
DM560

Introduction to Programming in C++

Course Organization
Working Environment

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]



Course Organization
Developing a programOutline

1. Course Organization

2. Developing a program

2



Course Organization
Developing a programOutline

1. Course Organization

2. Developing a program

3



Course Organization
Developing a programCourse Elements

• Lectures: (F) 14 classes
• Exercises: (T) 15 classes in IMADA ComputerLab
• You have been registered as user of the IMADA ComputerLab
• Assessment: consisting of two assignments in class during the course + a final project
• Teacher: Marco Chiarandini
• Teacher Assistant: Golizheh Mehrooz

4



Course Organization
Developing a programCourse Material

• Regularly check the public course web page:
http://www.imada.sdu.dk/~marco/DM560/
Slides, exercise sheets, links

• Text book:
[BS] Bjarne Stroustrup, Programming – Principles and Practice Using C++ (Second Edition).
Addison-Wesley 2014.

5

http://www.imada.sdu.dk/~marco/DM560/


Course Organization
Developing a programExpected Workload

• Prepare/attend/process lecture: 1+2+1 hour

• Prepare/attend exercise/lab: 2+2 hours

• Total: 14 · 4+ 15 · 4 = 116 hours (5 ECTS)

• (Expected: 125 hours)

• Assignments: 2 · 2 hours

• Project: 50 hours

6



Course Organization
Developing a programAims of the Course

• Teach/learn
• Fundamental programming concepts
• Key useful techniques
• Basic Standard C++ facilities

• imperative/procedural
programming

• data abstraction
• object-oriented programming
• generic programming
• (functional programming)

• After the course, you’ll be able to
• Write small C++ programs for scientific computations
• Learn the basics of many other languages by yourself
• Read much larger programs

• After the course, you will not (yet) be
• An expert programmer
• A C++ language expert
• An expert user of advanced libraries

7



Course Organization
Developing a programAims of the Course

• Teach/learn
• Fundamental programming concepts
• Key useful techniques
• Basic Standard C++ facilities

• imperative/procedural
programming

• data abstraction
• object-oriented programming
• generic programming
• (functional programming)

• After the course, you’ll be able to
• Write small C++ programs for scientific computations
• Learn the basics of many other languages by yourself
• Read much larger programs

• After the course, you will not (yet) be
• An expert programmer
• A C++ language expert
• An expert user of advanced libraries

7



Course Organization
Developing a programAims of the Course

• Teach/learn
• Fundamental programming concepts
• Key useful techniques
• Basic Standard C++ facilities

• imperative/procedural
programming

• data abstraction
• object-oriented programming
• generic programming
• (functional programming)

• After the course, you’ll be able to
• Write small C++ programs for scientific computations
• Learn the basics of many other languages by yourself
• Read much larger programs

• After the course, you will not (yet) be
• An expert programmer
• A C++ language expert
• An expert user of advanced libraries

7



Course Organization
Developing a programWhy C++?

• Performance (aka, efficiency)
• Cross platform
• Expressiveness
• Correctness?
• TIOBE index

Aspects of C++

• imperative/procedural
• object oriented
• functional
• generic

• statically typed
• natively compiled
• deterministic object lifetime
• pay for what you use
• compile time computation

Most of the programming concepts in C++ can be used directly in other languages, such as C,
C#, Fortran, and Java.

9

https://www.tiobe.com/tiobe-index/


Course Organization
Developing a programWhy C++?

• Performance (aka, efficiency)
• Cross platform
• Expressiveness
• Correctness?
• TIOBE index

Aspects of C++

• imperative/procedural
• object oriented
• functional
• generic

• statically typed
• natively compiled
• deterministic object lifetime
• pay for what you use
• compile time computation

Most of the programming concepts in C++ can be used directly in other languages, such as C,
C#, Fortran, and Java.

9

https://www.tiobe.com/tiobe-index/


Course Organization
Developing a programWhy C++?

• Performance (aka, efficiency)
• Cross platform
• Expressiveness
• Correctness?
• TIOBE index

Aspects of C++

• imperative/procedural
• object oriented
• functional
• generic

• statically typed
• natively compiled
• deterministic object lifetime
• pay for what you use
• compile time computation

Most of the programming concepts in C++ can be used directly in other languages, such as C,
C#, Fortran, and Java.

