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Overview

• Vector revisited: How are they implemented?
• Pointers and free store

• Allocation (new)
• Access

• Arrays and subscripting: []
• Dereferencing: ∗

• Deallocation (delete)
• Destructors
• Initialization
• Copy and move
• Arrays
• Array and pointer problems
• Changing size
• Templates
• Range checking and exceptions
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Vector

A vector
• Can hold an arbitrary number of elements

(Up to whatever physical memory and the operating system can handle)
• That number can vary over time

E.g. by using push_back()
Example:

vector <double > age (4);
age [0]=.33; age [1]=22.0; age [2]=27.2; age [3]=54.2;

0.33

age[0]:

22.0

age[1]:

27.2

age[2]:

54.2

age[3]:
4age :
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Vector

// a very simplified vector of doubles (like vector <double >):
class vector {

int sz; // the number of elements (’the size ’)
double* elem; // pointer to the first element

public:
vector(int s); // constructor: allocate s elements ,

// let elem point to them ,
// store s in sz

int size() const { return sz; } // the current size
};

∗ means pointer to so double∗ is a pointer to double
• What is a pointer?
• How do we make a pointer point to elements?
• How do we allocate elements?
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Pointer Values

• Pointer values are memory addresses
• think of them as a kind of integer values
• the first byte of memory is 0, the next 1, and so on
• a pointer p can hold the address of a memory location

0 1 2

0x600000

p

7

0x600000 220 − 1

• A pointer points to an object of a given type
e.g. a double∗ points to a double, not a string

• A pointer’s type determines how the memory referred to by the pointer’s value is used
e.g. what a double∗ points to can be added but not, say, concatenated
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Vector: Constructor
An (simplified) implementation of the constructor:

vector :: vector(int s) // vector ’s constructor
:sz(s), // store the size s in sz
elem(new double[s]) // allocate s doubles on the free store

// store a pointer to those doubles in elem
{
}
// Note: new does not initialize elements (but the standard vector does)

free store

elem:

4

sz :

a pointer

new allocates memory from the
free store and returns a pointer
to the allocated memory
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The Computer’s Memory

As a program sees it

• Local variables “live on the stack”

• Global variables are static data

• The executable code is in the code section

Code

Static data

Free store

Stack

Memory layout
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The Free Store (aka the Heap)

You request memory to be allocated on the free store by the new operator

• The new operator returns a pointer to the allocated memory

• A pointer is the address of the first byte of the memory
For example

int* p = new int; // allocate one uninitialized int
// int* means pointer to int

int* q = new int [7]; // allocate seven uninitialized ints
// "an array of 7 ints"

double* pd = new double[n]; // allocate n uninitialized doubles

• A pointer points to an object of its specified type

• A pointer does not know how many elements it points to
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Access

Individual elements:

int* p1 = new int; // get (allocate) a new uninitialized int
int* p2 = new int (5); // get a new int initialized to 5

???

p1:

5

p2:

int x = *p2; // get/read the value pointed to by p2
// (or "get the contents of what p2 points to")
// in this case , the integer 5

int y = *p1; // undefined: y gets an undefined value; don’t do that
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Access
Arrays are sequences of elements numbered [0], [1], [2], ...:
int* p3 = new int [5]; // get (allocate) 5 ints:

[0] [1] [2] [3] [4]
p3 :

• set (write to) the 1st element of p3
p3[0] = 7;
p3[1] = 9;

• get the value of the 2nd element of p3
int x2 = p3[1];

• the dereference operator ∗ for an array: ∗p3 means p3[0] (and vice versa)
int x3 = *p3;
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Why Use Free Store?

