 1 <j <k —1, let r; be the first request to p; after o[g], and let W (r;) be the number
of windows containing r;, no fault on p;, and no request to p; contained in P!, Then
W = Ef;ll W (r;) is a lower bound on the contribution to Ny, .

It is clear that the first k requests after r; are not faults on p;. Thus, when calculating
W (r;), we only need to worry about requests to p; that are to the left of r;. Let d; be the
distance between r; and the last request to p; to the left of r;, i.e., if A7 is the index of r; and
hé- is the index of the last request to p; before r;, then dj = h — hé-. W (r;) = min{k +1,d;}.

Note that hg- < ¢ < h}, and let dé- =q- hg- and d; = hj — g, see Figure 4.11. Then,
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Figure 4.11: o[h]: Last request to p; before o[g]. o[g]: Causes p to be evicted. o[h}]: First request
to p; after olq]. o[si11]: First fault on p after o[g] — phase P**! begins.

Let S be the set of requests such that d; <k + 1, and let m = |S|. Then,

k—1
W= W) > k-1-mE+1)+ Y d
j=1 r; €S
m
> B —1-mk+1)+2) j =k —1+m?—km.
j=1
This lower bound on W is minimized, when m = %, if k£ is even, and when m = %, if k is
odd. Inserting these values, we get
33 §(19—1)(1c+1), k odd,
wo> 4 4 4
— 13 5 3 1 L
Zk —]_ = Z(k—l)(k‘l‘].)—z, even,
and
AM — 4k f(k+1)
k odd
AIM—k-3 k+1 ¢
<
Fien(f) < AM — 4k flk+1)
, Kk even.

AM -k -3 -5 k+1

Lower Bound

For some n € N, consider the sequence UPDOWN'}; as defined in Section 4.5.4. This sequence
is consistent with the concave® function

i) = min{¢, Av33(¢) + 2L}, 1<¢<2M -3,
| M, ¢>2M —2.

For n sufficiently large and k& odd,

M k2 —1 M
00 o _
CAM Dkt k=Dt . M @M —k-3+e)(k+1)

4(M —1) 4(M —1) L1 T 4(M —1) ’

flk+1)
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where ¢ = 4(%:11) % Similarly, for & even and n sufficiently large,
flk+1) = k+1-— K + M
4M—-1) n-1
AM-1)(k+1) (k—=1)(k+1)+1 M
T AM -1 A1) n—1
(4M —k =3 — 5 +e)(k+1)
- 4(M — 1) '

It is easily verified that, within the first half of a phase, LED faults on the first request
and the last M — k — 1 requests. The same is true for the second half of a phase. Hence,

. M~k fk+1
FLFD(UPDOWNM) = M — 1 fEk-I—l;
(M—k AM-1) fk+1) o
)M -TAM —k—3e kAl
=\ M-k MM —1) G I

1 )
\M—]. 4M—I€—3—k—+1+8 k‘-l'l

( AM—k)  f(k+1)
AM —k—-3+4¢ k+1 "~
= A(M — k) Flk+1)
(4M -k —3— g +e k+1

k odd

k even.

4.6 Experiments

In this section we present some results of our experimental study in which we compared
the worst-case fault rates developed in the previous sections to the fault rates observed on
real processor traces. We analyzed memory reference traces from the New Mexico State
University Trace Base [63] that contains standard benchmarks. We selected traces from VAX
and SPARC platforms. More specifically, we chose the ATUM VAX traces and a bundle
of SPARC traces that were collected while running the SPEC92 benchmark suite. The sets
consist of a collection of 9 respectively 13 memory reference traces from single processes. The
request sequences contain both data read/write requests and instruction fetches. The SPARC
traces were truncated after 10 million references, whereas the VAX traces vary in length,
but are all about 400,000 requests. We worked with a page size of 512 bytes for the VAX
architecture and a page size of 2048 bytes for the SPARC architecture.

We first analyzed the maximum and average working set size in windows of up to 100,000
requests. Figure 4.2 in Section 4.3 presents the results for four specific traces, two VAX traces
and two SPARC traces.

In the second part of the experiments, we evaluated the fault rates of LRU, FIFO, and LFD
on the various traces and compared the values to the corresponding bounds we developed for
both the Max- and the Average-Model. We performed the comparison for cache sizes ranging
from 1 to the maximum working set size. Figure 4.12 presents the results for the VAX Pascal
and the SPARC Compress traces. The left part of the figure shows the results for LRU and
FIFO. The two lower curves represent the empirical fault rates of LRU and FIFO, while the
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Figure 4.12: Measured fault rates and upper bounds on the fault rates for FIFO, LRU and LFD. The
fast memory size k varies in the range of 1 up to the total number of distinct pages requested in the
entire sequence.

two curves in the middle show the corresponding theoretical upper bounds in the Max-Model.
The upper curve depicts the bound in the Average-Model. The right part of Figure 4.12 shows
the bounds for LED in the same relative order.

Since the fault rate as defined in 4.4 is a worst-case measure, we cannot expect that the
theoretical bounds on the fault rates match the empirical values completely. Nevertheless,
the gap is not large and considerably smaller than in the case of competitiveness. On real
world traces, the “empirical competitiveness” of LRU and FIFO is typically no larger then 4.
This was observed in [18, 103] and also shown in our experiments. On the other hand, the
competitive ratios from theory are k. Thus, the gap between the theoretical and empirical
competitiveness is k/4. In our paging model, the gaps are considerably smaller. For the
SPARC COMPRESS trace the gap is, expressed as a function linear in k, usually between
k/50 to k/30. For some of the traces we examined, the values were even below £/1000.

We also remark that, throughout our experiments, the fault rates predicted in the Max-
Model were closer to the empirical fault rates than those of the Average-Model. This corre-
sponds to some extent to the intuition we gained by working on the models. In the Average-
Model, the adversary seems to be less limited than in the Max-Model; in the Average-Model,
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the adversary can give any sequence he likes, and then pad it with a sufficient number of
requests to only one page.



Chapter 5

Edge Coloring with a Fixed Number
of Colors

In [49] we study the maximization version of edge coloring, i.e., the version where only a
limited number of colors are available, and the aim is to color as many edges as possible. This
chapter describes the results.

5.1 Algorithms

We mainly consider the class of fair algorithms, i.e., algoithms that never reject edges that
they are able to color. However, one of the results is valid for any algorithm, fair or not fair,
deterministic or randomized. To denote an arbitrary algorithm for edge coloring with a fixed
number of colors, we use the term on-line®. An algorithm that is fair and might be randomized
is called fair®. Similarly, we let fair” and on-line” denote deterministic algorithms that are
fair, might not be fair, respectively. We let off-line denote an optimal off-line algorithm.

We also consider two specific fair algorithms, First-Fit and Next-Fit. First-Fit always uses
the lowest numbered color possible. Next-Fit uses the colors in a cyclic order. It colors the
first edge with the color 1. Whenever it uses a color ¢, it will color the next edge e with the
first color in the sequence (¢ + 1,...,k,1,...,¢ — 1) not used on edges adjacent to e, if any.
Intuitively, the Next-Fit strategy is a poor strategy, and as can be seen in the next section,
Next-Fit has the worst possible competitive ratio among fair algorithms. Thus, we include it
only to prove that the impossibility results for fair algorithms are tight. The First-Fit strategy
seems more reasonable, since it tries to save the higher numbered colors until it really needs
them. Unfortunately, it turns out that First-Fit is not much better than Next-Fit.

5.2 Results

We have analyzed the competitive ratio of the algorithms and classes of algorithms defined in
the previous section. The results are shown in Table 5.1. For general graphs the results are
rather pessimistic. No algorithm can be more than %—competitive and no fair deterministic
algorithm can be more than %—competitive. There is not much room for variation among
fair deterministic algorithms, since any fair algorithm is more than (2v/3 — 3)-competitive
(2v/3 — 3 ~ 0.4641). Next-Fit has the worst possible competitive ratio. For most values of &

it is close to 2v/3 — 3, and there are values of k for which it gets arbitrarily close to 2v/3 — 3.
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Comp. Ratio ||~ Fair | Det. | Fair,Det. | Any | NextFit |  FirseFit |
General C>2/3-3 C’S% C’S% C=2v3-3 C’S%(\/m—l)
~ 0.4641 —05 | ~05714 | ~0.4641 ~ 0.4805
k-Colorable C’Z% C’S% %SC’S% C:% C:%L_l

Table 5.1: Competitive ratios C of the algorithms and classes of algorithms considered

Though, intuitively, First-Fit is a more reasonable algorithm than Next-Fit, we proved that
the competitive ratio of First-Fit is at most 2(v/10 — 1) ~ 0.4805, and hence it cannot be
much better than Next-Fit.

In the special case where the input graphs are all k-colorable, there might be more variation.
The best upper bound we could prove is % for deterministic algorithms. The lower bound of
% for fair algorithms on k-colorable graphs is only a little higher than the lower bound in the
general case. Again, Next-Fit is used to prove that the bound is tight. For small values of k,
First-Fit is significantly better than Next-Fit, but the difference tends to zero as k increases.

Analyzing the special case of k-colorable graphs is analogous to analyzing the special case
for the seat reservation problem, where all request sequences can be accommodated off-line.
The difference between accommodating sequences and general sequences is, however, far from
as dramatic as for the seat reservation problem. The lower bound for fair algorithms is only
raised a little. For small values of k, the competitive ratio of First-Fit is significantly better
than that of Next-Fit, for k = 2, their respective ratios are % and %, but for large k, the
difference is insignificant.

However, analyzing k-colorable graphs has the extra advantage that the analysis of k-
colorable graphs in some cases can serve as a stepping stone to the more general analysis with
no restrictions on the graphs. This was in particular the case for the lower bounds for fair
algorithms.

5.3 Graphs

As described in the previous section, we study the general case as well as the special case
where all input graphs are known to be k-colorable. The performance guarantees proven are
valid even if we allow multigraphs, i.e., graphs that may have parallel edges, but no loops. The
adversary graphs used for proving impossibility results are all simple graphs. Furthermore,
the adversary graphs are all bipartite except one that could easily be changed to a bipartite
graph. Thus, the impossibility results are all valid, even if the input graphs are known to be
simple, bipartite graphs.

5.4 Basics

A k-coloring is a coloring using at most k colors. We label the colors 1,2,...,k. For any
i,j € {1,2,...,k}, we let C;; denote the subset {i,i+1,...,} of the k colors.

A bipartite graph is a graph whose vertex set can be partitioned in two sets X and Y,
such that no two vertices within the same set are adjacent. In a complete bipartite graph each
vertex in X is connected to each vertex in Y.
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The degree of a vertex x is the number of edges incident to . The colored degree of x is
the number of edges incident to x colored by the on-line algorithm under consideration.

An r-regular graph is a graph in which all vertices have degree r.

By Konig’s Theorem [100, p. 209], any bipartite graph with maximum degree d is d-
colorable, i.e., it can be colored using at most d colors.

The following claim is useful when constructing adversary graphs for Next-Fit.