9

https://www.tiobe.com/tiobe-index/


Course Organization
Developing a programCourse Outline

Part I: The basics
• Types, variables, strings, console I/O, arithmetic operations, vectors, functions, source files,

classes
• control structures, error handling, design, implementation, and use of functions and

user-defined types
• debugging and testing

Part II: Input and Output (I/O)
• File I/O, I/O streams
• Classes and Polymorphism

Part III: Data structures and algorithms
• Memory management: free store, pointers, and arrays
• Data structures: lists, maps, sorting and searching, vectors. Templates
• The STL: containers and algorithms

Part IV: Broadening the view
• Software ideals and history
• Text processing, regular expression matching, numerics, embedded systems programming,

testing, C, etc.

11



Course Organization
Developing a programCourse Outline

Part I: The basics
• Types, variables, strings, console I/O, arithmetic operations, vectors, functions, source files,

classes
• control structures, error handling, design, implementation, and use of functions and

user-defined types
• debugging and testing

Part II: Input and Output (I/O)
• File I/O, I/O streams
• Classes and Polymorphism

Part III: Data structures and algorithms
• Memory management: free store, pointers, and arrays
• Data structures: lists, maps, sorting and searching, vectors. Templates
• The STL: containers and algorithms

Part IV: Broadening the view
• Software ideals and history
• Text processing, regular expression matching, numerics, embedded systems programming,

testing, C, etc.

11



Course Organization
Developing a programCourse Outline

Part I: The basics
• Types, variables, strings, console I/O, arithmetic operations, vectors, functions, source files,

classes
• control structures, error handling, design, implementation, and use of functions and

user-defined types
• debugging and testing

Part II: Input and Output (I/O)
• File I/O, I/O streams
• Classes and Polymorphism

Part III: Data structures and algorithms
• Memory management: free store, pointers, and arrays
• Data structures: lists, maps, sorting and searching, vectors. Templates
• The STL: containers and algorithms

Part IV: Broadening the view
• Software ideals and history
• Text processing, regular expression matching, numerics, embedded systems programming,

testing, C, etc.

11



Course Organization
Developing a programCourse Outline

Part I: The basics
• Types, variables, strings, console I/O, arithmetic operations, vectors, functions, source files,

classes
• control structures, error handling, design, implementation, and use of functions and

user-defined types
• debugging and testing

Part II: Input and Output (I/O)
• File I/O, I/O streams
• Classes and Polymorphism

Part III: Data structures and algorithms
• Memory management: free store, pointers, and arrays
• Data structures: lists, maps, sorting and searching, vectors. Templates
• The STL: containers and algorithms

Part IV: Broadening the view
• Software ideals and history
• Text processing, regular expression matching, numerics, embedded systems programming,

testing, C, etc.
11



Course Organization
Developing a programCourse Outline

Appendices
A: C++ language summary
B: C++ standard library summary
C: Integrated development environment (IDE) and

D,E: Graphical user interface (GUI) library.
• Index (extensive)
• Glossary (short)

12



Course Organization
Developing a programExercises and Assignments

Exercise designed according to:

• Realism: The concepts, constructs, and techniques can be used to build “industrial strength”
programs

• Simplicity: The examples used are among the simplest realistic ones that illustrate the
concepts, constructs, and techniques

• Scalability: The concepts, constructs, and techniques can be used to construct large, reliable,
and efficient programs

Don’t be too impatient for “realistic” examples.

13



Course Organization
Developing a programMutual Expectations

The teacher provides:
1. introduction to topics and concepts (as often as needed)
2. answers to your questions (in class and during breaks)
3. guidance to your learning by selecting topics and assigning exercises

The students provide:
1. questions, when something is unclear
2. seek contact to the TA when in need for help
3. preparation for lectures and exercise/lab sections

14



Course Organization
Developing a programYour Tasks

• Recommended reading is material you are expected to know about the next time we meet
Additional reading is material you can read already to get acquainted with concepts we will
discuss later in the course

• Review questions: good to learn terminology, and articulate ideas and concepts.
Terminology is important to ask peers and communication

• Drills: do all

• Exercises: the ones recommended

• Exercises in class

• Assignments in class

• Final Project

“Programming is learned by writing programs.” — Brian Kernighan

15



Course Organization
Developing a programYour Tasks

• Recommended reading is material you are expected to know about the next time we meet
Additional reading is material you can read already to get acquainted with concepts we will
discuss later in the course

• Review questions: good to learn terminology, and articulate ideas and concepts.
Terminology is important to ask peers and communication

• Drills: do all

• Exercises: the ones recommended

• Exercises in class

• Assignments in class

• Final Project

“Programming is learned by writing programs.” — Brian Kernighan

15



Course Organization
Developing a programFurther Remarks

• Consider every web resource highly suspect until you have reason to believe better of it

• C++ has taken distance from C. This course is not C-first
• We use ISO standard C++ 14
• Consider portability and the use of a variety of machine architectures and operating systems
• Knowing “why” is important for programming skills.

