Lecture 11
Dynamic Bayesian Networks and Hidden Markov Models
Decision Trees

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Slides by Stuart Russell and Peter Norvig
Course Overview

- Introduction
 - Artificial Intelligence
 - Intelligent Agents

- Search
 - Uninformed Search
 - Heuristic Search

- Adversarial Search
 - Minimax search
 - Alpha-beta pruning

- Knowledge representation and Reasoning
 - Propositional logic
 - First order logic
 - Inference

- Uncertain knowledge and Reasoning
 - Probability and Bayesian approach
 - Bayesian Networks
 - Hidden Markov Chains
 - Kalman Filters

- Learning
 - Decision Trees
 - Maximum Likelihood
 - EM Algorithm
 - Learning Bayesian Networks
 - Neural Networks
 - Support vector machines
Exercise
Uncertainty over Time
Speech Recognition
Learning

Performance of approximation algorithms

- **Absolute approximation:** \(|P(X|e) - \hat{P}(X|e)| \leq \epsilon\)
Performance of approximation algorithms

• Absolute approximation: \(|P(X|e) - \hat{P}(X|e)| \leq \epsilon\)

• Relative approximation: \(\frac{|P(X|e) - \hat{P}(X|e)|}{P(X|e)} \leq \epsilon\)
Performance of approximation algorithms

- Absolute approximation: \(|P(X|e) - \hat{P}(X|e)| \leq \epsilon\)

- Relative approximation: \(\frac{|P(X|e) - \hat{P}(X|e)|}{P(X|e)} \leq \epsilon\)

- Relative \(\Rightarrow\) absolute since \(0 \leq P \leq 1\) (may be \(O(2^{-n})\))
Performance of approximation algorithms

- Absolute approximation: \(|P(X|e) - \hat{P}(X|e)| \leq \epsilon\)

- Relative approximation: \(\frac{|P(X|e) - \hat{P}(X|e)|}{P(X|e)} \leq \epsilon\)

- Relative \(\implies\) absolute since \(0 \leq P \leq 1\) (may be \(O(2^{-n})\))

- Randomized algorithms may fail with probability at most \(\delta\)
Performance of approximation algorithms

- **Absolute approximation**: \(|P(X|e) - \hat{P}(X|e)| \leq \epsilon\)

- **Relative approximation**: \(\frac{|P(X|e) - \hat{P}(X|e)|}{P(X|e)} \leq \epsilon\)

- Relative \(\implies\) absolute since \(0 \leq P \leq 1\) (may be \(O(2^{-n})\))

- Randomized algorithms may fail with probability at most \(\delta\)

- Polytime approximation: \(\text{poly}(n, \epsilon^{-1}, \log \delta^{-1})\)
Performance of approximation algorithms

- **Absolute approximation:** $|P(X|e) - \hat{P}(X|e)| \leq \epsilon$

- **Relative approximation:** $\frac{|P(X|e) - \hat{P}(X|e)|}{P(X|e)} \leq \epsilon$

- Relative \implies absolute since $0 \leq P \leq 1$ (may be $O(2^{-n})$)

- Randomized algorithms may fail with probability at most δ

- Polytime approximation: $\text{poly}(n, \epsilon^{-1}, \log \delta^{-1})$

- Theorem (Dagum and Luby, 1993): both absolute and relative approximation for either deterministic or randomized algorithms are NP-hard for any $\epsilon, \delta < 0.5$
 (Absolute approximation polytime with no evidence—Chernoff bounds)
Summary

Exact inference by variable elimination:
- polytime on polytrees, NP-hard on general graphs
- space = time, very sensitive to topology

Approximate inference by Likelihood Weighting (LW), Markov Chain Monte Carlo Method (MCMC):

- PriorSampling and RejectionSampling unusable as evidence grow
 - LW does poorly when there is lots of (late-in-the-order) evidence
 - LW, MCMC generally insensitive to topology
 - Convergence can be very slow with probabilities close to 1 or 0
 - Can handle arbitrary combinations of discrete and continuous variables
Outline

1. Exercise

2. Uncertainty over Time

3. Speech Recognition

4. Learning
Exercise
Uncertainty over Time
Speech Recognition
Learning

Wumpus World

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4</td>
<td>2,4</td>
<td>3,4</td>
<td>4,4</td>
</tr>
<tr>
<td>1,3</td>
<td>2,3</td>
<td>3,3</td>
<td>4,3</td>
</tr>
<tr>
<td>1,2</td>
<td>2,2</td>
<td>3,2</td>
<td>4,2</td>
</tr>
<tr>
<td>1,1</td>
<td>2,1</td>
<td>3,1</td>
<td>4,1</td>
</tr>
</tbody>
</table>

\[P_{ij} = \text{true} \] iff \([i, j]\) contains a pit \n\[B_{ij} = \text{true} \] iff \([i, j]\) is breezy