Claim 5.1 Any coloring in which each color is used on exactly n or n + 1 edges, for some
n €N, can be produced by Next-Fit, for some ordering of the input sequence. The colors just
need to be permuted so that the colors used on n + 1 edges are the lowest numbered colors.

5.5 k-Colorable Graphs

We start out investigating the special case, where all input graphs are k-colorable. Proving the
performance guarantee for fair algorithms on k-colorable graphs is rather simple and serves
as a stepping stone to proving the corresponding guarantee for general graphs. The adversary
graphs proving that Next-Fit is worst possible, on k-colorable graphs and in the general case,
have the same overall structure. However, in the case of k-colorable graphs, the graphs are
constructed such that the vertex degrees are as similar as possible. In the general case, the
vertex degrees are determined in a more complicated way.

5.5.1 A Performance Guarantee for Fair Algorithms

For any vertex x, let d.(x) denote the number of edges incident to = that have been colored by
fair®. Similarly, let d,(z) denote the number of edges incident to x that have not been colored
by fairf. We will take the on-line algorithm’s perspective and call these edges uncolored edges.
To prove that any fair algorithm colors at least half of the edges of any k-colorable graph, we
need only two simple observations.

(1) For any vertex x, dc(z) + dy(x) < k, since off-line colors all edges incident to x using at
most £ colors.

(2) For any uncolored edge (z,y), dc(z) +d.(y) > k, since the algorithm is fair and the edge
was not colored.

Assume that one unit of some value is put on each edge colored by fair’. If the total value
can be redistributed to the uncolored edges such that each uncolored edge receives at least
one unit, there are at least as many colored as uncolored edges. The redistribution is done in
the following way. Each vertex receives half a unit from each colored edge incident to it. In
this way, each vertex x receives %dc(x). After that, each vertex splits its value equally among
the uncolored edges incident to it. Each uncolored edge (z,y) receives the value

) (ZEZ; " 38) > : <k ffzx R i%))
k—d gx)>

,\
VN

)

(

1 de(z) .
2 <k — de(z) + de(x
1.
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Ys X1 Yy X2 Ys

Figure 5.1: The graph Gnr when k& = 5. Note that the two leftmost vertices are the same as the two
rightmost vertices.

The last inequality holds, since = + % > 2 for any x > 0.

Note that the fairness property is only used to conclude (2). Thus, the performance
guarantee is valid for the larger class of algorithms that never reject an edge e, unless it has
already colored k edges adjacent to e.

5.5.2 Next-Fit is Worst Possible

When £ is even, the competitive ratio of Next-Fit exactly matches the lower bound for fair
algorithms. When £ is odd, it almost matches the lower bound. This is proven by the following
adversary strategy.

The adversary starts out giving the edges of two complete bipartite graphs, G; = (X; U
Y1, Er) with | X1 = |Y1| = [£], and Gy = (Xo UYs, B») with |Xo| = |Yo| = [£].

Consider a coloring where G is colored with Cf /) and Gz is colored with Crg o141
Each color in C 5/9] is represented at each vertex in G7 and each color in Cpg /o141 18
represented at each vertex in G5. By Claim 5.1, this coloring can be obtained by Next-Fit.

Next, each vertex in Y is connected to each vertex in Xy and each vertex in Y5 is connected
to each vertex in X, thus creating a “cycle” of complete bipartite graphs, where each bipartite
graph shares its left vertices with its left neighbor and its right vertices with its right neighbor.
The resulting graph Gnr is depicted in Figure 5.1. The new edges between G and G2 are
called Ey2. After coloring Ey with Cy /9] and Ey with C, /9141 %, Next-Fit cannot color any
of the edges in E1s.

The whole graph is k-regular and bipartite (X7 U Xo forming one set and Y; U Y5 forming
the other). Thus, by Ko6nig’s Theorem, it can be k-colored. Hence, the competitive ratio of
Next-Fit on k-colorable graphs is at most

[Er|+ 1Bl [51° + 15)°
[Er|+ 1 Bol +Eral [512+ (512 +2[5115)

which reduces to % when £ is even, and to % + # when k£ is odd.

5.5.3 First-Fit is a Little Better

For any k-colorable graph, let E be the edge set. For any ¢ € C, let E, denote the set of
edges that First-Fit colors with the color ¢, and let Ey . = U{_; E;. We will prove by induction
on ¢ that, for all ¢ € C 4, |E1,c| > s5575|F|. Letting ¢ = k, this proves the lower bound on the
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competitive ratio of First-Fit on k-colorable graphs. We only need the following three simple
observations.

(1) By the definition of First-Fit, any edge in E. is adjacent to at least one edge in Ej,
1=1,...,c— 1.

(2) By the definition of First-Fit, any uncolored edge is adjacent to at least one edge of each
color.

(3) Since the graph is k-colorable, each vertex has degree at most k. Thus, any edge is
adjacent to at most 2(k — 1) other edges.

For the base case, consider ¢ = 1. By (1) and (2), each edge in F'\ E; is adjacent to at least
one edge in Ey. Thus, by (3), |E| < 2(k —1)|Ey |+ |E;|, which is equivalent to |Ey| > = |E|.
For the induction step, let ¢ € Cy ;. By (1), each edge in E. is adjacent to at least ¢ — 1
edges in Fy ._1. Thus, each edge in F, is adjacent to at most 2(k —1) — (¢ —1) =2k —c—1
edges in E'\ E} .. On the other hand, by (1) and (2), each edge in E'\ E . is adjacent to at least

one edge in E.. Therefore, |E\ By _1| < (2k — ¢ — 1)|Ee| + |Ec|, or |Ee| > 57— |E \ Bie—1].
Thus,
|E|—|E10_1| |E'|—|—(2k—c—1)|E'16_1|
E = E — E > E _ 2 = 2
| 1,c| | 1,c 1|+| c|_| 1,c 1|+ 2% — ¢ o — ¢
|B] + (2k — ¢ — 1) 574 | E| : : .
2 % , by the induction hypothesis
—c
—1
_ Bl 5B Lol = (%_1)_(0_1)|E|+ =1 b
2% — ¢ 2% — 1 (2k — 1)(2k — c) 2% — 1
c
= E|.
2k — 1| |

To prove that the lower bound is tight, we will construct a graph for which the analysis
leading to the bound is tight, i.e., we will construct a graph with the following properties.

(1) Each edge in E. is adjacent to ezactly one edge in F;, i =1,...,¢— 1.
(2) Each uncolored edge is adjacent to ezactly one edge of each color.
(3) Each vertex has degree k. Thus, each edge is adjacent to ezactly 2(k — 1) other edges.

More precisely, we will construct a bipartite k-regular graph Grr, where each edge is adjacent
to exactly one edge of each color. Since the graph is bipartite and k-regular, it is k-colorable.

The building blocks of Ggr are [k/2] bipartite biregular graphs Gi,...,G/21. Each
graph G; has vertex partition (X;,Y;). X; contains one vertex for each subset of Cy, of size
k 4+ 1 — 1, and Y; contains one vertex for each subset of C; of size i. The subset of C
associated with a vertex x is denoted C(x).

For each vertex z € X, there are exactly k+1—i vertices y € Y; such that |C(z)NC(y)
Similarly, for each vertex y € Y;, there are exactly i vertices € X; such that |C(z)NC(y)
Each vertex x € X; is connected to the k + 1 — i vertices y € Y;, for which |C(z) N C(y)| = 1.
Thus, each vertex in X; has degree k + 1 — 4 and each vertex in Y; has degree i. Figure 5.2
shows the graphs G| and G2 when k = 4.

|=1.
=1
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Gy: Go:
{1,2}
{1} {2,3,4} {1,3}
{2} {1,3,4} {1,4}

{1,2,3,4}
{3} {1,2,4} {2,3}
{4} {1,2,3} (2,4}
X, Y; {3,4}

Xo Y,

Figure 5.2: The graphs G; and G5 when k = 4. Next to each vertex v the color set C(v) is shown.

Consider the coloring of the graphs G1,...,G[;/2) in which each edge (z,y) is colored
with the color in C'(z) N C(y). An edge (z,y) with the color ¢ is adjacent to one edge of each
color in C(z) \ {c} through the vertex z and one edge of each color in C(y) \ {c} through
the vertex y. Thus, each edge with color ¢ is adjacent to exactly one edge of each color in
Ci \ {c}. Hence, for each G;, this coloring results if First-Fit is given the edges in order of
non-decreasing number.

For each i, 1 < i < [k/2], the adversary constructs a bipartite graph G} consisting of
a number of copies of G;. Let m; be the number of copies of GG; in G%. Then, nqy = 1, and
Njt1 = %nl, for 1 <4 < [k/2]—1. For 1 <i < |k/2], the adversary also constructs a graph
G? isomorphic to G}.

Note that, for each pair of vertices y € Y; and =z € X1, |C(y)| + |C(x)| = k. For each
y €Y, there is exactly one vertex £ € X;q such that C(z) UC(y) = Cy . After giving the
edges of the graphs G, ..., Glfk/ﬂ and G%, ..., Gﬁc/%’ the adversary connects the k& graphs

in the following way. Each vertex y € Y;L is connected to k — i vertices z € X4, for which
C(y) UC(z) = Cip. Since niy1/n; = E=4 and | X,a)/1Yil = ((F) /(%) = (5)/(%) = 1, this

13 7

can be done such that each vertex in XiL_|r1 is connected to 7 vertices in Yfﬂ In this way,

each vertex in X[,... ’X%k/ﬂ and Y, ... ’Y[Ifg/2]f1 ends up having degree k. The vertices of
GR,..., GIGC/QJ are connected the same way.

Finally, each vertex in y" € Y[I;€ /9] is connected to |k/2] vertices in y" € YLP’: /2> for which
C(y¥) U C(y®) = C1 . This is done in a way such that each vertex in Yflim is connected to
exactly [k/2] vertices in Y[I;€ jo1- I k is even, this is clearly possible, since |YkL/2| = |ka>2|. If
k is odd, it is also possible, since |Y[17c/2]|/|YLPI§/2J| = 2Mk/A ka%/fJ = {ﬁg} The resulting

M k/2]

graph for £ = 4 is shown in Figure 5.3.
Each of the new edges is adjacent to exactly one edge of each color. Hence, none of these
edges are colored by First-Fit.

5.5.4 An Impossibility Result for Deterministic Algorithms

No deterministic algorithm has a competitive ratio of strictly more than % To see this,
consider the following adversary strategy. The adversary starts out giving the edges of a large
[£7-regular bipartite graph G = (X UY, E). Since the on-line algorithm is deterministic, the
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Figure 5.3: The graph Ggr when k =4

adversary knows the set of colors represented at each vertex after giving all edges of GG. Since
[k/2] (k)

on-line” uses at most k colors and each vertex has degree [%], there are at most » ;2" (;
different color sets.

