Lecture 12 Decision Trees

Marco Chiarandini

Deptartment of Mathematics & Computer Science University of Southern Denmark

Slides by Stuart Russell and Peter Norvig

Course Overview

- Introduction
 - ✓ Artificial Intelligence
 - ✓ Intelligent Agents
- Search
 - ✔ Uninformed Search
 - ✔ Heuristic Search
- Adversarial Search
 - ✔ Minimax search
 - Alpha-beta pruning
- Knowledge representation and Reasoning
 - ✓ Propositional logic
 - ✔ First order logic
 - Inference

- Uncertain knowledge and Reasoning
 - Probability and Bayesian approach
 - Bayesian Networks
 - Hidden Markov Chains
 - Kalman Filters
 - Learning
 - Decision Trees
 - Maximum Likelihood
 - EM Algorithm
 - Learning Bayesian Networks
 - Neural Networks
 - Support vector machines

Summary

- Learning needed for unknown environments, lazy designers
- Learning agent = performance element + learning element
- Learning method depends on type of performance element, available feedback, type of component to be improved, and its representation
- For supervised learning, the aim is to find a simple hypothesis that is approximately consistent with training examples

Inductive learning

Simplest form: learn a function from examples *f* is the target function

An example is a pair x, f(x), e.g., $\begin{array}{c|c} O & O & X \\ \hline X & \\ \hline X & \\ \hline \end{array}$, +1 Problem: find a(n) hypothesis hsuch that $h \approx f$ given a training set of examples

Inductive learning

Simplest form: learn a function from examples *f* is the target function

An example is a pair x, f(x), e.g., $\begin{array}{c|c} 0 & 0 & x \\ \hline X & \\ \hline X & \\ \end{array}$, +1 Problem: find a(n) hypothesis h such that $h \approx f$

given a training set of examples

(This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes a deterministic, observable "environment"
- Assumes examples are given
- Assumes that the agent wants to learn *f*—why?)

Construct/adjust h to agree with f on training set (h is consistent if it agrees with f on all examples) E.g., curve fitting:

Ockham's razor: maximize a combination of consistency and simplicity

Attribute-based representations

Examples described by attribute values (Boolean, discrete, continuous, etc.) E.g., situations where I will/won't wait for a table:

	Attributes										Target
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
X ₁	T	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X3	F	T	F	F	Some	\$	F	F	Burger	0-10	т
X4	T	F	т	T	Full	\$	F	F	Thai	10-30	т
X5	T	F	т	F	Full	\$\$\$	F	Т	French	>60	F
X ₆	F	T	F	Т	Some	\$\$	т	Т	Italian	0-10	т
X7	F	T	F	F	None	\$	т	F	Burger	0-10	F
X8	F	F	F	Т	Some	\$\$	т	Т	Thai	0-10	т
X ₉	F	T	т	F	Full	\$	т	F	Burger	>60	F
X ₁₀	T	T	т	Т	Full	\$\$\$	F	т	Italian	10-30	F
x ₁₁	F	F	F	F	None	\$	F	F	Thai	0-10	F
x ₁₂	т	т	т	т	Full	\$	F	F	Burger	30-60	т

Classification of examples is positive (T) or negative (F)

Decision trees

One possible representation for hypotheses E.g., here is the "true" tree for deciding whether to wait:

Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:

Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:

Trivially, there is a consistent decision tree for any training set w/ one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples Prefer to find more **compact** decision trees

How many distinct decision trees with *n* Boolean attributes??

How many distinct decision trees with *n* Boolean attributes?? = number of Boolean functions

How many distinct decision trees with *n* Boolean attributes??

= number of Boolean functions

= number of distinct truth tables with 2^n rows = 2^{2^n}

How many distinct decision trees with *n* Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., $Hungry \land \neg Rain$)??

How many distinct decision trees with *n* Boolean attributes??

