DM560
Introduction to Programming in C++

Vector and Free Store
(Vectors and Arrays)

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]

Outline

1. Initialization

2. Copy

3. Move

4. Arrays

Overview

® \/ector revisited: How are they implemented?
® Pointers and free store

® Destructors

® |nitialization

® Copy and move

® Arrays

® Array and pointer problems

® Changing size

® Templates

® Range checking and exceptions

Reminder

Why look at the vector implementation?
® To see how the standard library vector really works

® To introduce basic concepts and language features

v Free store (heap)
® Copy and move
® Dynamically growing data structures

® To see how to directly deal with memory

To see the techniques and concepts you need to understand C, including the dangerous ones

To demonstrate class design techniques
® To see examples of “neat” code and good design

vector

A very simplified vector of doubles (as far as we got so far):

class vector {

int sz; // the size
double* elem; // pointer to elements
public:
vector (int s) :sz{s}, elem{new double[s]} { } // constructor
// new allocates memory

“vector () { deletel[] elem; } // destructor

// delete[] deallocates memory
double get(int n) { return elem[n]; } // access: read
void set(int n, double v) { elem[n]l=v; } // access: write
int size() const { return sz; } // the number of elements

Outline

1. Initialization

Initialization: Initializer Lists

We would like simple, general, and flexible initialization. So we provide suitable constructors:

class vector {

public:
vector (int s); // constructor (s is the element count)
vector (std::initializer_list <double> 1st); // initializer-1list comnstructor
g
vector v1(20); // 20 elements, each initialized to 0

vector v2 {1,2,3,4,5}; // 5 elements: 1,2,3,4,5

vector::vector (int s) // constructor (s is the element count)
:sz{s}, elem{new double[s]} { }
{
for (int i=0; i<sz; ++i) elem[i]=0;
¥

vector::vector(std::initializer_list<double> 1lst) // dinitializer-list constructor
:sz{lst.size()}, elem{new doublel[sz]}
{
std::copy(lst.begin(),1lst.end(),elem); // copy 1lst to elem
}

Initialization

If we initialize a vector by 17 is it
® 17 elements (with value 0)7

® 1 element with value 177

By convention use
® () for number of elements

o {} for elements

For example

vector v1(17); // 17 elements, each with the value O
vector v2 {17}; // 1 element with value 17

Initialization: Explicit Constructors

A problem:

® A constructor taking a single argument defines a conversion from the argument type to the
constructor's type

® QOur vector had vector :: vector(int), so

vector vl = 7; // vl has 7 elements, each with the value 0

void do_something(vector v)
do_something (7); // call do_something() with a vector of 7 elements

This is very error-prone.
® Unless, of course, that's what we wanted

® For example

complex<double> d = 2.3; // convert from double to complex<double>

Initialization: Explicit Constructors

A solution:
Declare constructors taking a single argument explicit unless you want a conversion from the
argument type to the constructor's type

class vector {

//

public:
explicit vector (int s); // constructor (s is the element count)
//

};

vector vl = 7; // error: no implicit conversion from int

void do_something(vector v);
do_something (7); // error: mno implicit conversion from int

Outline

2. Copy

11

A Problem

Copy doesn't work as we would have hoped (expected?)

void f(int n)

{
vector v(n); // define a vector
vector v2 = v; // what happens here?
// what would we like to happen?
vector v3;
v3 = v; // what happens here?
// what would we like to happen?
!/
}

® |deally: v2 and v3 become copies of v (that is, = makes copies) and all memory is returned to
the free store upon exit from £()

® That's what the standard vector does,
but it's not what happens for our still-too-simple vector

Naive Copy Initialization (the Default)

By default copy means copy the data members

void f(int n)

{
vector vi(mn);
vector v2 = vl; // initialization:
// by default, a copy of a class copies its members
// so sz and elem are copied
}
vl:
v2:

Disaster when we leave £()!
v1's elements are deleted twice (by the destructor)

13

Naive Copy Assignment (the Default)

void f(int n)

{
vector vi(m);
vector v2(4);
v2 = vl; // assignment:
// by default, a copy of a class copies its members
// so sz and elem are copied
}
T]
v2: | | |

Disaster when we leave £()!
v1's elements are deleted twice (by the destructor)
memory leak: v2's elements are not deleted

14

Copy Constructor (Initialization)

class vector {
int sz;
doublex elem;
public:
vector (const vector&) ; // copy constructor: define copy (below)
//
g
vector::vector (const vector& a)
:sz{a.sz}, elem{new double[a.sz]}

// allocate space for elements, then initialize them (by copying)

for (int i = 0; i<sz; ++i) elem[i] = a.elem[i];

15

Copy with Copy Constructor

void f(int n)
{
vector vi(n);
vector v2 = vl; // copy using the copy constructor
// the for loop copies each value from vl

into v2

vl 3 | — |]

2 3 | — ||

The destructor correctly deletes all elements
(once only for each vector)