For each color set C, the adversary partitions the vertices in X with color set C' in sets,
such that at most one set has less than k vertices and the rest have exactly k vertices each.
The same is done to the vertices in Y. For each color set, at most 2(k — 1) vertices are not
in a set of size k. Thus, if the number of vertices in G is much larger than 2(k — 1) times
the number of color sets, we can ignore these vertices. For each set V' of size k, the adversary
adds a set U of L%J new vertices to the graph and connects each vertex in V to each vertex
in U. See Figure 5.4. The resulting graph is called Gpet. Note that Gpey is bipartite and has
maximum degree k, and thus is k-colorable.

Let d denote the number of colors represented at each vertex in V', and recall that d < f%]
At most k — d edges incident to each vertex in U can be colored. Hence, the total colored
degree of vertices in U UV is at most kd +2- L%J (k — d), which reduces to k2, if k is even, and
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1444 %}

S

Y

Figure 5.4: A part of the graph Gper when k = 4.

to k> —k+d <k?—k+[%] = k> — Lk + 1, if k is odd. The total degree of vertices in U UV
is k2 + ngk, which reduces to %kZ, if k is even, and to %kZ - %k, if k is odd. Summing the
degrees of all vertices in a graph, we get two times the number of edges. Thus, the competitive
ratio of on-line” is at most

k2 2
) . %:? if k is even
onctine?®) Sy qo ap 1y g <2 k>3 and odd
—_ = — o 1 n ’
3k2— 1k 3 9k -3k — 3 -

5.6 General Graphs

Now we turn to general graphs. That is, there may be some edges that are not colored by
off-line. 'We need to distinguish edges that are colored by the on-line algorithm only and
edges colored by both the on-line algorithm and off-line. Thus, let d4(z) denote the number
of edges incident to = that are “double-colored”, i.e., colored by both the on-line algorithm
and off-line. As before, d.(x) denotes the number of edges colored by the on-line algorithm
and dy(z) denotes the number of edges colored by off-line only. We will not need to consider
edges colored by neither algorithm. Note that the double-colored edges are a subset of the
colored edges.

5.6.1 A Performance Guarantee for Fair Algorithms

The performance guarantee for fair algorithms is only a little worse than in the special case
of k-colorable input graphs. As in the case of k-colorable graphs we need only two simple
observations.

(1) For any vertex x, dq(z) + dy(z) < k, since off-line colors at most k edges incident to x.
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(2) For any uncolored edge (z,y), dc(z) +d.(y) > k, since the algorithm is fair and the edge
was not colored.

Observation (2) is the same as in the proof for k-colorable graphs, and (1) is analagous to
Observation (1) in the proof for k-colorable graphs.

Our goal is to find a C' such that any fair algorithm is C-competitive. Since Next-Fit has a
competitive ratio of %, even in the special case of k-colorable graphs, we know that 0 < C' < %

As in the proof for k-colorable graphs, we start out putting one unit of some value on each
edge colored by fairf. If the total value put on colored edges is enough to “pay” the fraction
C of a unit for each edge colored by off-line, the number of edges colored by fair® is at least
the fraction C of the number of edges colored by off-line. We start out by paying C' for each
edge colored by both fair® and off-line. This is done by removing the fraction C' of a unit
from each of these edges. The remaining value on the colored edges must be distributed to
the edges colored by off-line only, such that each of these edges receives at least the fraction
C of a unit. As for k-colorable graphs, the value on each colored edge is split equally between
its endpoints, and each vertex splits its value equally among the uncolored edges incident to
it. In this way, each uncolored edge (z,y) receives the value

1 (de(z) — Cdg(z)  de(y) — Cda(y)\ O 1 [de(z) — Cdy(x) = de(y) — Cdg(y)
(e ) S (e

By (2), it can be assumed without loss of generality that d.(y) > % Thus, d.(y) > Ck, and

the term %ﬁs(w is minimized when dq4(y) is minimized, i.e., when dq(y) = 0.

Similarly, if d.(x) > Ck, %5&5@) is maximized when dq(z) = 0. If d.(z) < CEk,
%ggd)@) is maximized when dq(z) is maximized, i.e., when d4(z) = d.(z).

Thus, if d.(z) > Ck, the uncolored edge (z,y) receives at least

(k) Ay @1

2 k k

If de(z) < Ck, (x,y) receives at least

1 (de(z) — Cde(x)  de(y) @ 1 (1-C)dc(z) k —d.(x)
5( F—dow) Tk > 25( F—dew) & )

which is greater than or equal to C as long as

k? + (de(x))? = kde(x)
CS =17 “khd()

Hence,

k2 +d? — kd k2 + d? — kd
C, . r> i I ———— 1 — Ly =2v/3 — 3 =~ 0.4641.
= gin {5 = [T =05

The minimum value of 2v/3 — 3 is obtained when d = (2 — V/3)k ~ 0.27k.
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Figure 5.5: The graph Gnp when k = 4 and d = 1, showing that Cxp(4) < 52 ~ 0.4643.

5.6.2 Next-Fit is Worst Possible

To show that the performance guarantee of the previous section is tight, we describe a family

of graphs, for which Next-Fit colors exactly the fraction mindecl,k{kz;diizgd } of the edges.

For each k, the adversary chooses a d close to (2 — v/3)k and constructs a graph Gxr, where
(1) For any vertex z, dq(z) + dy(z) = k.
(2) For any uncolored edge (z,y), dc(z) = d and d.(y) = k — d.

Consider the two bipartite graphs Gy = (X7 UY1, E1) and G = (X9 UYs, Es). Gy is d-regular
and has | X1| = |Y1]| = k, and G9 is complete and has | Xs| = |Y3| = k — d. See Figure 5.5.

The adversary uses k copies of each graph, G%,...,G’f and G%,...,G’Q“. Consider the
coloring where G% is colored with (' 4 and G% is colored with Cg41 k. The coloring of Gﬁ“
and Géﬂ is obtained from the coloring of G% and G% by shifting the colors once. In this way,
each color is used on the same number of edges. Hence, by Claim 5.1, the coloring can be
obtained by Next-Fit.

Now, for each i, 1 < i < k, each vertex in Y} is connected to each vertex in X3, and each
vertex in Y3 is connected to each vertex in X?. These new edges are called Ej3. Next-Fit
cannot color any of these edges. However, off-line colors all edges of Ey and F15. Hence, the
competitive ratio of Next-Fit is at most

\Ey\|+|Es|  kd+ (k—d)?  k®—kd+d>
|E1| + |Er2]  kd+2k(k—d)  2k2—kd

Considering arbitrarily large values of k, this ratio can be arbitrarily close to 2v/3 — 3.

5.6.3 First-Fit is Not Much Better

The adversary graph Gpr showing that the competitive ratio of First-Fit is at most %(\/1_ —
1) =~ 0.4805 is inspired by the adversary graph Gnr of the previous section. However, there is
no ordering of the edges in Fy and Fs for which First-Fit will color G with C(%]-H,k’ if the
edges in £ and Es are given before the edges in E1o. Therefore, the graph Gyr is extended
to contain an extra copy of G, GY. Each vertex in Y5 is connected to exactly d vertices in
X/, and vice versa. Now, Ey denotes the edges in Gy and G and the edges connecting them.
Finally, 2k(k — d) new vertices are added, and each vertex in Y2U X} is connected to k of these
vertices. Let E3 denote the set of these extra edges. The graph Gpr for k = 4 is depicted in
Fig.5.6.
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G Gs G

Figure 5.6: The graph Grr when k = 4, showing that Cpr(4) < 25 ~ 0.4808.

If the edges in G and the edges between Y3 and X are given first (one perfect matching
at a time), followed by the edges in G and G, (one perfect matching at a time), First-Fit
will color E; and the edges between Y2 and X} with (1,4 and the remaining edges in Eo with
Ca41,x- After this, First-Fit will not be able to color any more edges of Ggr. On the other
hand, it is possible to k-color the set £ U E12 U E3 of edges. Thus, the competitive ratio of
First-Fit can be no more than

|Ey| + | Bs| kd+2(k —d)? + (k —d)d  2k* — 2kd + d?

|Ev| + |Era| + |E3|  kd + 2k(k — d) + 2k(k — d) 4k? — 3kd

This ratio attains its minimum value of 2(v/10 — 1) ~ 0.4805, when d = (4 — v10)k.
Thus, for the graph Grp, we choose d to be an integer close to %(\/10 — 1)k, and by allowing
arbitrarily large values of k, the ratio can be arbitrarily close to %(\/E —1).

5.6.4 An Impossibility Result for Fair Deterministic Algorithms

The adversary constructs a simple graph G = (V3 U V5, F) in two phases. In Phase 1, only
vertices in V7 are connected. In Phase 2, vertices in V5 are connected to vertices in V. Let
|Vi| = |Va| = n for some large integer n.

In Phase 1, the adversary gives an edge between two unconnected vertices z,y € Vi with a
common unused color. Since the edge can be colored, faz'rD will do so. This process is repeated
until no two unconnected vertices with a common unused color can be found. At that point
Phase 1 ends.

For any vertex z, let C(z) denote the set of colors not represented at x. At the end of
Phase 1, the following holds true. For each color ¢ and each vertex z such that ¢ € C(z), = is
connected to all other vertices y with ¢ € C(y). Since ¢ € C(z), x is connected to at most k—1
other vertices. Thus, each of the k colors are missing at at most k vertices: ),y C(r) < k2.

The edges given in Phase 2 are the edges of a k-regular bipartite graph with V; and V5
forming the two independent sets. Note that, by Ko6nig’s Theorem, such a graph can be
k-colored.

In Phase 2, fair” colors at most k% edges, but off-line rejects all edges from Phase 1 and
colors all edges from Phase 2, giving a performance ratio of at most

sk —E)+ k> nk+k 1k

nk 2nk 2 2n
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Figure 5.7: Structure of the adversary graph for the general impossibility result.

air? < % t+e

Note that the adversary graph can easily be modified to be a bipartite graph. Simply
replace the vertex set Vi by two sets X; and Y7, and let the edges of Phase 1 connect vertices
in X7 to vertices in Y7. At the end of Phase 1, each color is missing at at most 2k — 2 vertices,
because, if a color is missing at a vertex in Xy, then it can be missing at at most & — 1 vertices
in Y7 and vice versa. The vertices of Phase 2 should also be partitioned in two sets Xo and
Ys. If, for instance, vertices in X9 are only connected to vertices in X, and vertices in Y5 are
only connected to vertices of Yi, the resulting graph is bipartite.

This shows that, for any constant € > 0, C'

5.6.5 A General Impossibility Result

We close the chapter with an upper bound of % on the competitive ratio of any on-line
algorithm for edge coloring. The structure of the adversary graph is depicted in Figure 5.7. If
we allow multigraphs, we can think of each box as a single vertex and each line as k parallel
edges. Otherwise, we can think of each box as k vertices, and a line between two boxes means
that each vertex inside one box is connected to each vertex inside the other box, thus forming
a complete bipartite graph. Thus, in this case, each line corresponds to k? edges. To make
the proof as general as possible we will describe the case of a simple graph.