= number of Boolean functions

= number of distinct truth tables with 2^n rows = 2^{2^n}

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., $Hungry \land \neg Rain$)?? Each attribute can be in (positive), in (negative), or out

 \implies 3^{*n*} distinct conjunctive hypotheses

How many distinct decision trees with *n* Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., $Hungry \land \neg Rain$)?? Each attribute can be in (positive), in (negative), or out $\implies 3^n$ distinct conjunctive hypotheses More expressive hypothesis space - increases chance that target function can be expressed

- increases number of hypotheses consistent w/ training set

 \implies may get worse predictions

Decision tree learning

Aim: find a small tree consistent with the training examples Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree
   if examples is empty then return default
   else if all examples have the same classification then return the classifi-
cation
   else if attributes is empty then return Mode(examples)
   else
        best — Choose-Attribute(attributes, examples)
        tree \leftarrow a new decision tree with root test best
        for each value v; of best do
             examples<sub>i</sub> \leftarrow {elements of examples with best = v_i}
             subtree \leftarrow DTL(examples_i, attributes - best, Mode(examples))
             add a branch to tree with label v; and subtree subtree
        return tree
```

Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Information

Information answers questions

The more clueless I am about the answer initially, the more information is contained in the answer

Scale: 1 bit = answer to Boolean question with prior $\langle 0.5, 0.5 \rangle$ Information in an answer when prior is $\langle P_1, \dots, P_n \rangle$ is

$$H(\langle P_1,\ldots,P_n\rangle) = \sum_{i=1}^n -P_i \log_2 P_i$$

(also called entropy of the prior)

• Suppose we have p positive and n negative examples at the root $\implies H(\langle p/(p+n), n/(p+n) \rangle)$ bits needed to classify a new example

information of the table

E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

• Suppose we have p positive and n negative examples at the root $\implies H(\langle p/(p+n), n/(p+n) \rangle) \text{ bits needed to classify a new example}$

information of the table

E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

• An attribute splits the examples *E* into subsets *E_i*, each of which (we hope) needs less information to complete the classification

• Suppose we have p positive and n negative examples at the root $\implies H(\langle p/(p+n), n/(p+n) \rangle) \text{ bits needed to classify a new example}$

information of the table

- E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit
- An attribute splits the examples *E* into subsets *E_i*, each of which (we hope) needs less information to complete the classification
- Let E_i have p_i positive and n_i negative examples $\implies H(\langle p_i/(p_i + n_i), n_i/(p_i + n_i) \rangle)$ bits needed to classify a new example

 \implies expected number of bits per example over all branches is

$$\sum_{i} \frac{p_i + n_i}{p + n} H(\langle p_i/(p_i + n_i), n_i/(p_i + n_i) \rangle)$$

• Suppose we have p positive and n negative examples at the root $\implies H(\langle p/(p+n), n/(p+n) \rangle) \text{ bits needed to classify a new example}$

information of the table

- E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit
- An attribute splits the examples *E* into subsets *E_i*, each of which (we hope) needs less information to complete the classification
- Let E_i have p_i positive and n_i negative examples $\implies H(\langle p_i/(p_i + n_i), n_i/(p_i + n_i) \rangle)$ bits needed to classify a new example

 \implies **expected** number of bits per example over all branches is

$$\sum_{i} \frac{p_i + n_i}{p + n} H(\langle p_i/(p_i + n_i), n_i/(p_i + n_i)\rangle)$$

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit
 ⇒ choose the attribute that minimizes the remaining information needed

Example contd.

Decision tree learned from the 12 examples:

Substantially simpler than "true" tree—a more complex hypothesis isn't justified by small amount of data

Performance measurement

How do we know that h ≈ f? (Hume's Problem of Induction)
1) Use theorems of computational/statistical learning theory
2) Try h on a new test set of examples
 (use same distribution over example space as training set)
Learning curve = % correct on test set as a function of training set size

Performance measurement contd.

Learning curve depends on

- realizable (can express target function) vs. non-realizable non-realizability can be due to missing attributes or restricted hypothesis class (e.g., thresholded linear function)
- redundant expressiveness (e.g., loads of irrelevant attributes)

Decision Tree Types

- Classification tree analysis is when the predicted outcome is the class to which the data belongs. Iterative Dichotomiser 3 (ID3), C4.5, (Quinlan, 1986)
- Regression tree analysis is when the predicted outcome can be considered a real number (e.g. the price of a house, or a patient's length of stay in a hospital).
- Classification And Regression Tree (CART) analysis is used to refer to both of the above procedures, first introduced by (Breiman et al., 1984)
- CHi-squared Automatic Interaction Detector (CHAID). Performs multi-level splits when computing classification trees. (Kass, G. V. 1980).
- A Random Forest classifier uses a number of decision trees, in order to improve the classification rate.
- Boosting Trees can be used for regression-type and classification-type problems.

Used in data mining (most are included in R, see rpart and party packages, and in Weka, Waikato Environment for Knowledge Analysis)