Include only \(B_{1,1}, B_{1,2}, B_{2,1} \) in the probability model
Specifying the probability model

The full joint distribution is \(P(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1}) \)

Apply product rule: \(P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, \ldots, P_{4,4}) P(P_{1,1}, \ldots, P_{4,4}) \)

(Do it this way to get \(P(\text{Effect}|\text{Cause}) \).)
Specifying the probability model

The full joint distribution is \(P(P_{1,1}, \ldots, P_{4,4}, B_{1,1}, B_{1,2}, B_{2,1}) \)

Apply product rule: \(P(B_{1,1}, B_{1,2}, B_{2,1} \mid P_{1,1}, \ldots, P_{4,4})P(P_{1,1}, \ldots, P_{4,4}) \)

(Do it this way to get \(P(Effect \mid Cause) \).)

First term: 1 if pits are adjacent to breezes, 0 otherwise

Second term: pits are placed randomly, probability 0.2 per square:

\[
P(P_{1,1}, \ldots, P_{4,4}) = \prod_{i,j=1,1}^{4,4} P(P_{i,j}) = 0.2^n \times 0.8^{16-n}
\]

for \(n \) pits.
Observations and query

We know the following facts:

\[b = \neg b_{1,1} \land b_{1,2} \land b_{2,1} \]
\[known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1} \]

Query is \(P(P_{1,3}|known, b) \)

Define \textit{Unknown} = \(P_{ij} \)s other than \(P_{1,3} \) and \textit{Known}
Observations and query

We know the following facts:

\[b = \neg b_{1,1} \land b_{1,2} \land b_{2,1} \]
\[known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1} \]

Query is \(P(P_{1,3}|known, b) \)

Define \textit{Unknown} = \(P_{ij} \)'s other than \(P_{1,3} \) and \textit{Known}

For inference by enumeration, we have

\[P(P_{1,3}|known, b) = \alpha \sum_{unknown} P(P_{1,3}, unknown, known, b) \]

Grows exponentially with number of squares!
Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares
Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

Define $\text{Unknown} = \text{Fringe} \cup \text{Other}$

$$P(b|P_{1,3}, \text{Known, Unknown}) = P(b|P_{1,3}, \text{Known, Fringe})$$

Manipulate query into a form where we can use this!
Using conditional independence contd.

\[P(P_{1,3} | \text{known}, b) = \alpha \sum_{\text{unknown}} P(P_{1,3}, \text{unknown}, \text{known}, b) \]
Using conditional independence contd.

\[
P(P_{1,3}|\text{known}, b) = \alpha \sum_{\text{unknown}} P(P_{1,3}, \text{unknown}, \text{known}, b)
\]

\[
= \alpha \sum_{\text{unknown}} P(b|P_{1,3}, \text{known}, \text{unknown})P(P_{1,3}, \text{known}, \text{unknown})
\]
Using conditional independence contd.

\[
P(P_{1,3}| \text{known}, b) = \alpha \sum_{\text{unknown}} P(P_{1,3}, \text{unknown}, \text{known}, b)
\]

\[
= \alpha \sum_{\text{unknown}} P(b|P_{1,3}, \text{known}, \text{unknown})P(P_{1,3}, \text{known}, \text{unknown})
\]

\[
= \alpha \sum_{\text{fringe}} \sum_{\text{other}} P(b|\text{known}, P_{1,3}, \text{fringe}, \text{other})P(P_{1,3}, \text{known}, \text{fringe}, \text{other})
\]
Using conditional independence contd.

\[
P(P_{1,3}|\text{known}, b) = \alpha \sum_{\text{unknown}} P(P_{1,3}, \text{unknown}, \text{known}, b) \\
= \alpha \sum_{\text{unknown}} P(b|P_{1,3}, \text{known}, \text{unknown})P(P_{1,3}, \text{known}, \text{unknown}) \\
= \alpha \sum_{\text{fringe}} \sum_{\text{other}} P(b|\text{known}, P_{1,3}, \text{fringe}, \text{other})P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \\
= \alpha \sum_{\text{fringe}} \sum_{\text{other}} P(b|\text{known}, P_{1,3}, \text{fringe})P(P_{1,3}, \text{known}, \text{fringe}, \text{other})
\]
Using conditional independence contd.