The edges of the graph are divided into n levels, Level 1,...,n. The adversary gives the
edges, one level at a time, according to the numbering of the levels. Depending on the actions
of the on-line algorithm, the adversary might not give all levels of the graph. The edges of
Level 7 are given in three consecutive phases:

1. H;: Internal (horizontal) edges at Level i. In total k? edges.
2. V;: Internal (vertical) edges between Level 5 and Level 4 + 1. In total 2k? edges.
3. E;: External edges at Level i. In total 2k edges.

Vertices that are endpoints of internal edges are called internal vertices.

Note that each internal edge contributes to the degree of two internal vertices, whereas an
external edge contributes to the degree of one internal vertex and one external vertex. Since
external vertices are no problem — they have a degree of only k — it seems to be better to
color external edges than internal edges. In particular, an optimal off-line algorithm colors
all external edges and no internal edges. We show that no algorithm that colors at most % of
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the external edges can be better than ——competitive. However, we also show that no on-line
algorithm that colors more than % 7 of the external edges can be %—competitive.

Since the on-line algorithm may be randomized we use random variables to count the
number of colored edges. Let Xp; be a random variable counting how many edges on-line®
will color from the set H;, and let Xy, and Xg, count the colored edges from V; and E;
respectively. For ¢ = 0,...,n, let EXT; and INT; be random variables counting the sum of
all external and internal edges, respectively, colored by on-line® after Level i is given, i.e.,
EXT; = 23:1 X, and INT; = Z;ZI(XV], + Xu,). Note that EXTy = INTy = 0.

Since no algorithm can color more than k edges incident to one vertex, the total colored
degree of the internal vertices at the first  levels, 1 < 4 < n, is at most 2k%i. Each internal
edge (excluding V;) contributes two to this number, and each external edge (including edges
in V;) contributes only one. Thus, the expected number of colored edges on the first 7 levels is

E[INT;] + E[EXT;] = (E[INT;] — E[Xv,]) + (E[EXT;] + E[Xv,])
< (2K — FEXT] — F[Xv)) + (B[FXT{] + B[Xv,)
% ;(E[EXTi] + B[Xv.]). (5.1)

If E[Xg,] < 2k, for all levels 4, 1 < i < n, then E[EXT,] < 2k?n. Thus, by (5.1), the
expected total number of edges colored by on-linef is

BIINT,] + B[EXT,] < Kn + L (B[FXT,] + F[Xv, ]
= k%n + %E[EXTn_l] + %(E[XEH] + E[Xv,])

1 1
< E’n + ?kQ(n —-1)+ §2k2

8 6
= —k’n+ -k
7"
2

Thus, we get an upper bound on the performance ratio of # = % 71 which can be
arbitrarily close to 7, if we allow n to be arbitrarily large.

Otherwise, there exists a level 4, 1 <4 < n, such that E[Xg,] > %kQ. Assume that Level 4
is the first such level. Thus, E[EXT;_;] < 2k2(i — 1). Furthermore, since the edges in V;_i,

H;, V;, and E; all contribute to the degree of the two internal vertices at Level 4,
12
E[Xv, ,]+2E[Xn,) + E[Xv,] < 2k* — E[Xp,] < 71& (5.2)

If the adversary stops giving edges after Phase 1 of Level i, off-line will color k?(2i — 1)
edges in total. These are the edges in the sets E{, Eo, ..., FE;_1, and H;. If the adversary stops
giving edges after Phase 2 (or 3) of Level i, off-line will color 2k%i edges. These are the edges
in the sets E1,Eo, ..., FE;_1, and V;. Thus, if the algorithm is %—competitive, the following two
inequalities must hold.

4
E[INT; 1] + E[EXT; 1]+ E[Xy,] > ?k2(2z’ — 1), and

4
E[INT; 1]+ E[EXT; 1] + E[Xy,] + E[Xv,] > ?k22z’.
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Adding the two inequalities, yields

1 4
2(E[INT; ] + E[EXT;_1]) + 2E[Xy,] + E[Xv,] > 761&' - ?kQ.
Thus, by (5.1),
2. 16 o 4,
2k%(i = 1) + BEXT; ] + E[Xv, ] + 2B[Xu,] + E[Xv,] > —hk% — =",

Now, using (5.2) yields E[EXT; 1] > 2k?(i — 1), which is a contradiction. This proves the
upper bound of %.



Chapter 6

Dual Bin Packing in Variable-Sized
Bins

In [43] we study a variant of dual bin packing in which the bins may have different sizes.
We assume that the input sequences are all accommodating, i.e., for each sequence, all items
can be packed in the n available bins by an optimal off-line algorithm. The reason for this
restriction is that, for general sequences, no fair on-line algorithm has a constant competitive
ratio, even in the case of identical bins [25].

The problem can also be seen as a scheduling problem with n uniformly related machines.
Consider a scheduling problem with a deadline and assume that the aim is to schedule as
many jobs as possible before this deadline. If an optimal off-line algorithm can schedule all
jobs of any input sequence before the deadline, this problem is equivalent to our problem. Our
problem can also be seen as a special case of the multiple knapsack problem (see [84, 29]), where
all items have unit profit. (This problem was mainly studied in the off-line environment.)

6.1 Algorithms

We study the class of fair algorithms. A fair algorithm rejects an item, only if the item
does not fit in the empty space left in any bin. Some of the algorithms that are classical for
the classical bin packing problem can be adapted to the dual bin packing problem. Such an
adaptation was done for identical bins in [25]; the n bins are all considered open from the
beginning, and no new bin can be opened. We also use this adaptation.

Some classical fair algorithms are First-Fit, Best-Fit, and Worst-Fit. First-Fit is not a
single algorithm but a class of algorithms that give an order to the bins. Each item is packed
in the first bin (in the ordered set of bins) in which it fits. Among the various versions of
First-Fit, two are most natural. Smallest-Fit packs each item in the smallest bin it fits in.
Similarly, Largest-Fit packs each item in the largest bin it fits in. The two other algorithms
do not need further adaptation. Thus, Best-Fit packs each item in a bin where it leaves the
smallest possible empty space, and Worst-Fit packs it in a bin where it leaves the largest
possible empty space.

We also analyze a class of fair algorithms called Smallest-Bins-First. The only thing that
characterizes these algorithms — apart from being fair — is that whenever an item is packed
in an empty bin, the item fits in no smaller empty bin. Smallest-Fit and Best-Fit belong to
this class of algorithms.

29
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6.2 Results

We prove that, on accommodating sequences, the competitive ratio of any fair deterministic
1

algorithm is between 5 and % Thus, even though we consider a generalization of dual bin
packing in identical bins, the performance guarantee for fair algorithms matches Worst-Fit’s
performance for identical bins [25]. We give a very simple example showing that both Worst-Fit
and Largest-Fit have a competitive ratio of exactly % on accommodating sequences.

Smallest-Bins-First algorithms are only a little better; on accommodating sequences, any
Smallest-Bins-First algorithm has a competitive ratio of exactly 5"+, where n is the number
of bins. This is in contrast to the case of identical bins, where First-Fit and Best-Fit are
%—competitive.

Finally, any fair randomized algorithm has a competitive ratio of at most 2

=, even on
accommodating sequences.

6.3 A Tight Performance Guarantee

Given any accommodating sequence o, any fair algorithm A packs at least half of the items
in o. Let A be the set of items accepted by A and let R be the set of items rejected by A.
We will prove that |A| > |R|. The proof is adapted from the proof of a stronger result for
identical bins in [25].

Let s be the size of the smallest item in R. From o we construct a new accommodating
sequence o' in the following way.

e Each item in A of size less than s is removed from o.
e Each item in A of size ¢ > s is replaced by ij items of size s.
e Each item in R of size more than s is replaced by an item of size s.

Clearly, any packing of o induces a legal packing of ¢’. Since all items in ¢’ have the same size
s, packings can only be distinguished by the number of items in each bin. Hence, to calculate
an upper bound on |R|, we only need to count how many items of size s can be added to the
packing of ¢’ induced by the on-line packing of .

Consider the on-line packing of o. Since A is fair and it rejected an item of size s, the
empty space in each bin is less than s. Clearly, removing an item of size less than s increases
the empty space in the corresponding bin by less than s. Similarly, replacing an item of size
/> s by ij items of size s increases the empty space by less than s. Thus, each time an item
is removed or replaced, it makes room for at most one extra item of size s. This proves that
|A| > |R|, and hence the algorithm is -competitive on accommodating sequences.

The result is tight due to the performance of Worst-Fit and Largest-Fit (see Section 6.5).

6.4 Impossibility Results

The Strict Competitive Ratio

We can easily show that the strict competitive ratio on accommodating sequences is at most
% for any fair algorithm. Consider for example the following instance with

e 1 bin of size 2
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e 1 bin of size 3
e n—2binsofsizee, 0 <e < 1.

The input sequence consists of two or three items that are all too large for the bins of size e.
The first item has size 1.

Assume first that the first item is packed in the bin of size 3. In this case, an item of size 3
arrives next. This item cannot be packed, but clearly both items could be packed, if the first
item were packed in the bin of size 2.

If the first item is packed in the bin of size 2, two items of size two will arrive. Only one of
these two items can be packed, but the whole sequence could be packed, if the first first item
were packed in the bin of size 3.

This gives an upper bound on the strict competitive ratio on accommodating sequences
of % Furthermore, applying Yao’s inequality [102] as described in [18, 65, 66] on these two
sequences gives an upper bound of % for randomized algorithms. In words Yao’s principle says
that the competitive ratio of the best randomized algorithm against an oblivious adversary
equals the competitive ratio of the best deterministic algorithm on inputs generated from the
“worst” probability distribution.

To see that the upper bound of % follows from Yao’s principle, consider the sequence where
the first item of size 1 is followed by one item of size 3 with probability p; = % and by two
items of size 2 with probability po = % An algorithm that packs the first item in the bin of
size 3 will have an expected performance ratio of at most p; - % +py -1 =2 Similarly, an

5
algorithm that packs the first item in the bin of size 2, will have an expected performance
ratio of at most p; - 1 + pg - % = %. Thus, no deterministic algorithm can have an expected

performance ratio larger than % on this sequence. This implies an upper bound of % on the

competitive ratio on accommodating sequences for randomized algorithms.

The Competitive Ratio

We are interested in impossibility results that hold for the competitive ratio in general, and
not only for the strict competitive ratio. In Section 6.6, it is shown that any fair algorithm
rejects at most n — 1 items, where n is the number of bins. As long as there is only a constant
number of bins, we can view the number of rejected items as just an additive constant, and
hence any fair algoirthm has competitive ratio 1. Thus, we need to define arbitrarily long
sequences.

Deterministic Algorithms

We define n bins and an accommodating sequence consisting of 3 - [ 5] items. Let £ = [ ].
For k =1,2,...,/¢, we define the pair of bins

By, with size 2k + 2 - 4%¢ and By, with size 2k + 4%¢,

where ¢ < 4% is a positive constant. Thus, Yle < 4r-lg < i. If n is odd, the last bin is of size

5 (so that no items are packed in that bin for the sequence we define).
The sequence is defined inductively in Steps £, —1,...,1. In Step k, two large items are
given and one small item is defined. The small items are all given after Step 1, i.e., after all

large items have been given. For each step k, the following will hold.
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Ey = By + 4%
Ej, Ej,
| | Ey = Epq +2-4k¢
2k — Epyq + 4k |2
el 1| |2k — Epp 2k — B | |1 .
2| | 2k — Epyq — 4ke

(a) If the first large item is put in Baj_1, the (b) If the first large item is put in Baj, the
next large item has size 2k — Ej 1 +4"¢, and next large item has size 2k — Ej 1 — 4%¢, and
E), = By + 4Fe. Ep = Epyq + 2 4"c.

