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Summary

Learning needed for unknown environments, lazy designers

Learning agent = performance element + learning element

Learning method depends on type of performance element, available
feedback, type of component to be improved, and its representation

For supervised learning, the aim is to find a simple hypothesis
that is approximately consistent with training examples
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Inductive learning

Simplest form: learn a function from examples
f is the target function

An example is a pair x , f (x), e.g.,
O O X

X
X

, +1

Problem: find a(n) hypothesis h
such that h ≈ f
given a training set of examples

(This is a highly simplified model of real learning:
– Ignores prior knowledge
– Assumes a deterministic, observable “environment”
– Assumes examples are given
– Assumes that the agent wants to learn f —why?)

4



Inductive learning

Simplest form: learn a function from examples
f is the target function

An example is a pair x , f (x), e.g.,
O O X

X
X

, +1

Problem: find a(n) hypothesis h
such that h ≈ f
given a training set of examples

(This is a highly simplified model of real learning:
– Ignores prior knowledge
– Assumes a deterministic, observable “environment”
– Assumes examples are given
– Assumes that the agent wants to learn f —why?)

4



Inductive learning method

Construct/adjust h to agree with f on training set
(h is consistent if it agrees with f on all examples)
E.g., curve fitting:

x

f(x)

Ockham’s razor: maximize a combination of consistency and simplicity
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Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.)
E.g., situations where I will/won’t wait for a table:

Example
Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait
X1 T F F T Some $$$ F T French 0–10 T
X2 T F F T Full $ F F Thai 30–60 F
X3 F T F F Some $ F F Burger 0–10 T
X4 T F T T Full $ F F Thai 10–30 T
X5 T F T F Full $$$ F T French >60 F
X6 F T F T Some $$ T T Italian 0–10 T
X7 F T F F None $ T F Burger 0–10 F
X8 F F F T Some $$ T T Thai 0–10 T
X9 F T T F Full $ T F Burger >60 F
X10 T T T T Full $$$ F T Italian 10–30 F
X11 F F F F None $ F F Thai 0–10 F
X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)
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Decision trees

One possible representation for hypotheses
E.g., here is the “true” tree for deciding whether to wait:

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

None Some Full

>60 30−60 10−30 0−10

No  Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF
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Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:

FT

A

B

F T

B

A B A xor B

F F F
F T T
T F T
T T F

F

F F

 T

 T  T

Trivially, there is a consistent decision tree for any training set
w/ one path to leaf for each example (unless f nondeterministic in x)
but it probably won’t generalize to new examples
Prefer to find more compact decision trees
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Hypothesis spaces

How many distinct decision trees with n Boolean attributes??

= number of Boolean functions
= number of distinct truth tables with 2n rows = 22n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)??
Each attribute can be in (positive), in (negative), or out

=⇒ 3n distinct conjunctive hypotheses
More expressive hypothesis space

– increases chance that target function can be expressed
– increases number of hypotheses consistent w/ training set

=⇒ may get worse predictions
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Decision tree learning

Aim: find a small tree consistent with the training examples
Idea: (recursively) choose “most significant” attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all examples have the same classification then return the classifi-

cation
else if attributes is empty then return Mode(examples)
else

best←Choose-Attribute(attributes, examples)
tree← a new decision tree with root test best
for each value vi of best do

examplesi←{elements of examples with best = vi}
subtree←DTL(examplesi , attributes− best,Mode(examples))
add a branch to tree with label vi and subtree subtree

return tree
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Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) “all
positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice—gives information about the classification
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Information

Information answers questions
The more clueless I am about the answer initially, the more information is
contained in the answer
Scale: 1 bit = answer to Boolean question with prior 〈0.5, 0.5〉
Information in an answer when prior is 〈P1, . . . ,Pn〉 is

H(〈P1, . . . ,Pn〉) =
n∑

i = 1

−Pi log2 Pi

(also called entropy of the prior)
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Information contd.

Suppose we have p positive and n negative examples at the root
=⇒ H(〈p/(p + n), n/(p + n)〉) bits needed to classify a new

example
information of the table

E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

An attribute splits the examples E into subsets Ei , each of which (we
hope) needs less information to complete the classification

Let Ei have pi positive and ni negative examples
=⇒ H(〈pi/(pi + ni ), ni/(pi + ni )〉) bits needed to classify a new

example
=⇒ expected number of bits per example over all branches is∑

i

pi + ni

p + n
H(〈pi/(pi + ni ), ni/(pi + ni )〉)

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit
=⇒ choose the attribute that minimizes the remaining information
needed
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Example contd.

Decision tree learned from the 12 examples:

No  Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than “true” tree—a more complex hypothesis isn’t
justified by small amount of data
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Performance measurement

How do we know that h ≈ f ? (Hume’s Problem of Induction)
1) Use theorems of computational/statistical learning theory
2) Try h on a new test set of examples

(use same distribution over example space as training set)
Learning curve = % correct on test set as a function of training set size
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Performance measurement contd.

Learning curve depends on
– realizable (can express target function) vs. non-realizable

non-realizability can be due to missing attributes
or restricted hypothesis class (e.g., thresholded linear function)

– redundant expressiveness (e.g., loads of irrelevant attributes)

% correct

# of examples

1

nonrealizable

redundant

realizable
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Decision Tree Types

Classification tree analysis is when the predicted outcome is the class to
which the data belongs. Iterative Dichotomiser 3 (ID3), C4.5, (Quinlan,
1986)

Regression tree analysis is when the predicted outcome can be
considered a real number (e.g. the price of a house, or a patient’s length
of stay in a hospital).

Classification And Regression Tree (CART) analysis is used to refer to
both of the above procedures, first introduced by (Breiman et al., 1984)

CHi-squared Automatic Interaction Detector (CHAID). Performs
multi-level splits when computing classification trees. (Kass, G. V. 1980).

A Random Forest classifier uses a number of decision trees, in order to
improve the classification rate.

Boosting Trees can be used for regression-type and classification-type
problems.

Used in data mining (most are included in R, see rpart and party packages,
and in Weka, Waikato Environment for Knowledge Analysis)
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