\[P(P_{1,3}|\text{known}, b) = \alpha \sum_{\text{unknown}} P(P_{1,3}, \text{unknown}, \text{known}, b) \]

\[= \alpha \sum_{\text{unknown}} P(b|P_{1,3}, \text{known}, \text{unknown})P(P_{1,3}, \text{known}, \text{unknown}) \]

\[= \alpha \sum_{\text{fringe}} \sum_{\text{other}} P(b|\text{known}, P_{1,3}, \text{fringe}, \text{other})P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \]

\[= \alpha \sum_{\text{fringe}} \sum_{\text{other}} P(b|\text{known}, P_{1,3}, \text{fringe})P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \]

\[= \alpha \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) \sum_{\text{other}} P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \]
Using conditional independence contd.

\[P(P_{1,3}|\text{known}, b) = \alpha \sum_{\text{unknown}} P(P_{1,3}, \text{unknown}, \text{known}, b) \]

\[= \alpha \sum_{\text{unknown}} P(b|P_{1,3}, \text{known}, \text{unknown})P(P_{1,3}, \text{known}, \text{unknown}) \]

\[= \alpha \sum_{\text{fringe}} \sum_{\text{other}} P(b|\text{known}, P_{1,3}, \text{fringe}, \text{other})P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \]

\[= \alpha \sum_{\text{fringe}} \sum_{\text{other}} P(b|\text{known}, P_{1,3}, \text{fringe})P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \]

\[= \alpha \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) \sum_{\text{other}} P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \]

\[= \alpha \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) \sum_{\text{other}} P(P_{1,3})P(\text{known})P(\text{fringe})P(\text{other}) \]
Using conditional independence contd.

\[P(P_{1,3}|known, b) = \alpha \sum_{unknown} P(P_{1,3}, unknown, known, b) \]

\[= \alpha \sum_{unknown} P(b|P_{1,3}, known, unknown)P(P_{1,3}, known, unknown) \]

\[= \alpha \sum_{fringe} \sum_{other} P(b|known, P_{1,3}, fringe, other)P(P_{1,3}, known, fringe, other) \]

\[= \alpha \sum_{fringe} \sum_{other} P(b|known, P_{1,3}, fringe)P(P_{1,3}, known, fringe, other) \]

\[= \alpha \sum_{fringe} P(b|known, P_{1,3}, fringe) \sum_{other} P(P_{1,3}, known, fringe, other) \]

\[= \alpha \sum_{fringe} P(b|known, P_{1,3}, fringe) \sum_{other} P(P_{1,3})P(known)P(fringe)P(other) \]

\[= \alpha P(known)P(P_{1,3}) \sum_{fringe} P(b|known, P_{1,3}, fringe)P(fringe) \sum_{other} P(other) \]
Using conditional independence contd.

\[
\begin{align*}
P(P_{1,3}|\text{known}, b) &= \alpha \sum_{\text{unknown}} P(P_{1,3}, \text{unknown}, \text{known}, b) \\
&= \alpha \sum_{\text{unknown}} P(b|P_{1,3}, \text{known}, \text{unknown})P(P_{1,3}, \text{known}, \text{unknown}) \\
&= \alpha \sum_{\text{fringe}} \sum_{\text{other}} P(b|\text{known}, P_{1,3}, \text{fringe}, \text{other})P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \\
&= \alpha \sum_{\text{fringe}} \sum_{\text{other}} P(b|\text{known}, P_{1,3}, \text{fringe})P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \\
&= \alpha \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) \sum_{\text{other}} P(P_{1,3}, \text{known}, \text{fringe}, \text{other}) \\
&= \alpha \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) \sum_{\text{other}} P(P_{1,3})P(\text{known})P(\text{fringe})P(\text{other}) \\
&= \alpha P(\text{known})P(P_{1,3}) \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe})P(\text{fringe}) \sum_{\text{other}} P(\text{other}) \\
&= \alpha' P(P_{1,3}) \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe})P(\text{fringe})
\end{align*}
\]
Using conditional independence contd.

\[
P(P_{1,3} | \text{known}, b) = \alpha' \langle 0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16) \rangle \\
\approx \langle 0.31, 0.69 \rangle
\]

\[
P(P_{2,2} | \text{known}, b) \approx \langle 0.86, 0.14 \rangle
\]
Outline

1. Exercise

2. Uncertainty over Time

3. Speech Recognition

4. Learning
Outline

♦ Time and uncertainty
♦ Inference: filtering, prediction, smoothing
♦ Hidden Markov models
♦ Kalman filters (a brief mention)
♦ Dynamic Bayesian networks (an even briefer mention)
Time and uncertainty

- The world changes; we need to track and predict it
Time and uncertainty

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
Time and uncertainty

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step
 \[X_t = \text{set of unobservable state variables at time } t \]
 e.g., \(\text{BloodSugar}_t, \text{StomachContents}_t \), etc.
 \[E_t = \text{set of observable evidence variables at time } t \]
 e.g., \(\text{MeasuredBloodSugar}_t, \text{PulseRate}_t, \text{FoodEaten}_t \)
The world changes; we need to track and predict it

Diabetes management vs vehicle diagnosis

Basic idea: copy state and evidence variables for each time step

\(X_t = \) set of unobservable state variables at time \(t \)

 e.g., \(\text{BloodSugar}_t, \text{StomachContents}_t \), etc.