Figure 6.1: The first large item of Step k has size 2k — Ej1.

e The on-line algorithm will pack the two large items in By, and Bop_1, one in each bin.

e After packing the two large items, the empty space in the two bins have the same size
denoted E}. For convenience we define Fy1 1 = 0.

e The small item will be rejected by the on-line algorithm.
We first present the sequence and then prove that this is indeed the case.

e The first large item given in Step %k has size 2k — E;41. Thus, the very first item has
size 2¢ and the size of the first large item of each of the following steps depends on the
empty space created in the previous step.

e The second large item given in Step k has size 2k — Ej1 + 4%¢ or 2k — Ej; — 4F¢ as
illustrated in Figure 6.1. Note that Ey = Ex1q + 4k or E), = By +2- gke,

e The small item defined in Step k has size Sy, = E}, + 4Fe¢.

Note that if the two large items of Step k are swapped in the on-line packing, the small item
fits in Byg. This proves that the sequence is accommodating. Note also that

E O -4
k1 +4%e < By < Epp +2-4%.

By (1), Ery1 < Ep < ... < Eq, and by (2),
4l+1 _

l

. 1

By < Epyy +2) 4e = 0+2——
=1

e < 4 < 1.
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This means that both large items given in Step k have a size greater than 2k —1—4F¢. Thus, to
prove that none of these two items fit in Boj_o, it suffices to prove 2k—1—4F¢ > 2k—2+2-4F—1¢.
This is equivalent to 1 > %4k8, which is true since 4%¢ < i.

Finally, by (2), E; < Ej + 4%¢ = Si, 1 < k < £. Thus, all small items are too large even
for the bins By and By, and hence they will be rejected.

We conclude that the sequence is accommodating and one out three items is rejected in
each step, which proves the bound.

Randomized Algorithms

Since the sequence just described was built step by step depending on the on-line choices, we
cannot use it against randomized algorithms. Thus, we describe a simpler sequence proving
an upper bound of % for randomized algorithms. For simplicity, we describe the proof for
deterministic algorithms first. We use

e | ] bins of size 1 +¢
e [ ] bins of size 2 — ¢,

where 0 < € < % If n is odd, the last bin has size e.

The input sequence starts with |5 | items of size 1. Since the algorithm is fair, all |% |
items are accepted. Let z be the number of bins of size 1 + ¢ that receives an item. Since
no bin can hold two items, x is the number of empty bins of size 2 — . What happens next
depends on the size of x.

If 7 < 2|2, the sequence continues with | 2] items of size 2 — . The on-line algorithm
accepts exactly z of these. Clearly, the whole sequence could be packed, but the algorithm
packs only the fraction

(5] +2 _1+5 4
2-12] — 2 5

of the items.

Otherwise, the sequence continues with | %] items of size 1 4 ¢ followed by [%| items of
size 1 —e. All items of size 1 4+ ¢ are accepted. After that all bins contain exactly one item.
Items of size 1 — ¢ can only be packed in bins of size 2 — ¢ that contain an item of size 1.

n

Thus, [ 5| — « of these items are accepted. Again, the whole sequence could be packed, and

the on-line algorithm packs only

< =

3-12]-z 3-% 4
3-12] 3 5

of the items.

Now, to get an upper bound for randomized algorithms, let = denote the expectation of
the number of bins of size 1+ ¢ that received an item of size 1. The bound follows by linearity
of expectation.

6.5 Worst-Fit and Largest-Fit

In this section we show that, on accommodating sequences, Worst-Fit and Largest-Fit have
the worst possible competitive ratio among fair algorithms.
To see this, consider the following set of bins.
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e 1 large bin of size n
e n — 1 small bins of size 1.
The input sequence is given in two steps:
e n — 1 items of size 1
e n — 1 items of size 1 + ¢,

where ¢ < % is a positive constant.
Both Worst-Fit and Largest-Fit will pack all items of size 1 in the large bin. After that,
all bins have an empty space of size 1, which means that the n — 1 items of size 1 4+ & must be
rejected. However, the n — 1 items of size 1 can be packed in the n — 1 small bins, and the
remaining n — 1 items can be packed in the large bin, since (n — 1)e < 1.
[25] shows that, even in the case of identical bins, the competitive ratio of Worst-Fit is %

6.6 Smallest-Bins-First Algorithms

In this section we show that any Smallest-Bins-First algorithm has a competitive ratio of

5,7 on accommodating sequences.
-

exactly T

The Impossibility Result

For the impossibility result, consider the set of n bins b;, 1 < i < n, where b; has size 1 + ie
and e < % is a positive constant. The sequence is

e 1item of size 1 + (i — 1)g, fori =1,2,...,n

e n — 1 items of size "5e.

For each i, 1 <1i < n, any Smallest-Bins-First algorithm assigns the item of size 1+ (i—1)e
to b;. This leaves an empty space of size ¢ in each bin. Hence, all items of size -“7& must be
rejected.

An optimal off-line algorithm packs each item of size 1 + (i — 1)e, 2 <4 < m, in b;_1. The
item of size 1 and the » — 1 small items can then be packed in b;.

Thus, the sequence is accommodating, and the algorithms pack only n out of 2n — 1 items.

The Matching Performance Guarantee

For the performance guarantee, we prove an upper bound on the number of rejected items.
We use the fact that the total size of the rejected items equals the total empty space in the
on-line packing minus the total empty space in an optimal off-line packing, since all items of
the sequence can be packed.

For any input sequence, let B be the set of non-empty bins in some optimal off-line packing,
let B be the set of empty bins, and let N = |B].

If the on-line algorithm does not reject any items, its packing is optimal. Now, assume
that at least one item is rejected, and let s be the size of a smallest rejected item. Since the
algorithm is fair, the empty space in any bin is less than s. Clearly, the size of a bin is also
an upper bound on the empty space in that bin. Thus, the total empty space in the on-line
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packing is strictly less than Y, ps + >, psize(b) = Ns + ), psize(b). Since the total
empty space in the off-line packing is at least ), 5 size(b), the number of rejected items is
strictly less than N, i.e., at most N — 1. In particular, this means that the number of rejected
items is at most n — 1.

Thus, if there are no empty bins in the on-line packing, the algorithm has packed at least
n items and rejected at most n — 1, yielding a performance ratio of at least 5.

Otherwise, let b be a largest empty bin. Let I< be the set of items no larger than b. Since
the algorithm is fair, these items are all accepted. Let N< be the number of non-empty bins
no larger than b in some optimal off-line packing. Then, N< < |I<|, since only the items in
I< fit in bins no larger than b.

Let n~ be the number of bins larger than b. These bins are all non-empty in the on-line
packing, and by the definition of Smallest-Bins-First algorithms, the first item packed in each
of them is larger than b, i.e., not contained in I<. Thus, the on-line algorithm accepts at least
|I<|+n> items. Let N5 be the number of non-empty bins larger than b in the optimal off-line
packing, and let N = N< + N be the total number of non-empty bins in the optimal off-line
packing. Then, |I<| +ns > N< + N5 = N. Since the number of rejected items is at most

N — 1, this gives a ratio of at least WN—1 > 5
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Chapter 7

Scheduling on Two Related Machines

In [44] and [42] we study scheduling on two uniformly related machines, i.e., one machine is a
factor of ¢ faster than the other. Without loss of generality, we assume that the faster machine
has speed 1, and the other machine has speed g. Thus, a job of size p can be completed in
time p on the fast machine and time gp on the slow machine. We restrict the input sequences
to those with non-increasing job sizes.

The aim is to minimize the makespan. We determine the optimal competitive ratio as a
function of ¢, C(g). This gives as a by-product the overall competitive ratio max,>1{C(q)}.

Let M; denote the fast machine, and M, the slow machine. For a given job sequence
Ji,Jo, ..oy Jy, we let pr,po, ..., pe denote the job sizes. The total size of the jobs is denoted
by P,ie., P= Ele p;- The time it takes to complete a job on a given machine is called the
load of the job on that machine.

For the first k£ jobs of an input sequence, let OPTj denote the optimal makespan and let
ONLy, denote the makespan of the on-line algorithm under consideration.

7.1 Non-Preemptive Scheduling

Since the analysis of the optimal competitive ratio involves long and tedious proofs, the aim
of this section is to give an overview of the analysis and the results. The proofs can be found
in the paper in Appendix B.4.

7.1.1 Previous Results

For the off-line problem, the algorithm LPT (Longest Processing Time) has been studied.
This algorithm sorts the jobs in non-increasing order and then uses List Scheduling. Since,
in this chapter, we assume that the jobs arrive in order of non-increasing size, we obtain the
same result using List Scheduling.

For m identical machines the competitive ratio of LPT is % — 5 [61]. Thus, on two
identical machines, the competitive ratio of LPT is %, and this is the optimal competitive
ratio [93]. These ratios should be compared to 2 — L and 3 for general sequences. [93] also
shows that, for m = 3, no deterministic algorithm can have a competitive ratio better than
%(1 +/37) ~ 1.18. Furthermore, the paper gives an %—competitive randomized algorithm for

m = 2 and shows that this is best possible.
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L L L L L L L L L
1 12 14 16 18 2 2.2 24 26 2.8 3

Figure 7.1: The competitive ratio as a function of ¢

For m related machines, the overall competitive ratio of LPT is between 1.52 and 3 [56].
Recall that for general sequences, the competitive ratio is at least 1.853, if m > 80. In [39], the
upper bound is improved to % ~ 1.583 (unfortunately, the proof does not seem complete). On
two related machines, the overall competitive ratio of LPT is at most (1 4+ v/17) & 1.28 [58].
Recall that, for general sequences, the ratio is ¢ =~ 1.618. In [86], the competitive ratio of
LPT for any speed ratio is given. The interval ¢ > 1 is partitioned in 9 intervals, each with a
different function of ¢ for the competitive ratio.

7.1.2 Our Results

We give the optimal competitive ratio as a function of the speed ratio ¢ (see Figure 7.1). The
function involves 15 distinct intervals as defined below. In some of those intervals, we give
general lower bounds which match the upper bounds in [86]. In those cases, LPT is optimal.
In the other intervals, we design new algorithms and prove that they are optimal. Except for
the first few jobs, the algorithms all work like LPT.

We show that, in terms of overall competitive ratio, i(l ++/17) is the optimal competitive
ratio achieved at ¢ = i(l +/17) by LPT. Thus, in terms of overall competitive ratio, LPT
is optimal, and as in the case of general input sequences, the highest competitive ratio equals
the value of ¢ for which it is attained.