To allocate objects that have to outlive the function that creates them:
For example:

double* make(int n) // allocate n ints
{

return new double[n];
}

Another example: vector’s constructor
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Pointer Values

Pointer values are memory addresses
• Think of them as a kind of integer values
• The first byte of memory is 0, the next 1, and so on

0 1 2 p2

7

∗p2 220 − 1

You can see a pointer value (but you rarely need/want to):

int* p1 = new int (7); // allocate an int and initialize it to 7
double* p2 = new double (7); // allocate a double and initialize it to 7.0
cout << "p1==" << p1 << " *p1==" << *p1 << "\n";
cout << "p2==" << p2 << " *p2==" << *p2 << "\n";

Output:

p1==0 x7fbba54028b0 *p1==7
p2==0 x7fbba54028c0 *p2==7
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Access

A pointer does not know the number of elements that it’s pointing to
(only the address of the first element)

double* p1 = new double;
*p1 = 7.3; // ok
p1[0] = 8.2; // ok
p1[17] = 9.4; // ouch! Undetected error
p1[-4] = 2.4; // ouch! Another undetected error 8.2 ��7.3

p1:

double* p2 = new double [100];
*p2 = 7.3; // ok
p2[17] = 9.4; // ok
p2[-4] = 2.4; // ouch! Undetected error

7.3

p1:
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Access

A pointer does not know the number of elements that it’s pointing to

double* p1 = new double;
double* p2 = new double [100]; p1:

p2:
[0]: [99]:
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Access

A pointer does not know the number of elements that it’s pointing to

double* p1 = new double;
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Access
A pointer does know the type of the object that it’s pointing to

int* pi1 = new int (7);
int* pi2 = pi1; // ok: pi2 points to the same object as pi1

double* pd = pi1; // error: can’t assign an int* to a double*
char* pc = pi1; // error: can’t assign an int* to a char*

There are no implicit conversions between a pointer to one value type to a pointer to another value
type

However, there are implicit conversions between value types:

*pc = 8; // ok: we can assign an int to a char
*pc = *pi1; // ok: we can assign an int to a char

7

pi1:

7

pc:
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Note

• With pointers and arrays we are “touching” hardware directly with only the most minimal
help from the language. Here is where serious programming errors can most easily be made,
resulting in malfunctioning programs and obscure bugs

• Be careful and operate at this level only when you really need to

• If you get segmentationfault, buserror, or coredumped, suspect an uninitialized or
otherwise invalid pointer

• vector is one way of getting almost all of the flexibility and performance of arrays with
greater support from the language (read: fewer bugs and less debug time).
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Vector: Construction and Primitive Access

A very simplified vector of doubles:

class vector {
int sz; // the size
double* elem; // a pointer to the elements

public:
vector(int s) :sz(s), elem(new double[s]) { } // constructor
double get(int n) const { return elem[n]; } // access: read
void set(int n, double v) { elem[n]=v; } // access: write
int size() const { return sz; } // the current size

};

vector v(10);
for (int i=0; i<v.size (); ++i) { v.set(i,i); cout << v.get(i) << ’ ’; }

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

elem:

10

sz :
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A Problem: Memory Leak

double* calc(int result_size , int max)
{

double* p = new double[max]; // allocate another max doubles
// i.e., get max doubles from the free store

double* result = new double[result_size ];
// ... use p to calculate results to be put in result ...

delete[] p; // de-allocate (free) that array

return result;
}

double* r = calc (200 ,100); // oops! We "forgot" to give the memory
// allocated for p back to the free store

delete[] r; // easy to forget

• Lack of de-allocation (usually called memory leaks) can be a serious problem in real-world
programs

• A program that must run for a long time can’t afford any memory leaks
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Memory Leaks

• A program that needs to run “forever” can’t afford any memory leaks
An operating system is an example of a program that runs “forever”

• If a function leaks 8 bytes every time it is called, how many megabytes it has leaked/lost if it
is called 130,000 times?

• All memory is returned to the system at the end of the program
If you run using an operating system (Windows, Unix, whatever)

• Program that runs to completion with predictable memory usage may leak without causing
problems i.e., memory leaks aren’t “good/bad” but they can be a major problem in specific
circumstances

28
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Memory Leaks

Another way to get a memory leak

void f()
{

double* p = new double [27];
// ...
p = new double [42];
// ...
delete [] p;

}

The 1st array (of 27 doubles) leaked
p:

1st value

2nd value
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Memory Leaks

How do we systematically and simply avoid memory leaks?