Conversely, just memorizing lots of poorly understood rules and language facilities is limiting, a
source of errors, and a massive waste of time: Manuals are there for that.

• Programming ⊂ Computer Science
CS is the systematic study of computing systems and computation

• We want correctness, reliability, affordability and maintainability

18



Course Organization
Developing a programFurther Remarks

• Consider every web resource highly suspect until you have reason to believe better of it
• C++ has taken distance from C. This course is not C-first

• We use ISO standard C++ 14
• Consider portability and the use of a variety of machine architectures and operating systems
• Knowing “why” is important for programming skills.

Conversely, just memorizing lots of poorly understood rules and language facilities is limiting, a
source of errors, and a massive waste of time: Manuals are there for that.

• Programming ⊂ Computer Science
CS is the systematic study of computing systems and computation

• We want correctness, reliability, affordability and maintainability

18



Course Organization
Developing a programFurther Remarks

• Consider every web resource highly suspect until you have reason to believe better of it
• C++ has taken distance from C. This course is not C-first
• We use ISO standard C++ 14

• Consider portability and the use of a variety of machine architectures and operating systems
• Knowing “why” is important for programming skills.

Conversely, just memorizing lots of poorly understood rules and language facilities is limiting, a
source of errors, and a massive waste of time: Manuals are there for that.

• Programming ⊂ Computer Science
CS is the systematic study of computing systems and computation

• We want correctness, reliability, affordability and maintainability

18



Course Organization
Developing a programFurther Remarks

• Consider every web resource highly suspect until you have reason to believe better of it
• C++ has taken distance from C. This course is not C-first
• We use ISO standard C++ 14
• Consider portability and the use of a variety of machine architectures and operating systems

• Knowing “why” is important for programming skills.
Conversely, just memorizing lots of poorly understood rules and language facilities is limiting, a
source of errors, and a massive waste of time: Manuals are there for that.

• Programming ⊂ Computer Science
CS is the systematic study of computing systems and computation

• We want correctness, reliability, affordability and maintainability

18



Course Organization
Developing a programFurther Remarks

• Consider every web resource highly suspect until you have reason to believe better of it
• C++ has taken distance from C. This course is not C-first
• We use ISO standard C++ 14
• Consider portability and the use of a variety of machine architectures and operating systems
• Knowing “why” is important for programming skills.

Conversely, just memorizing lots of poorly understood rules and language facilities is limiting, a
source of errors, and a massive waste of time: Manuals are there for that.

• Programming ⊂ Computer Science
CS is the systematic study of computing systems and computation

• We want correctness, reliability, affordability and maintainability

18



Course Organization
Developing a programFurther Remarks

• Consider every web resource highly suspect until you have reason to believe better of it
• C++ has taken distance from C. This course is not C-first
• We use ISO standard C++ 14
• Consider portability and the use of a variety of machine architectures and operating systems
• Knowing “why” is important for programming skills.

Conversely, just memorizing lots of poorly understood rules and language facilities is limiting, a
source of errors, and a massive waste of time: Manuals are there for that.

• Programming ⊂ Computer Science
CS is the systematic study of computing systems and computation

• We want correctness, reliability, affordability and maintainability

18



Course Organization
Developing a programFurther Remarks

• Consider every web resource highly suspect until you have reason to believe better of it
• C++ has taken distance from C. This course is not C-first
• We use ISO standard C++ 14
• Consider portability and the use of a variety of machine architectures and operating systems
• Knowing “why” is important for programming skills.

Conversely, just memorizing lots of poorly understood rules and language facilities is limiting, a
source of errors, and a massive waste of time: Manuals are there for that.

• Programming ⊂ Computer Science
CS is the systematic study of computing systems and computation

• We want correctness, reliability, affordability and maintainability

18



Course Organization
Developing a programRemarks

• Use the lectures to understand which parts are relevant and essential and focus on those when
reading the book afterwards

• Exercises are not published before the lectures because you need to learn how to design
programs in class. Use after class to work on the exercises for the training session

• It is good to sketch first the program on a piece of paper. This is a useful step in solving a
programming task. The design is a human brain activity not a computer activity and the best
way not to skip this stage is to stay away from computer

• There will not always be published solutions. This is mainly because there are many different
solutions that work.