16

Copy Assignment

class vector {

int sz;
doublex elem;
public:
vector& operator=(const vector& a); // copy assignment: define copy (mnext slide)
//
1
x=a;

8 | 4+ [2|
1 | 2 | 3 | 4 | Memory leak? (no)
8 | 4] 2 |

Operator = must copy a's elements

17

Copy Assignment (Implementation)

Like copy constructor, but we must deal with old elements.
Make a copy of a then replace the current sz and elem with a's

vector& vector::operator=(const vector& a)

{
double* p = new doublel[a.sz]; // allocate new space
for (int i = 0; i<a.sz; ++i) pl[i] = a.elem[il]; // copy elements
deletel[] elem; // deallocate old space
sz = a.sz; // set new size
elem = p; // set new elements
return *this; // return a self-reference

}

® The identifier this is a pointer that points to the object for which the member function was
called (see par. 17.10).

® [t is immutable

18

Copy with Copy Assignment (Implementation)

void f(int n)

{

vector vl {6,24,42};

vector v2(4);

v2 = vil; // assignment
¥

6 | 24 | 42 |

delete[|d by = in
1 | 2 | 3 | 4 | previous slide. No
memory leak

6 | 24 | 42 |

Operator = must copy a's elements

19

Copy Terminology

Shallow copy: copy only a pointer so that the two pointers
now refer to the same object

® \What pointers and references do

Deep copy: copy what the pointer points to so that the
two pointers now each refer to a distinct object

® What vector, string, etc. do

® Requires copy constructors and copy assignments for
container classes

® Must copy “all the way down” if there are more levels
in the object

20

Deep and Shallow Copy

vector<int> vi {2,4};

vector<int> v2
33

v2[0] =

int b =
int& ril
int& r2
r2 = 7;

9;

vi; // deep copy (v2 gets its own copy of vl’s elements)
// v1[0] is still 2

// shallow copy (r2 refers to the same variable as ril)
// b becomes 7

r2: rl: b

21

Outline

3. Move

22

Move

Consider
vector fill(istream& is)
{
vector res;
for (double x; is>>x;) res.push_back(x);
return res; // returning a copy of res could be expensive
// returning a copy of res would be silly!
}
void use ()
{
vector vec = fill(cin);
// ... use vec

23

Move: What We Want

Before return res in £i11():

vec: |uninitialized
-

After return res; (after vectorvec = £fill(cin);)

o N RN

res:| 0 |nu11ptr|

24

Move Constructor and Move Assignment

Define move operations to “steal” representation

class vector {

int sz;
doublex*x elem;
public:
vector (vector&&) ; // move constructor: "steal" the elements
vector& operator=(vector&&); // move assignment:
// destroy target and "steal" the elements
//

g

&& indicates move

25

Move Constructor and Assignment (Implementation)

move constructor: “steal’ the elements

vector::vector(vector&& a) // move constructor
:sz{a.sz}, elem{a.elem} // copy a’s elem and sz

{
a.sz = 0; // make a the empty vector
a.elem = nullptr;

}

move assignment: destroy target and “steal” the elements

vector& vector::operator=(vector&& a) // move assignment
{
delete[] elem; // deallocate old space
elem = a.elem; // copy a’s elem and sz
sz = a.sz;
a.elem = nullptr; // make a the empty vector
a.sz = 0;
return *this; // return a self-reference (see par.

17.

10)

26

Essential Operations

® Default constructor

® Constructors from one or more arguments

® Copy constructor (copy object of same type)
® Copy assignment (copy object of same type)
® Move constructor (move object of same type)
® Move assignment (move object of same type)

® Destructor

If you define one of these,
define them all

27

Outline

4. Arrays

28

Arrays

Arrays don’t have to be on the free store

char acl[7]; // global array - "lives" forever -
int max = 100;
int ail[max];

in static storage

int f(int n)

{
char 1c[20]; // local array - "lives" until the end of scope - on stack
int 1i[60];
double 1x[n]; // error: a local array size must be known at compile time
// vector<double> 1lx(n); would work
!/

29

Address of &

You can get a pointer to any object
not just to objects on the free store

int a;
char ac[20];

void f(int n)

{
int b;
int* p = &b; // pointer to individual variable
p = &a; // now point to a different variable
char* pc = ac; // the name of an array names a pointer to its first element

pc = &ac[0]; // equivalent to pc = ac
pc &ac[n]; // pointer to ac’s nth element (starting at Oth)
// warning: range is not checked

//

30

Arrays Convert to Pointers

void f(int pil 1) // equivalent to void f(int* pi)
{
int al 1 = { 1, 2, 3, 4 };
int b[] = a; // error: copy isn’t defined for arrays
b = pi; // error: copy isn’t defined for arrays. Think of a
// (non-argument) array name as an immutable pointer
pi = aj; // ok: but it doesn’t copy: pi now points to a’s first element

// Is this a memory leak? (maybe)
int* p = a; // p points to the first element of a
int* q = pi; // q points to the first element of a

Memory leak?