\(E_t = \) set of observable evidence variables at time \(t \)

 e.g., \(\text{MeasuredBloodSugar}_t, \text{PulseRate}_t, \text{FoodEaten}_t \)

This assumes discrete time; step size depends on problem
Time and uncertainty

- The world changes; we need to track and predict it
- Diabetes management vs vehicle diagnosis
- Basic idea: copy state and evidence variables for each time step
 \[X_t = \text{set of unobservable state variables at time } t \]
 e.g., \(\text{BloodSugar}_t \), \(\text{StomachContents}_t \), etc.
 \[E_t = \text{set of observable evidence variables at time } t \]
 e.g., \(\text{MeasuredBloodSugar}_t \), \(\text{PulseRate}_t \), \(\text{FoodEaten}_t \)
- This assumes **discrete time**; step size depends on problem
- Notation: \(X_{a:b} = X_a, X_{a+1}, \ldots, X_{b-1}, X_b \)
Markov processes (Markov chains)

Construct a Bayes net from these variables:
Markov processes (Markov chains)

Construct a Bayes net from these variables:
- unbounded number of conditional probability table
- unbounded number of parents
Markov processes (Markov chains)

Construct a Bayes net from these variables:
- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: X_t depends on bounded subset of $X_{0:t-1}$
First-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$
Second-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-2}, X_{t-1})$
Markov processes (Markov chains)

Construct a Bayes net from these variables:
- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: \(X_t \) depends on bounded subset of \(X_{0:t-1} \)
First-order Markov process: \(P(X_t | X_{0:t-1}) = P(X_t | X_{t-1}) \)
Second-order Markov process: \(P(X_t | X_{0:t-1}) = P(X_t | X_{t-2}, X_{t-1}) \)

Sensor Markov assumption: \(P(E_t | X_{0:t}, E_{0:t-1}) = P(E_t | X_t) \)
Markov processes (Markov chains)

Construct a Bayes net from these variables:
- unbounded number of conditional probability table
- unbounded number of parents

Markov assumption: X_t depends on bounded subset of $X_{0:t-1}$
First-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$
Second-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-2}, X_{t-1})$

Sensor Markov assumption: $P(E_t|X_{0:t}, E_{0:t-1}) = P(E_t|X_t)$
Stationary process:
- transition model $P(X_t|X_{t-1})$ and
- sensor model $P(E_t|X_t)$ fixed for all t
Example

Exercise
Uncertainty over Time
Speech Recognition
Learning

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Temp, Pressure

Example: robot motion. Augment position and velocity with Battery

<table>
<thead>
<tr>
<th>R_{t-1}</th>
<th>$P(R_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.7</td>
</tr>
<tr>
<td>f</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_t</th>
<th>$P(U_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.9</td>
</tr>
<tr>
<td>f</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Example

First-order Markov assumption not exactly true in real world!
Possible fixes:

1. **Increase order** of Markov process
2. **Augment state**, e.g., add Temp_t, Pressure_t

Example: robot motion.

Augment position and velocity with Battery_t
Inference tasks

1. Filtering: $P(X_t|e_{1:t})$
 belief state—input to the decision process of a rational agent

2. Prediction: $P(X_{t+k}|e_{1:t})$ for $k > 0$
 evaluation of possible action sequences;
 like filtering without the evidence

3. Smoothing: $P(X_k|e_{1:t})$ for $0 \leq k < t$
 better estimate of past states, essential for learning

4. Most likely explanation: $\arg\max_{x_{1:t}} P(x_{1:t}|e_{1:t})$
 speech recognition, decoding with a noisy channel
Filtering

Aim: devise a recursive state estimation algorithm:

\[P(X_{t+1} | e_{1:t+1}) = f(e_{t+1}, P(X_t | e_{1:t})) \]
Filtering

Aim: devise a **recursive** state estimation algorithm:

\[
P(X_{t+1}|e_{1:t+1}) = f(e_{t+1}, P(X_t|e_{1:t}))
\]

\[
P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}|e_{1:t}, e_{t+1})
\]

\[
= \alpha P(e_{t+1}|X_{t+1}, e_{1:t}) P(X_{t+1}|e_{1:t})
\]

\[
= \alpha P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})
\]