• Don’t mess directly with new and delete. Use vector

• Or use a garbage collector
• A garbage collector is a program the keeps track of all of your allocations and returns unused

free-store allocated memory to the free store (not covered in this course; see
http://www.stroustrup.com/C++.html)

• Unfortunately, even a garbage collector doesn’t prevent all leaks (See also Chapter 25)

30
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Vector: Memory Leak

void f(int x)
{

vector v(x); // define a vector
// (which allocates x doubles on the free store)

// ... use v ...

// give the memory allocated by v back to the free store
// but how? (vector ’s elem data member is private)

}
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Vector: Destructor

// a very simplified vector of doubles:
class vector {

int sz; // the size
double* elem; // a pointer to the elements

public:
vector(int s) // constructor: allocates/acquires memory

:sz(s), elem(new double[s]) { }
~vector () // destructor: de-allocates/releases memory

{ delete[ ] elem; }
// ...

};

Note: this is an example of a general and important technique:
• acquire resources in a constructor
• release them in the destructor

Examples of resources: memory, files, locks, threads, sockets
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Memory Leak

void f(int x)
{

int* p = new int[x]; // allocate x ints
vector v(x); // define a vector (which allocates another x ints)
// ... use p and v ...
delete[ ] p; // deallocate the array pointed to by p
// the memory allocated by v is implicitly deleted here by vector ’s destructor

}

• The delete now looks verbose and ugly
• How do we avoid forgetting to delete[]p? (Experience shows that we often forget)

Prefer deletes in destructors
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Free Store Summary
Allocate using new

• new allocates an object on the free store, sometimes initializes it, and returns a pointer to it
int* pi = new int; // default initialization (none for int)
char* pc = new char(’a’); // explicit initialization
double* pd = new double [10]; // allocation of (uninitialized) array

• new throws a bad_alloc exception if it can’t allocate (out of memory)

Deallocate using delete and delete[]
• delete and delete[] return the memory of an object allocated by new to the free store so

that the free store can use it for new allocations
delete pi; // deallocate an individual object
delete pc; // deallocate an individual object
delete[ ] pd; // deallocate an array

• Delete of a zero-valued pointer (the null pointer) does nothing
char* p = nullptr; /// substitute the old C++ char* p=0;
delete p; // harmless
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void∗

• void∗ means “pointer to some memory that the compiler doesn’t know the type of”

• We use void∗ when we want to transmit an address between pieces of code that really don’t
know each other’s types – so the programmer has to know
Example: the arguments of a callback function

• There are no objects of type void
void v; // error
void f(); // f() returns nothing

// f() does not return an object of type void

• Any pointer to object can be assigned to a void∗
int* pi = new int;
double* pd = new double [10];
void* pv1 = pi;
void* pv2 = pd;
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void∗

To use a void∗ we must tell the compiler what it points to

void f(void* pv)
{

void* pv2 = pv; // copying is ok (copying is what void*s are for)

double* pd = pv; // error: can’t implicitly convert void* to double*
*pv = 7; // error: you can’t dereference a void*

// this’s good: the int 7 is not represented like the double 7.0
pv[2] = 9; // error: you can’t subscript a void*
pv++; // error: you can’t increment a void*
int* pi = static_cast <int*>(pv); // ok: explicit conversion
// ...

}

• A static_cast can be used to explicitly convert to a ’pointer to object type’
• static_cast is a deliberately ugly name for an ugly (and dangerous) operation – use it only

when absolutely necessary

37



void∗

To use a void∗ we must tell the compiler what it points to

void f(void* pv)
{

void* pv2 = pv; // copying is ok (copying is what void*s are for)

double* pd = pv; // error: can’t implicitly convert void* to double*

*pv = 7; // error: you can’t dereference a void*
// this’s good: the int 7 is not represented like the double 7.0

pv[2] = 9; // error: you can’t subscript a void*
pv++; // error: you can’t increment a void*
int* pi = static_cast <int*>(pv); // ok: explicit conversion
// ...