The optimal competitive ratio is described by the following function.

Ci(q), 1<q<q =~ 10401 Cs(a), 3(1+V7)<q<2
C2(q), @1 <q<gqem 11410 Co(g), 2<¢<i(1+4V11)~2.1583
Coa), B << \/g ~ 11547 Cio(g), 3(1+V11) <q < qio ~2.1956
Cla)=14cC 4 < g <114+ I7) ~ 1.2808 Clq) = Onle), qo<q<qu 23507
+(@), \ﬁ—q— 11+ VI~ 1 Ci2(q), g <q< 33+ V41) = 2.3508
Cs(g), $(1+V1T) <q< V214142 Cis(g), L(3+VAT) < q<qus ~ 25111
Cog), V2<q< 4(1+/33) = 1.6861 Cia(q), qis < q < qua ~ 2.5704
(C7(q), 2(1+V/33)<q<i(1+V7)=~1.8229 (Cis(q), ¢ > qua,
2 1 1/
Ci(q) = 3t 2’ Ca(q) = 1+§ (4(1 +4g—1—/(4¢> + 4g — 1)° —4q2),
4 1 1 1
@) =g Gl = Cil=5+0 Gl =1+5
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2q + 1 2 1 1 3q+2
C = ) C :_+_, C :]_-l-—, C = ,
7(q) .10 s(q) 3+ 9(q) 2012 10(q) 2413
2 4 2
@ +3+ /gt —6¢2+24g+9 q 3 1
11(q) 60 , 12(q) 5 13(q) i L
2 4
P+20-2—+/q*+8¢+4 1
Cia(q) + 20T d . Cis(q) + RN

q1 is the largest real root of 84¢* — 24¢> — 80¢> 4 6¢q + 9,

> is the largest real root of 27¢* 4+ 48¢> — 54¢® — 48¢ + 8,

qio is the smallest real root of 3¢* — 9¢° — 8¢% + 21¢ + 18,

q11 is the largest real root of ¢3 — 2¢q — 8,

q13 is the largest real root of 20¢* — 39¢® — 46¢% + 32q + 32,
q14 is the largest real root of 4¢° + 2¢* — 24¢® — 23¢® + 6¢ + 8.

7.1.3 Impossibility Results

The lower bound on the overall competitive ratio is easily proven. Let g = i(l +V17).

The adversary first gives a job of size %. If the algorithm assigns this job to the slow
machine, it has a competitive ratio of at least ¢. Thus, assume that it is scheduled on the fast
machine. Now, two jobs of size % follow. If they are both scheduled on the slow machine, the
makespan is q. Otherwise, it is at least % + % =q.

The optimal schedule is obtained by scheduling the first job on the slow machine and the
last two jobs on the fast machine, yielding a makespan of 1.

Strictly speaking, this example works only for the strict competitive ratio, but noting
that the job sizes could be scaled by any factor, we obtain the impossibility result for the
competitive ratio in general.

We now give the sequences proving the impossibility result of each interval. For i > 4,
Ci(q) < q. Thus, when proving impossibility results for these intervals, we can assume that
the first job is scheduled on the fast machine. For intervals 1-3, we need to consider both

possibilities.
1 1 1 1 1
Interval 1: — — - - —.
2g 2¢ 3 3 3
For intervals 2 and 3, let p; be the size of the first job. If the first job is put on the slow
3+29—2¢°
2¢%+q
all have size 2";’—+11 p1. Otherwise, the following two sequences are used.

machine, four more jobs are given. The first of these has size p1 and the last three

1 2 1 2 1
Interval 2: — — 9+ ps, g+ s,
q q+1 q+1

1
where ps = % (4q2 +4g —1—/(4¢% + 4q — 1)2 —4q2>.

1- 2p57 p5, Ps,

Interval 3: —3¢°>+4¢+4, ¢+2, ¢g+2, ¢g+2, 3¢°+q—2, 3¢>+q—2.

Intervals 4 and 5: 1, 1, 1
q 2 2

Intervals 6 and 9: 2¢> +¢—2, ¢+2, g+1, ¢+ 1.
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Interval 7: ¢+2, —¢>+2¢+2, ¢>—1, ¢*>—1.

11 1 1
Interval 8: -, -, -, -—.
qg 3 3 3

Interval 10: 2¢+3, —¢>+3¢+3, ¢>—1, ¢>—1, ¢>—1.

1
Interval 11: 4q, 4q¢®> —3ps, ps, ps, ps, where ps = 3 (5q2 —3—¢* — 62 +24q + 9).

1 1 1 1 1
Intervals 12 and 13: 5, Z’ Z’ Z’ Z
1 1 qg+2 1 q
Interval 14: —, 1 —— — ps, —— Ps, D5, Ds,
q g q+1 q q+1 O
q 2
wherepg,:i(q +2q—2—\/q4+8q+4>.
2q(q +2)

Interval 15:
g<1++V3 29+1, 2¢*-2¢—3, g+1, g+1 g+1.
g>1+V3: 2¢°—-2¢—3, 2¢q+1, g+1, g+1 g+1.

7.1.4 The New Algorithms

In the intervals where the general lower bound matches the competitive ratio of LPT, clearly
LPT is optimal. Those intervals are the following.

e ¢ =1 (for ¢ = 1, the competitive ratio of LPT is % [61], and this is optimal [93]).

° %(1 +/37) < q < qg, where g9 ~ 2.04 is the largest real root of 4¢> — 4¢> — 10q + 3.
This is most of interval 4, all of intervals 5-8, and a little of interval 9.

e ¢ > quq ~ 2.57. This is the last interval (interval 15).

This leaves the following intervals to deal with.
e Intervals 1-4, not including ¢ =1 in interval 1, and interval 4 only up to %(1 +V/37).
e Intervals 9-14, interval 9 starting only at g¢qg.

For the first four intervals, we design the algorithm Slow-LPT. Intuitively, the reason why
LPT fails in the interval 1 < g < %(1 ++/37) is that the slow machine is not much slower than
the faster one. Since the fast machine does not dominate the slow machine so easily, it often
makes sense to use the slow machine first, and keep the fast machine free for future jobs.

Since Slow-LPT is optimal in all of interval 4, this gives an alternative optimal algorithm
for the interval (1 4+ v/37) < ¢ < 1(1 4+ V17).

Algorithm Slow-LPT
Assign Ji to M. Assign Jo to M.
If q(p1 +p3) < C(q)(p2 + p3), assign J3 to My, and otherwise to M;.
Assign the rest of the jobs by the LPT rule.

In intervals 9 and 10, 13 and 14, we use the algorithm Balanced-LPT that schedules the
second job of the sequence on the slow machine, unless it might break the ratio.



7.1. NON-PREEMPTIVE SCHEDULING 71

Since Balanced-LPT is optimal in all of interval 9, this gives an alternative optimal algo-
rithm for the interval 2 < ¢ < qq.

Algorithm Balanced-LPT
Assign Jy to M;.
If gpa > C(q)(p1 + p2), assign Jo to My, and otherwise to M.
Assign the rest of the jobs by the LPT rule.

Finally, for intervals 11 and 12, we introduce the algorithm Opposite-LPT that does the
opposite of LPT, unless it might violate the ratio. If gpo < pi + p2, LPT puts Jy on M,,
so Opposite-LPT puts Jo on My, unless p1 + po > C(q)qpe. Similarly, if gpa > p1 + po,
Opposite-LPT puts Jy on M, unless gpa > C(q)(p1 + p2).

Algorithm Opposite-LPT
Assign Jy to M.
Assign Jo to My if one of the following holds:
qp2 < p1 +p2 < C(q) gp2 or qp2 > C(q)(p1 + p2)-
Otherwise, assign Jo to M,.
Assign the rest of the jobs by the LPT rule.

7.1.5 Performance Guarantees

The proofs of the performance guarantees use only a few simple observations.
We assume without loss of generality that OPT = 1. Note that P < 1+ %, since the total

size of jobs scheduled by OPT is at most 1 on M; and % on M,.

We will always assume that the makespan of the on-line algorithm is determined by the
last job, Jp, i.e., ONL > ONL,_1, since if ONL = ONL,_, then 8%: > ONL.

Consider an input sequence Ji, Jo, ..., JJ; and assume that Jy is scheduled according to the
LPT rule. Let Pf_l and P;*I be the total size of jobs assigned to M; and My, respectively,
just before the arrival of Jy. Then, by the assumption that J, determines the makespan,
ONL = min{Pf_1 + p, q(qu’1 +po)}-

In [86] it is noted that ONL < 1 + qqu pe- This follows from the following calculations

1
o pt-t pl-1 } < 4 (szl ) (Pf_l )
mln{1 +pe, a(Py~ +pe) < o B et e e
_ 4 ( (-1 (—1 ) _ 9
= —— (P P 2 = —— (P
1\ + P;7 + 2py q+1(+m)
q
<1 .
< 1+ . 1P
This implies that, if OPT schedules k£ jobs on Mj, then p; < %, and ONL < 1+ ﬁ.
Similarly, if OPT schedules k jobs on My, then p, < qilw and ONL <1+ m.

This shows that only short sequences can be problematic. Indeed, the impossibility results
cannot be obtained with sequences of more than six jobs. This is natural, since the job sizes
are non-increasing; for long sequences the last job is small compared to the total job size of
the sequence.
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Intervals 9 and 10

To give the flavor of how these simple observations are used in the analysis, we give the proof
of the performance guarantee for intervals 9 and 10.
Recall that Cy(q) = 1+ 2(}% and Cio(q) = ;’Z—ig, and that intervals 9 and 10 correspond
to the interval 2 < ¢ < ¢1p = 2.20. In interval 9, Cio(q) < Cy(q), and in interval 10,
Cy(q) < Cio(g). Thus, in intervals 9 and 10, C(q) = max{Cy(q), C10(q)}.
If OPT runs five jobs on M,
q 1 q

1 5
NL < 1 <1 - < | < for g < 2.
ORES PR s Py Co(q) < C(q), since Blgt+1) —20q+1) T1=3

Hence, we assume that OPT runs at most four jobs on M;. Similarly, we assume that OPT
runs at most one job on My, since otherwise ONL <1 4 2(q—11) = C9(q). Thus, we need only
consider sequences of length at most five.

If, in the optimal schedule, no jobs are assigned to M, Balanced-LPT will not break the
ratio. Hence, we assume that OPT schedules exactly one job on M, and at most four jobs on
M.

In intervals 9 and 10, Balanced-LPT always assigns J to My, since

1++13
2

C(q) (p1 +p2) > Colq) (p1 +p2) = 2Co(q)p2 > qp2, forgq < ~ 2.30.

This shows that sequences with at most two jobs cannot break the ratio. It also shows that,
if the sequence contains at least three jobs, then ONL < P — po. If OPT does not run J; on
M, OPT > P —py > ONL. This leaves only the case, where OPT runs .J; on M, and all
other jobs on M;.

Three jobs. Since OPT runs J; on M;, OPT > ¢gp;. By the assumption that the last job
determines the on-line makespan, ONL < p; +p3 < 2p; < ¢p1, since ONL runs Jo on M,.