I.e., **prediction + estimation.**
Filtering

Aim: devise a **recursive** state estimation algorithm:

\[P(X_{t+1}|e_{1:t+1}) = f(e_{t+1}, P(X_t|e_{1:t})) \]

\[P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}|e_{1:t}, e_{t+1}) \]
\[= \alpha P(e_{t+1}|X_{t+1}, e_{1:t}) P(X_{t+1}|e_{1:t}) \]
\[= \alpha P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t}) \]

I.e., **prediction + estimation**. Prediction by summing out \(X_t \):

\[P(X_{t+1}|e_{1:t+1}) = \alpha P(e_{t+1}|X_{t+1}) \sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t}) \]
\[= \alpha P(e_{t+1}|X_{t+1}) \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t}) \]

\(f_{1:t+1} = \text{Forward}(f_{1:t}, e_{t+1}) \) where \(f_{1:t} = P(X_t|e_{1:t}) \)

Time and space **constant** (independent of \(t \)) by keeping track of \(f \)
Filtering example

\begin{align*}
\begin{array}{|c|c|}
\hline
R_{t-1} & P(R_t) \\
\hline
\text{t} & 0.7 \\
\text{f} & 0.3 \\
\hline
\end{array}
\end{align*}

\begin{align*}
\begin{array}{|c|c|}
\hline
R_t & P(U_t) \\
\hline
\text{t} & 0.9 \\
\text{f} & 0.2 \\
\hline
\end{array}
\end{align*}
Filtering example

<table>
<thead>
<tr>
<th>R_{t-1}</th>
<th>$P(R_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.7</td>
</tr>
<tr>
<td>f</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_t</th>
<th>$P(U_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.9</td>
</tr>
<tr>
<td>f</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Smoothing

\[\begin{align*}
X_0 & \rightarrow X_1 & \cdots & \rightarrow X_k & \rightarrow X_t \\
E_1 & \rightarrow & E_k & \rightarrow & E_t
\end{align*} \]

\[
\text{Divide evidence } e_1: t \text{ into } e_1:k, e_k+1:t:
\]

\[
P(X_k | e_1:k) = \alpha P(X_k | e_1:k, e_k+1:t) = \alpha P(X_k | e_1:k) P(e_k+1:t | X_k, e_1:k) \]

\[
P(e_k+1:t | X_k, e_1:k) = \sum_{x_k+1} P(e_k+1:t | x_{k+1}) P(x_{k+1} | X_k, e_1:k)
\]

Backward message computed by a backwards recursion:

\[
P(e_k+1:t | X_k) = \sum_{x_{k+1}} P(e_k+1:t | x_{k+1}) P(x_{k+1} | X_k)
\]
Divide evidence $e_{1:t}$ into $e_{1:k}$, $e_{k+1:t}$:

$$P(X_k|e_{1:t}) = P(X_k|e_{1:k}, e_{k+1:t})$$

$$= \alpha P(X_k|e_{1:k})P(e_{k+1:t}|X_k, e_{1:k})$$

$$= \alpha P(X_k|e_{1:k})P(e_{k+1:t}|X_k)$$

$$= \alpha f_{1:k}b_{k+1:t}$$
Smoothing

Divide evidence $e_{1:t}$ into $e_{1:k}$, $e_{k+1:t}$:

\[
P(X_k | e_{1:t}) = P(X_k | e_{1:k}, e_{k+1:t})
= \alpha P(X_k | e_{1:k}) P(e_{k+1:t} | X_k, e_{1:k})
= \alpha P(X_k | e_{1:k}) P(e_{k+1:t} | X_k)
= \alpha f_{1:k} b_{k+1:t}
\]

Backward message computed by a backwards recursion:

\[
P(e_{k+1:t} | X_k) = \sum_{x_{k+1}} P(e_{k+1:t} | X_k, x_{k+1}) P(x_{k+1} | X_k)
= \sum_{x_{k+1}} P(e_{k+1:t} | x_{k+1}) P(x_{k+1} | X_k)
= \sum_{x_{k+1}} P(e_{k+1} | x_{k+1}) P(e_{k+2:t} | x_{k+1}) P(x_{k+1} | X_k)
\]
If we want to smooth the whole sequence:

Forward–backward algorithm: cache forward messages along the way
Time linear in t (polytree inference), space $O(t|f|)$
Most likely explanation

Most likely sequence \neq sequence of most likely states (joint distr.)!
Most likely explanation

Most likely sequence \neq sequence of most likely states (joint distr.)!