31

Arrays don't Know Their Size

Warning: very dangerous code, for illustration only: never “hope” that sizes will always be correct

void f(char pc[], int n) // equivalent to void f(char* pc, int n)
{
char bufi1[200]; // you can’t say ‘char bufli[n];’ n is a variable
strcpy (bufl,pc); // copy characters from pc into bufl
// strcpy terminates when a ’\0’ character is found
// hope that pc holds less than 200 characters
// alternative that hedges against pc holding > 200 chars
strncpy (bufl,pc,200); // copy 200 characters from pc to bufl

// padded if necessary, but final ’\0’ not guaranteed
}

Similarly:

void f£(int pil], int n) // equivalent to void f(int* pi, int n)
{
int buf2[300]; // you can’t say ‘int buf2[n];’ n is a variable
if (300 < n) error("not enough space");
for (int i=0; i<mn; ++i) buf2[i] = pil[il; // hope that pi really has space for
// n ints; it might have less

32

Be Careful with Arrays and Pointers

Watch out on dangling pointers (pointers to deleted memory)

char* f()

{

char ch[20];
char* p = &ch[90];

//
*p = ’a’; // we don’t know what this will overwrite
charx q; // forgot to initialize
*q = ’b’; // we don’t know what this will overwrite
return &ch[10]; // oops: ch disappears upon return from f ()
// (an infamous dangling pointer)
}
void g()
{
char*x pp = £();
e
*pp = ’c’; // we don’t know what this will overwrite

// (f’s ch is gone for good after the return from f)

33

Why Bother with Arrays?

® |t's all that C has

® |n particular, C does not have vector

® There is a lot of C code “out there”

® There is a lot of C++ code in C style “out there”

® You'll eventually encounter code full of arrays and pointers

® They represent primitive memory in C4++ programs
We need them (mostly on free store allocated by new) to implement better container types

® Avoid arrays whenever you can

® They are the largest single source of bugs in C and (unnecessarily) in C++ programs
® They are among the largest sources of security violations, usually (avoidable) buffer overflows

34

Recap: Types of Memory

vector glob (10); // global vector - ‘‘lives’’ forever

vector* some_fct(int n)

{
vector v(n); // local vector - ‘‘lives’’ until the end of scope
vector* p = new vector(m); // free-store vector - ‘‘lives’’ until we delete it
//
return p;
}
void £ ()
{
vector* pp = some_fct (17);
//
delete pp; // deallocate the free-store vector allocated in some_fct ()
}

it's easy to forget to delete free-store allocated objects
so avoid new/delete when you can (and that’s most of the time)

Vector: Primitive Access

A very simplified vector of doubles:

vector v (10);

Pretty ugly access:

for (int i=0; i<v.size(); ++i) {
v.set(i,i);
cout << v.get(i);

}

We're used to this way of accessing:
for (int i=0; i<v.size(); ++i) {
v[il=i;
cout << vl[il;

0.0 10[20]30]40]50][60][70][s80]90]

36

Vector: Pointers for Access

A very simplified vector of doubles:

class vector {

int sz; // the size
double* elem; // pointer to elements
public:
explicit vector (int s) :sz{s}, elem{new double[s]} { } // constructor
//

double* operator[](int n) { return &elem[nl; } // access: return pointer

I3
vector v(10);

Access via pointers:

for (int i=0; i<v.size(); ++i) {
*v[i] = i; // means *(v[i]), that is, return a pointer to
// the ith element, and dereference it
cout << *xv[il];

}
It works, but still too ugly.

37

Vector: References for Access

A very simplified vector of doubles:

class vector {

int sz; // the size
tdouble* elem; // pointer to elements
public:
explicit vector (int s) :sz{s}, elem{new double[s]} { } // constructor
!/

double& operator[](int n) { return elem[nl]; } // access: return reference
}s
vector v(10);
Access via references:

for (int i=0; i<v.size(); ++i) {
v[i] = i; // v[i] returns a reference to the ith element

cout << vl[il;

}
It works and it looks right!!

38

Pointer and Reference

You can think of a reference as an automatically dereferenced immutable pointer, or as an
alternative name (alias) for an object

® Assignment to a pointer changes the pointer's value
® Assignment to a reference changes the object referred to

® You cannot make a reference refer to a different object

int a = 10;
int* p = &a; // you need & to get a pointer
*xp = 7; // assign to a through p
// you need ’*’ (or ’[]’) to get to what a pointer points to
int x1 = *p; // read ’a’ through ’p’

int& r = a; // ’r’ is an alias for ’a’

r = 9; // assign to ’a’ through ’r’

int x2 = r; // read ’a’ through ’r’

p = &x1; // you can make a pointer point to a different object

r &x1; // error: you can’t change the value of a ’r’

Summary

1. Initialization
2. Copy
3. Move

4. Arrays

40

	Initialization
	Copy
	Move
	Arrays