Four Jobs. Since OPT runs J; on M, and all other jobs on M7, p; < % and po+p3+pg < 1.
Combining the latter inequality with ps < p3 < po yields ps + ps < % Thus,

2 2 3 2 3
2= TS TS o), forg>2

1
ONL < < —
< pr+p3s+pa .3 50 2012

Five Jobs If Balanced-LPT schedules at least one of the jobs J3 and Jy on M,;, ONL <
P—(p2+ps) < 1+ % — 2p5. Moreover, ONL < 1+ # ps. Equating these two upper bounds

yields p5 = and hence,

g+1

3q2+2q7
q q+1 1

ONL < 14+ ———"F—— =14+—— < Oy(g).

= T Y132+ 2 3¢ + 2 (9)

Otherwise, ONL < ¢ (p2+ps5). Since OPT runs the last four jobs on My, p3+ps+ps < 1—po,
implying that p; < %(1 — p2). Thus, ONL < £(1 + 2ps). Furthermore, ONL < P —py <

—¢*+3q+3

AT Hence,

1+ % — p2. Equating the two upper bounds gives ps =

1 ¢>—3¢-3 3q+2
ONL < 1+ -+ = = C .
- q 2¢° + 3¢ 2q + 3 10(a)
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Figure 7.2: The competitive ratio as a function of ¢

7.2 Preemptive Scheduling

[93] gives the exact competitive ratio of preemptive scheduling of non-increasing sequences on
identical machines. The ratio tends to £(1 + v/3) &~ 1.366 as m tends to infinity. The resuls
is valid for deterministic as well as randomized algorithms.

On general sequences, the competitive ratio for preemptive scheduling on two related
machines is 1 + # (see Chapter 2). In this section we prove that, if the job sizes are
non-increasing, the competitive ratio is

1

1+ —-, for1 <¢g<3
3g+2 -0
Clq) = Ll
9.2 1 -1 fOTQZ?)a
2¢° +q+1

for randomized as well as deterministic algorithms. This result is depicted in Figure 7.2. As
for general sequences, the competitive ratio attains its maximum at ¢ = 1. The maximum is
g — a little lower than the maximum of % for general sequences.

We design two classes of algorithms, one for ¢ < 2 and one for ¢ > 2. The first class of
algorithms do not use idle time and resemble previously known algorithms. The second class
of algorithms introduce idle time when scheduling the first job. This is in contrast to earlier
algorithms. In non-preemptive scheduling idle time is clearly not useful. However, in previous
work on preemptive scheduling of general or non-increasing sequences [30, 41, 45, 92, 93, 99,
idle time has not been used either. As observed in [30], idle time is never necessary in the case
of identical machines. We prove that any optimal algorithm for scheduling non-increasing
sequences on two related machines with a speed ratio of more than 2 must introduce idle
time when scheduling the first job. It seems reasonable that, for preemptive models where
the exact competitive ratio is not yet known, introducing idle time could lead to the design
of algorithms with optimal competitive ratio. However, it is not clear how this can be done.
Our algorithms introduce idle time only when scheduling the first job (when scheduling later
jobs, no additional idle time is introduced). This construction is simple enough to analyze,
and leads to algorithms of optimal competitive ratio.

Note that the break point in the competitive ratio is ¢ = 3 and not ¢ = 2. Even though the
algorithms for ¢ < 2 and 2 < ¢ < 3 are different, they have the same function as competitive
ratio.
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7.2.1 Preliminaries

In the proofs of the performance guarantees, and when proving that idle time is needed when
g > 2, we need the following special case of a result from [64]. For any input sequence, the
optimal makespan is max{pi, # P}. This means that if P > %pl, the optimal makespan
is # pP.

Welet r1 = 1+ 3(]% and ro = 1+ %ffflﬂ denote the optimal competitive ratio that we
are going to prove for ¢ < 3 and ¢ > 3, respectively. In Section 7.2.3, we let r; denote r; or
ro, depending on which range of ¢ is considered.

7.2.2 Algorithms for ¢ <2

The algorithms for ¢ < 2 work similarly to the algorithm in [30]. The first job Jj is scheduled
on the fast machine. Without loss of generality we assume that it has size 1.

As long as the total size of jobs does not exceed 1+ %, OPT = 1. These jobs are scheduled
between time 1 and 7; on the fast machine first and then from time 0 on the slow machine.
We stop when the total size reaches 1+% (some job may be partially assigned, denote this job
Jp). At this point, the load on the slow machine does not exceed 1. Hence, even if a job was
split between the two machines, its two parts do not overlap in time. We have the following
situation.

3q+3 — — — N
The load = fast — —
e loads are r; 3q+2(as) 1
1 2q +2 Ji
d(1+-- = low).
and (1 + . r1)q 312 (slow)
Note that the ratio of the loads is 3 : 2. M, M,

From now on, we keep the ratio of 3 : 2 between the loads, so that the fast machine is
always more loaded. The remaining part of J,, (if any) as well as any new arriving job of size
p will be split in two pieces of size 35’% p (fast machine) and 3,(]% p (slow machine). The ratio
between the extra loads is 3 : 2 as required.

. . . . 1 N _ 3
Since the total size of scheduled jobs is at least 1+ ;, OPT = # P, and ONL = 3(]% P.

Hence, the competitive ratio of r; is kept. To complete the proof, we must prove the following.
(a) The remaining part of Jj, is scheduled properly.
(b) Any future job J is scheduled properly.

We prove (a) first. Let p be the size of the remaining part of J;,. The proof is split into
two cases.

Jp is the second job in the sequence. Since J, is scheduled on the fast machine no
earlier than time 1, we just need to show that, on the slow machine, it will be completed no
later than time 1.

The part of J,, scheduled on M, adds % p to the load of M,. Since the size of the second

job is at most 1, and % of it has already been scheduled, p < 1 — %. Thus, after scheduling all
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of J,, the load on M, is

2g+2 2q P 2q+2 2q ( 1) 4q
q

_ < 1. si <9
30+2 30127 S 3552 3012 3g+2 - o Smeeds

Jp arrives as the third job or later. In this case, the second job has size less than %,
and so have later jobs. As in the previous case, an invalid schedule cannot occur, unless J,
runs on the slow machine after time 1. Hence, assume that .J, runs on M, after time 1. Since
p < %, this implies that J, is not scheduled on M; before time 7. Thus, it suffices to show
that the load on M, does not exceed 7.

If the load on M, exceeds 7y, the total size of the jobs is more than

re 3 24 3¢q 24+3q 3g+3 3g+3 3g+1 3 1
—+-r = o= = =5 =5 {1+~
2 2q 2q 3q+2 2q 2 q 2

1 1 1
>1+-+->1+—-+p,
q q q
which is impossible.

Now we prove (b). Let p be the size of J and let P be the total size of previous jobs.
Just before scheduling J, the load on M; is 3;’% P and the load on M, is 3(12% P. Thus,
we just need to show that the part of J scheduled on M, has size at most ﬁP, ie.,

3(]% p < 3(]% P. This is true, since at least two jobs of size at least p have been given before

J, and hence p < %P.

7.2.3 Algorithms for ¢ > 2

The only real difference between the algorithms for ¢ > 2 and those for ¢ < 2 is in the way
the first job is scheduled.

Assume without loss of generality that the first job has size 1. We split this job in two
pieces of sizes ‘fl__rf and Ti:ll. Since ¢ > 2, both fractions are positive. The first piece is
scheduled on the fast machine from time 0, and the other is scheduled on the slow machine
from time % until time %—_rf' + 7:;%11 q=r;.

In general, future jobs (or parts of jobs) assigned to the fast machine will be scheduled one
after the other without any idle time. Jobs (or parts of jobs) assigned to the slow machine
will be scheduled at the first idle time. Once no idle time is left, they will be scheduled after

r; (it might be necessary to split some job and continue it after time r;).

Similarly to the algorithms for ¢ < 2, as long as the total size is at most 1 + %, new jobs

are scheduled on the fast machine between time % and 7;, and then on the slow machine,
starting at time 0.

At the time when the total size of jobs is exactly 1 + %, the fast machine is occupied from
time 0 until time r;, since 7;]’%11 +r < 1+ %, for ¢ > 2. On the slow machine, there is still
idle time, since the total size of jobs is strictly less than r;(1 + %)
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Ji

J1

M, M,

From this time on, OPT = q% P. If ¢ < 3, we will keep the ratio 3 : 2 between the loads
of the fast and the slow machines, which gives the desired competitive ratio, just as in the case

P.

qg <2. If ¢ >3, we keep the ratio 2 : (1 + q) leading to an on-line makespan of Wzﬂ

This gives the desired competitive ratio of

2¢° ja _ 2ala+l)
2> +q+1"g+1 2¢° +q+1

We again need to show that the leftover of the job for which the total size reached 1 + %
is assigned properly, and that future jobs are assigned properly. As soon as J; has been
scheduled, the free time slots on the two machines before time r; are disjoint. Therefore, there
is no difference between a complete job and the leftover of a job.

Denote the (leftover of a) job that is being scheduled by J. As earlier, let p denote the
size of J and let P denote the total size of earlier jobs.

2 < ¢ < 3: Asin the proof of (b) for ¢ < 2, we just need p < %P. If J is at least the
third job in the sequence, we can use the same argument as in the case ¢ < 2. Otherwise, J
is the leftover of a job. Since % of this job has already been scheduled, p <1 — %. For ¢ < 3,

1—% < %(14—%) < 1 P holds true.

P (fast) and ¢tg_p (slow). Thus, the time

2¢>
2¢2+q+1 292 +q+1
interval available for a new job on the slow machine is of length P, and the load of

q > 3: In this case, the loads are
2

2 2+ +1

J on the slow machine is #ﬁ-l p. Hence we just need p < P If J is the third job or

more, then p < 1 5 P which is at most £ q+1 P, since q > 3. Otherw1se, as in the case 2 < ¢ < 3,
pgl—%. SincePZl—i—%,weget

1 -1 -1 1 -1
pg1——=q _ 4 q+ Sq P
q q g+1 ¢ q+1

Idle Time is Necessary

In this section we prove that any optimal algorithm must introduce idle time when scheduling
the first job. Assume for the sake of contradiction that an optimal algorithm exists that does
not use idle time. Consider such an algorithm and a sequence of two unit jobs.

After the arrival of the first job, OPT = 1. Since r; < 2, the job cannot be scheduled
completely on the slow machine, since this would break the ratio, and splitting the job would
introduce idle time. Hence, the job must be scheduled completely on the fast machine.
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After the arrival of the second job, OPT = %. Hence the time interval that the algorithm

can use on the fast machine is % r; — 1. If it uses all of that time interval, it can only schedule

the job between time 0 and time 1 on the slow machine. This means that the maximal size
that can be scheduled is

2q 1
o — 14 —.
g+1" q
For 2 < ¢ < 3, this is
3¢ +q+2
3¢2+2q
and for ¢ > 3, it is
2¢ +¢* +1
20 +¢* +q

For ¢ > 2, both are less than 1.