Most likely path to each x_{t+1}

$= \text{most likely path to some } x_t \text{ plus one more step}$

$$
\max_{x_1 \ldots x_t} P(x_1, \ldots, x_t, X_{t+1}|e_{1:t+1})
$$

$$
= P(e_{t+1}|X_{t+1}) \max_{x_t} \left(P(X_{t+1}|x_t) \max_{x_1 \ldots x_{t-1}} P(x_1, \ldots, x_{t-1}, x_t|e_{1:t}) \right)
$$
Most likely explanation

Most likely sequence \neq sequence of most likely states (joint distr.)!
Most likely path to each x_{t+1}

\Rightarrow most likely path to some x_t plus one more step

$$
\max_{x_1 \ldots x_t} P(x_1, \ldots, x_t, X_{t+1} | e_1:t+1) \\
= P(e_{t+1} | X_{t+1}) \max_{x_t} \left(P(X_{t+1} | x_t) \max_{x_1 \ldots x_{t-1}} P(x_1, \ldots, x_{t-1}, x_t | e_1:t) \right)
$$

Identical to filtering, except $f_{1:t}$ replaced by

$$
m_{1:t} = \max_{x_1 \ldots x_{t-1}} P(x_1, \ldots, x_{t-1}, X_t | e_1:t),
$$

I.e., $m_{1:t}(i)$ gives the probability of the most likely path to state i.
Most likely explanation

Most likely sequence \(\neq \) sequence of most likely states (joint distr.)!
Most likely path to each \(x_{t+1} \)
= most likely path to some \(x_t \) plus one more step

\[
\max_{x_1 \ldots x_t} P(x_1, \ldots, x_t, X_{t+1}|e_{1:t+1})
= P(e_{t+1}|X_{t+1}) \max_{x_t} \left(P(X_{t+1}|x_t) \max_{x_1 \ldots x_{t-1}} P(x_1, \ldots, x_{t-1}, x_t|e_{1:t}) \right)
\]

Identical to filtering, except \(f_{1:t} \) replaced by

\[
m_{1:t} = \max_{x_1 \ldots x_{t-1}} P(x_1, \ldots, x_{t-1}, X_t|e_{1:t}),
\]

I.e., \(m_{1:t}(i) \) gives the probability of the most likely path to state \(i \).
Update has sum replaced by max, giving the Viterbi algorithm:

\[
m_{1:t+1} = P(e_{t+1}|X_{t+1}) \max_{x_t} (P(X_{t+1}|x_t)m_{1:t})
\]
Viterbi example

Exercise
Uncertainty over Time
Speech Recognition Learning

Rain 1
true
false
true
false
true
false
true
false
true
false
.8182
.1818
m 1:1

Rain 2
true
false
true
false
true
false
true
false
true
false
.5155
.0491
m 1:2

Rain 3
true
false
true
false
true
false
true
false
true
false
.0361
.1237
m 1:3

Rain 4
true
false
true
false
true
false
true
false
true
false
.0334
.0173
m 1:4

Rain 5
true
false
true
false
true
false
true
false
true
false
.0210
.0024
m 1:5

state space paths
umbrella
most likely paths
Hidden Markov models

X_t is a single, discrete variable (usually E_t is too)

Domain of X_t is $\{1, \ldots, S\}$

Transition matrix $T_{ij} = P(X_t = j | X_{t-1} = i)$, e.g.,

$$
\begin{pmatrix}
0.7 & 0.3 \\
0.3 & 0.7
\end{pmatrix}
$$

Sensor matrix O_t for each time step, diagonal elements $P(e_t | X_t = i)$

e.g., with $U_1 = true$, $O_1 = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.2 \end{pmatrix}$

Forward and backward messages as column vectors:

$$
f_{1:t+1} = \alpha O_{t+1} T^T f_{1:t}
$$

$$
b_{k+1:t} = TO_{k+1} b_{k+2:t}
$$

Forward-backward algorithm needs time $O(S^2 t)$ and space $O(St)$
Kalman filters

Modelling systems described by a set of continuous variables, e.g., tracking a bird flying—\(\mathbf{X}_t = X, Y, Z, \dot{X}, \dot{Y}, \dot{Z} \).

Airplanes, robots, ecosystems, economies, chemical plants, planets, \ldots

Gaussian prior, linear Gaussian transition model and sensor model
Updating Gaussian distributions

Prediction step: if $P(X_t|e_{1:t})$ is Gaussian, then prediction

$$P(X_{t+1}|e_{1:t}) = \int_{x_t} P(X_{t+1}|x_t)P(x_t|e_{1:t}) \, dx_t$$

is Gaussian. If $P(X_{t+1}|e_{1:t})$ is Gaussian, then the updated distribution

$$P(X_{t+1}|e_{1:t+1}) = \alpha P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

is Gaussian

Hence $P(X_t|e_{1:t})$ is multivariate Gaussian $N(\mu_t, \Sigma_t)$ for all t
Updating Gaussian distributions