• We do not use an advanced IDE because our focus is on developing programming skills. When
you have acquired them it will be easier to move to an advanced IDE.

20



Course Organization
Developing a programOutline

1. Course Organization

2. Developing a program

21



Course Organization
Developing a programThe Process of Developing a Program

• Analysis: What’s the problem?

• Design: How do we solve the problem?

• Programming: Express the solution to the problem (the design) in code. Make sure that the
code is correct and maintainable.

• Testing: Make sure the system works correctly under all circumstances required by
systematically trying it out.

Feedback is an important element of the process

Discuss designs and programming techniques with friends, colleagues, potential users, and so
on before you head for the keyboard.

22



Course Organization
Developing a programThe Process of Developing a Program

• Analysis: What’s the problem?

• Design: How do we solve the problem?

• Programming: Express the solution to the problem (the design) in code. Make sure that the
code is correct and maintainable.

• Testing: Make sure the system works correctly under all circumstances required by
systematically trying it out.

Feedback is an important element of the process

Discuss designs and programming techniques with friends, colleagues, potential users, and so
on before you head for the keyboard.

22



Course Organization
Developing a programA first program

// ...
int main() // main() is where a C++ program starts
{

cout << "Hello , world!\n"; // output the 13 characters Hello , world!
// followed by a new line

return 0; // return a value indicating success
}
// quotes delimit a string literal
// NOTE: "smart" quotes ‘‘ ’’ will cause compiler problems.
// so make sure your quotes are of the style " "
// \n is a notation for a new line

23



Course Organization
Developing a programA first program

// a first program:
#include "std_lib_facilities.h" // get the library facilities needed for now
int main() // main() is where a C++ program starts
{

cout << "Hello , world!\n"; // output the 13 characters Hello , world!
// followed by a new line

return 0; // return a value indicating success
}

// note the semicolons; they terminate statements
// braces { } group statements into a block
// main( ) is a function that takes no arguments ( )
// and returns an int (integer value) to indicate success or failure

24



Course Organization
Developing a programHello, world!

• Its purpose is to help you get used to your tools
• Compiler
• Program development environment
• Program execution environment

• Type in the program carefully
• After you get it to work, please make a few mistakes to see how the tools respond; for example:

• Forget the header
• Forget to terminate the string
• Misspell return (e.g., retrun)
• Forget a semicolon
• Forget { or }
• . . .

26



Course Organization
Developing a programHello, world!

• Only cout << ‘‘Hello, world!\n’’; directly does anything

• That’s normal
Most of our code, and most of the systems we use simply exist to make some other code
elegant and/or efficient

• Notation, libraries, and other support is what makes our code simple, comprehensible,
trustworthy, and efficient
the alternative is writing 1,000,000 lines of machine code

• This implies that we should not just “get things done” we should take great care that things
are done elegantly, correctly, and in ways that ease the creation of more/other software

27



Course Organization
Developing a programCode Style

Coding Style Matters!

• Code is read and modified repeatedly by others.
• Make their job more manageable by using good style.
• Remember, one of those “other people” might be you.

28



Course Organization
Developing a programCompilation and linking

• You write C++ source code. Source code is (in principle) human readable
• The compiler translates what you wrote into object code (sometimes called machine code)

Object code is simple enough for a computer to “understand”
• The linker links your code to system code needed to execute

E.g., input/output libraries, operating system code, and windowing code
• The result is an executable program: E.g., a .exe file on windows or an a.out file on Unix

29



Course Organization
Developing a programBuilding a Program

• Example: compile, link, and execute
a simple program consisting of two source files, my_file1.cpp and my_file2.cpp, using the
GNU C++ compiler on a Unix or Linux system

• Bash command line interface (CLI) as opposed to graphical user interface (GUI)

bash$ /ussr/bin/g++ -c my_file1.cpp my_file2.cpp
bash$ g++ -o my_program my_file1.o my_file2.o
bash$ ./ my_program

bash$ g++ -o my_program my_file1.cpp my_file2.cpp
bash$ ./ my_program

• Example: our “Hello World”

bash$ g++ -o hello hello_world.cpp
bash$ ./ my_program

30



Course Organization
Developing a programBuilding a Program

• Viewing compiled code in readable assembly language:

objdump -d hello

bash$ g++ -S -o hello hello_world.cpp
bash$ less hello

31



Course Organization
Developing a programThe next lecture

• Will talk about types, values, variables, declarations, simple input and output, very simple
computations, and type safety.

34


	Course Organization
	Developing a program