7.2.4 General Impossibility Results

To prove that the algorithms of Sections 7.2.2 and 7.2.3 are optimal we use the following
simplified version of a lemma in [47].

Consider a sequence of at least two jobs, where J;,_; and J; are the last two jobs. The
competitive ratio of any preemptive on-line algorithm, deterministic or randomized, is at least

qP
OPTg_l + QOPTg '

As in [93], we show that the most difficult cases are sequences of identical jobs.

Consider two sequences consisting of two and three unit size jobs. The optimal makespan
is 1 after the first job, % after the second job, and q?% after the third job (if it arrives).
Thus, the sequence of two jobs gives a lower bound of

2q _ 2¢° + 2g - q—1 —
1+q% q+1+2¢2 2¢2 +q+1 ’

and the sequence of three jobs gives the lower bound

3q :3(q+1):1+ 1 _
A-I-?’jri 2+ 3q 3¢g+2 b
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Chapter 8

Conclusion

In this thesis, we have given a survey of measures for the quality of on-line algorithms.
Furthermore, we have studied five on-line problems with restricted input. Below is a
summary and a short discussion of the results.

Paging with Locality of Reference. We assume that, for each possible window length /,
an upper bound on the maximum /average number of distinct pages within windows of length
¢ is given. This enables us to use the fault rate as the quality measure. We studied LRU,
FIFO, the class of deterministic marking algorithms, and the optimal off-line algorithm LFD
and proved tight or nearly tight upper and lower bounds on the fault rates. Throughout
our experiments, the results of both models were far closer to reality than the results of
competitive analysis. The fault rates predicted in the Max-Model were closer to reality than
those of the Average-Model, supporting our intuition that in the Max-Model, the adversary is
more restricted than in the Average-Model.

Edge Coloring with a Fixed Number of Colors. We first studied the case of k-colorable
graphs, i.e., the input graphs can be colored completely with the k colors available. Any fair
deterministic algorithm has a competitive ratio between % and % Next-Fit has a competitive
ratio matching the lower bound, and the competitive ratio of First-Fit is % Thus, for small
k, First-Fit is significantly better than Next-Fit, but for large k, their competitive ratios can
hardly be distinguished.

Some of the proofs for k-colorable graphs can be generalized to the case of general graphs,
with sligthly different results. Thus, we proved that any fair algorithm has a competitive ratio
of at least 2¢/3—3 & 0.4641, and that this bound is matched by the upper bound for Next-Fit.
Though, intuitively, First-Fit is a more reasonable algorithm than Next-Fit, we proved that
the competitive ratio of First-Fit is at most 2(v/10 — 1) ~ 0.4805, and hence it cannot be
much better than Next-Fit.

Both First-Fit and Next-Fit perform a little worse in the general case than in the case of
k-colorable graphs. In neither case did we find an algorithm significantly better than Next-Fit.
In the general case, such an algorithm would have to be unfair or randomized, because no
fair deterministic algorithm is more than %—competitive. However, even if we consider unfair
and/or randomized algorithms, no algorithm can be more than %—competitive in the case of
general graphs.

79
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Bin Packing in Variable-Sized Bins. When studying bin packing in variable-sized bins,
we considered only input sequences that can be packed completely by an optimal off-line
algorithm, since for general sequences, no fair algorithm is competitive. The situation for
fair algorithms is similar to the situation for fair edge coloring algorithms in the case of k-
colorable graphs, with the number n of bins corresponding to k. The competitive ratio of any
fair deterministic algorithm is between % and % The lower bound is tight due to Worst-Fit.
A class of algorithms (Smallest-Bins-First) including First-Fit and Best-Fit have competitive
ratio 5.

The competitive ratio of Worst-Fit is the same as in the case of identical bins, but the
competitive ratio of First-Fit and Best-Fit is worse than for identical bins — in the case of
identical bins they have a competitive ratio of at least g. Thus, in the more general case of
variable-sized bins, the variation is much smaller.

An interesting open problem is to find an algorithm with a competitive ratio significantly
better than % for any number of bins or to show that it does not exist. It could also be
interesting to determine whether such an algorithm would have to be unfair.

Scheduling on Two Related Machines. We study the case, where the job sizes are non-
decreasing. As expected, this gives a better competitive ratio than in the case of general
sequences.

Non-preemptive scheduling: We have determined the ranges of ¢ for which LPT is optimal
among deterministic algorithms. For the intervals, where LPT is not optimal, we have devised
optimal deterministic algorithms. The range ¢ > 1 is divided in 15 intervals with different
functions describing the competitive ratio, and our proof is divided into cases, mostly covering
only two intervals. This does not lend much hope to generalizing our results to the case of
more machines. One could hope that there are simpler results for randomized algorithms.

Preemptive Scheduling: We give optimal algorithms, one for the interval 1 < ¢ < 2 and one
for ¢ > 2. The competititive ratio consists of two functions, one for the interval 1 < ¢ < 3 and
one for ¢ > 3. The algorithms are deterministic, and we prove that no randomized algorithm
can have a better competitive ratio.

We prove that for ¢ > 2, any optimal on-line algorithm must introduce idle time when
scheduling the first job. This is the first on-line scheduling problem, where idle time has been
proven to be required. Even though we do not know how to use idle time for other variants of
the scheduling problem, the use of idle time might be a step towards optimal algorithms for
those variants, where the exact competitive ratio has not yet been determined.
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Appendix A

Resumé

Denne PhD-athandling omhandler on-line algoritmer. En on-line algoritme er en algoritme,
der far input i smé bidder og mé reagere pa hver bid uden at vide, hvad der fglger efter.

Et kendt eksempel er paging-problemet, hvor man arbejder med to hukommelses-niveauer;
der er en stor, langsom hukommelse og en lille, hurtig hukommelse, cache’en. Input til prob-
lemet er anmodninger om sider fra den langsomme hukommelse. Hvis den gnskede side ikke
allerede er i cache, skal den hentes ind fra den langsomme hukommelse. Samtidig skal en
anden side smides ud af cache’en for at ggre plads til den nye. Det tager tid at hente sider
fra den langsomme hukommelse, s& det gnsker man at ggre sa sjeldent som muligt. Derfor
gaelder det om at vaelge den side, der skal smides ud, med omhu.

Men hvordan méler man, hvilken strategi der er bedst? Et standardmal for kvaliteten af
on-line algoritmer er competitive ratio. Kort fortalt er competitive ratio worst case forholdet
mellem on-line algoritmens omkostning og omkostningen af en optimal lgsning — d.v.s. den
lpsning man ville veelge, hvis man kendte hele input-sekvensen fra starten og havde al den tid,
man havde brug for, til at finde frem til den allerbedste lgsning.

Fordelen og svagheden ved competitive ratio er, at det er et meget generelt mal. Det er
en fordel, at det kan anvendes pa enhver on-line algoritme, man kan komme i tanker om.
Til gengaeld giver competitive ratio tit ikke s& meget information som mere specialiserede
mal. F.eks. giver competitive ratio meget lidt information om forskellige paging-algoritmers
kvalitet. Enhver deterministisk paging-algoritme har en competitive ratio, der er mindst lige
sa stor som storrelsen k af cache’en. Det er et ekstremt pessimistisk resultat sammenlignet
med empiriske resultater. Samtidig er der adskillige algoritmer, som alle har competitive ratio
k, selvom man har observeret, at der i praksis er meget stor forskel pa, hvor godt de fungerer.

Dette har motiveret mange forskere til at finde mere specialicerede kvalitetsmal. Afhan-
dlingen giver en oversigt over resultaterne af disse bestrabelser. Derudover gengives resultater
fra fem artikler, som jeg har veeret medforfatter til. Vores tilgang har veeret at opna mere re-
alistiske resultater ved at udnytte viden om input. Tit er det nemlig ikke realistisk at antage,
at intet vides om input pa forhand.

Den forste artikel handler om paging-problemet. Vi giver en meget simpel model for det
feenomen, at input-sekvenser til paging-problemet ofte udviser en bestemt struktur kaldet
“locality of reference”. Denne model giver os mulighed for at bruge fault rate (hvor tit er vi
ngdt til at hente en side fra den langsomme hukommelse) som kvalitetsmal. Dette er en mere
direkte méade at male algoritmerne pé, og vi opnar resultater, som er langt mere realistiske
end dem man opnéar, nar man analyserer competitive ratio.
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Den naste artikel handler om kant-farvning af grafer. Vi gar ud fra, at der kun er et
begraenset antal farver til radighed. Malet er at farve si mange kanter i grafen som muligt,
under forudsatning af, at to nabokanter aldrig far den samme farve. Kanterne dukker op
en efter en, og hver kant skal farves — eller afvises — inden den naeste kant afslgres. Vi
undersgger det generelle tilfaelde savel som det tilfaelde, hvor grafen ville kunne farves med det
antal farver, man har til radighed, hvis man kendte hele grafen fra starten.

I den tredje artikel undersgger vi en variant af bin packing. Et begraenset antal kasser er
givet, og input er en sekvens af elementer, som skal pakkes i kasserne. Savel kasserne som
elementerne har en en-dimensionel stgrrelse. Elementerne ankommer et efter et, og hvert
element skal pakkes i en kasse — eller afvises — uden nogen viden om elementerne, som evt.
kommer efter. Det gaelder om at pakke s mange elementer som muligt uden at overfylde
nogen kasse. Vi ser pa det tilfzelde, hvor kasserne ikke ngdvendigvis har samme stgrrelse. Vi
betragter udelukkende sekvenser af elementer, som kan pakkes fuldstaendigt i de givne kasser,
d.v.s. der er plads til dem alle, hvis de bliver pakket rigtigt. T dette specialtilfzelde findes der
algoritmer, som altid kan pakke en konstant brgkdel af elementerne. Det er tidligere blevet
bevist, at ingen fair algoritme — d.v.s. en algoritme, som aldrig afviser et element, hvis den
kan fa plads til det i en kasse — kan garantere at pakke nogen bestemt brgkdel af elementerne,
medmindre man indfgrer en begraensning pa meengden af input-sekvenser.

De sidste to artikler handler om planlegningsproblemer. Man har to maskiner eller pro-
cessorer og et antal jobs, som skal afvikles pa de to maskiner, som evt. ikke er lige hurtige.
Hvert job har en given stgrrelse, som svarer til den tid, det tager at afvikle det pa en maskine
med hastighed 1. Malet er at fordele jobs’ne pa de to maskiner, s man tidligst muligt bliver
faerdig med samtlige jobs. Jobs’ne ankommer et efter et, og for hvert job skal man beslutte,
hvilken af de to maskiner, det skal afvikles pa, uden at kende fremtidige jobs. Vi antager, at
jobs’nes laengde er ikke-stigende. Man kan enten antage, at et job kun ma kgre pa den ene
maskine, eller at man méa splitte jobbet op i mindre dele, som ikke behgver at kgre pa den
samme maskine. I begge tilfeelde konstruerer vi algoritmer med optimal competitive ratio for
enhver kombination af hastigheder.
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