Prediction step: if $P(X_t|e_{1:t})$ is Gaussian, then prediction

$$P(X_{t+1}|e_{1:t}) = \int_{x_t} P(X_{t+1}|x_t)P(x_t|e_{1:t}) \, dx_t$$

is Gaussian. If $P(X_{t+1}|e_{1:t})$ is Gaussian, then the updated distribution

$$P(X_{t+1}|e_{1:t+1}) = \alpha P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

is Gaussian

Hence $P(X_t|e_{1:t})$ is multivariate Gaussian $\mathcal{N}(\mu_t, \Sigma_t)$ for all t

General (nonlinear, non-Gaussian) process: description of posterior grows unboundedly as $t \to \infty$
2-D tracking example: filtering
Exercise
Uncertainty over Time
Speech Recognition
Learning

2-D tracking example: smoothing

2D smoothing

- true
- * observed
- - - - - - smoothed

X
Y

true
observed
smoothed

Exercise
Uncertainty over Time
Speech Recognition
Learning
Where it breaks

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as **locally linear** around $x_t = \mu_t$

Fails if systems is locally unsmooth
Dynamic Bayesian networks

X_t, E_t contain arbitrarily many variables in a replicated Bayes net

$$
\begin{array}{c|c|c}
R_0 & P(R_1) \\
\hline
0.7 & 0.3 \\
\end{array}
$$

$$
\begin{array}{c|c|c}
R_1 & P(U_1) \\
\hline
0.7 & 0.9 \\
0.2 & \\
\end{array}
$$
Every HMM is a single-variable DBN; every discrete DBN is an HMM

Sparse dependencies \Rightarrow exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has $20 \times 2^3 = 160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$
DBNs vs Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs; real world requires non-Gaussian posteriors
Summary

- Temporal models use state and sensor variables replicated over time

- Markov assumptions and stationarity assumption, so we need
 - transition model \(P(X_t \mid X_{t-1}) \)
 - sensor model \(P(E_t \mid X_t) \)

- Tasks are filtering, prediction, smoothing, most likely sequence; all done recursively with constant cost per time step

- Hidden Markov models have a single discrete state variable; used for speech recognition

- Kalman filters allow \(n \) state variables, linear Gaussian, \(O(n^3) \) update

- Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable
Outline

1. Exercise

2. Uncertainty over Time

3. Speech Recognition

4. Learning
Outline

♦ Speech as probabilistic inference
♦ Speech sounds
♦ Word pronunciation
♦ Word sequences
Speech as probabilistic inference

- Speech signals are noisy, variable, ambiguous
Speech as probabilistic inference

- Speech signals are noisy, variable, ambiguous

- What is the **most likely** word sequence, given the speech signal?
 I.e., choose *Words* to maximize \(P(\text{Words}|\text{signal}) \)
Speech as probabilistic inference

- Speech signals are noisy, variable, ambiguous
- What is the **most likely** word sequence, given the speech signal?
 I.e., choose *Words* to maximize \(P(\text{Words}|\text{signal}) \)
- Use Bayes’ rule:
 \[
P(\text{Words}|\text{signal}) = \alpha P(\text{signal}|\text{Words})P(\text{Words})
\]
 I.e., decomposes into *acoustic model* + *language model*
Speech as probabilistic inference

- Speech signals are noisy, variable, ambiguous

- What is the **most likely** word sequence, given the speech signal? I.e., choose *Words* to maximize $P(\text{Words}|\text{signal})$

- Use Bayes’ rule:

 $$P(\text{Words}|\text{signal}) = \alpha P(\text{signal}|\text{Words})P(\text{Words})$$

 I.e., decomposes into **acoustic model** + **language model**

- *Words* are the hidden state sequence, *signal* is the observation sequence
All human speech is composed from 40-50 phones, determined by the configuration of articulators (lips, teeth, tongue, vocal cords, air flow). Form an intermediate level of hidden states between words and signal:

⇒ acoustic model = pronunciation model + phone model

ARPAbet designed for American English

[ey]	bet	[d]	debt	[s]	set
[ow]	boat	[hv]	high	[dh]	that
[er]	Bert	[l]	let	[w]	wet
[ix]	roses	[ng]	sing	[en]	button

E.g., “ceiling” is [s iy l ih ng] / [s iy l ix ng] / [s iy l en]
Word pronunciation models

Each word is described as a distribution over phone sequences
Distribution represented as an HMM transition model

\[P([towmeytow]|"tomato") = P([towmaatow]|"tomato") = 0.1 \]
\[P([tahmeytow]|"tomato") = P([tahmaatow]|"tomato") = 0.4 \]

Structure is created manually, transition probabilities learned from data
Isolated words