}

• A static_cast can be used to explicitly convert to a ’pointer to object type’
• static_cast is a deliberately ugly name for an ugly (and dangerous) operation – use it only

when absolutely necessary

37



void∗

To use a void∗ we must tell the compiler what it points to

void f(void* pv)
{

void* pv2 = pv; // copying is ok (copying is what void*s are for)

double* pd = pv; // error: can’t implicitly convert void* to double*
*pv = 7; // error: you can’t dereference a void*

// this’s good: the int 7 is not represented like the double 7.0

pv[2] = 9; // error: you can’t subscript a void*
pv++; // error: you can’t increment a void*
int* pi = static_cast <int*>(pv); // ok: explicit conversion
// ...

}

• A static_cast can be used to explicitly convert to a ’pointer to object type’
• static_cast is a deliberately ugly name for an ugly (and dangerous) operation – use it only

when absolutely necessary

37



void∗

To use a void∗ we must tell the compiler what it points to

void f(void* pv)
{

void* pv2 = pv; // copying is ok (copying is what void*s are for)

double* pd = pv; // error: can’t implicitly convert void* to double*
*pv = 7; // error: you can’t dereference a void*

// this’s good: the int 7 is not represented like the double 7.0
pv[2] = 9; // error: you can’t subscript a void*

pv++; // error: you can’t increment a void*
int* pi = static_cast <int*>(pv); // ok: explicit conversion
// ...

}

• A static_cast can be used to explicitly convert to a ’pointer to object type’
• static_cast is a deliberately ugly name for an ugly (and dangerous) operation – use it only

when absolutely necessary

37



void∗

To use a void∗ we must tell the compiler what it points to

void f(void* pv)
{

void* pv2 = pv; // copying is ok (copying is what void*s are for)

double* pd = pv; // error: can’t implicitly convert void* to double*
*pv = 7; // error: you can’t dereference a void*

// this’s good: the int 7 is not represented like the double 7.0
pv[2] = 9; // error: you can’t subscript a void*
pv++; // error: you can’t increment a void*

int* pi = static_cast <int*>(pv); // ok: explicit conversion
// ...

}

• A static_cast can be used to explicitly convert to a ’pointer to object type’
• static_cast is a deliberately ugly name for an ugly (and dangerous) operation – use it only

when absolutely necessary

37



void∗

To use a void∗ we must tell the compiler what it points to

void f(void* pv)
{

void* pv2 = pv; // copying is ok (copying is what void*s are for)

double* pd = pv; // error: can’t implicitly convert void* to double*
*pv = 7; // error: you can’t dereference a void*

// this’s good: the int 7 is not represented like the double 7.0
pv[2] = 9; // error: you can’t subscript a void*
pv++; // error: you can’t increment a void*
int* pi = static_cast <int*>(pv); // ok: explicit conversion
// ...

}

• A static_cast can be used to explicitly convert to a ’pointer to object type’
• static_cast is a deliberately ugly name for an ugly (and dangerous) operation – use it only

when absolutely necessary
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void∗

• void∗ is the closest C++ has to a plain machine address
• Some system facilities require a void∗
• For example, in the callback of the FLTK FUI, Address is a void∗:

typedef void* Address;
void Lines_window :: cb_next(Address ,Address)
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Pointers and References

Think of a reference as:

• an automatically dereferenced pointer
• or as “an alternative name for an object” (alias)

Differences:
• a reference must be initialized
• the value of a reference cannot be changed after initialization

int x = 7;
int y = 8;
int* p = &x; *p = 9;
p = &y; // ok
int& r = x; x = 10;
r = &y; // error (and so is all other attempts to change what r refers to)
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Summary

1. Pointers

2. Memory Allocation

3. Access

4. Memory Leaks and Destructors

5. void*
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