- Phone models + word models fix likelihood $P(e_{1:t}|word)$ for isolated word

$$P(word|e_{1:t}) = \alpha P(e_{1:t}|word)P(word)$$

- Prior probability $P(word)$ obtained simply by counting word frequencies

$P(e_{1:t}|word)$ can be computed recursively: define

$$\ell_{1:t} = P(X_t, e_{1:t})$$

and use the recursive update

$$\ell_{1:t+1} = \text{Forward}(\ell_{1:t}, e_{t+1})$$

and then $P(e_{1:t}|word) = \sum_{x_t} \ell_{1:t}(x_t)$

- Isolated-word dictation systems with training reach 95–99% accuracy
Continuous speech

Not just a sequence of isolated-word recognition problems!
– Adjacent words highly correlated
– Sequence of most likely words ≠ most likely sequence of words
– Segmentation: there are few gaps in speech
– Cross-word coarticulation—e.g., “next thing”

Continuous speech systems manage 60–80% accuracy on a good day
Language model

Prior probability of a word sequence is given by chain rule:

\[P(w_1 \cdots w_n) = \prod_{i=1}^{n} P(w_i|w_1 \cdots w_{i-1}) \]

Bigram model:

\[P(w_i|w_1 \cdots w_{i-1}) \approx P(w_i|w_{i-1}) \]

Train by counting all word pairs in a large text corpus
More sophisticated models (trigrams, grammars, etc.) help a little bit
Combined HMM

- States of the combined language+word+phone model are labelled by the word we’re in + the phone in that word + the phone state in that phone

- Viterbi algorithm finds the most likely phone state sequence

- Does segmentation by considering all possible word sequences and boundaries

- Doesn’t always give the most likely word sequence because each word sequence is the sum over many state sequences

- Jelinek invented A* in 1969 a way to find most likely word sequence where “step cost” is $-\log P(w_i|w_{i-1})$
Outline

1. Exercise
2. Uncertainty over Time
3. Speech Recognition
4. Learning
Outline

♦ Learning agents
♦ Inductive learning
♦ Decision tree learning
♦ Measuring learning performance
Learning

Back to Turing’s article:
- child mind program
- education

Reward & Punishment

- Learning is essential for unknown environments, i.e., when designer lacks omniscience
- Learning is useful as a system construction method, i.e., expose the agent to reality rather than trying to write it down
- Learning modifies the agent’s decision mechanisms to improve performance
Learning agents

Performance standard

- Critic
- Sensors
- Learning element
- Performance element
- Problem generator
- Effectors

feedback

changes

learning goals

knowledge

experiments

Environment

Agent
Learning element

Design of learning element is dictated by
- what type of performance element is used
- which functional component is to be learned
- how that functional component is represented
- what kind of feedback is available
Learning element

Design of learning element is dictated by
♦ what type of performance element is used
♦ which functional component is to be learned
♦ how that functional component is represented
♦ what kind of feedback is available

Example scenarios:

<table>
<thead>
<tr>
<th>Performance element</th>
<th>Component</th>
<th>Representation</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha–beta search</td>
<td>Eval. fn.</td>
<td>Weighted linear function</td>
<td>Win/loss</td>
</tr>
<tr>
<td>Logical agent</td>
<td>Transition model</td>
<td>Successor–state axioms</td>
<td>Outcome</td>
</tr>
<tr>
<td>Utility–based agent</td>
<td>Transition model</td>
<td>Dynamic Bayes net</td>
<td>Outcome</td>
</tr>
<tr>
<td>Simple reflex agent</td>
<td>Percept–action fn</td>
<td>Neural net</td>
<td>Correct action</td>
</tr>
</tbody>
</table>
Learning element

Design of learning element is dictated by
♦ what type of performance element is used
♦ which functional component is to be learned
♦ how that functional component is represented
♦ what kind of feedback is available

Example scenarios:

<table>
<thead>
<tr>
<th>Performance element</th>
<th>Component</th>
<th>Representation</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha–beta search</td>
<td>Eval. fn.</td>
<td>Weighted linear function</td>
<td>Win/loss</td>
</tr>
<tr>
<td>Logical agent</td>
<td>Transition model</td>
<td>Successor–state axioms</td>
<td>Outcome</td>
</tr>
<tr>
<td>Utility–based agent</td>
<td>Transition model</td>
<td>Dynamic Bayes net</td>
<td>Outcome</td>
</tr>
<tr>
<td>Simple reflex agent</td>
<td>Percept–action fn</td>
<td>Neural net</td>
<td>Correct action</td>
</tr>
</tbody>
</table>

Supervised learning: correct answers for each instance
Reinforcement learning: occasional rewards