
DM560

Introduction to Programming in C++

Types
Control Structures

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]

Data Types
Type safetyOutline

Most programming tasks involve manipulating data. We will:

• describe how to input and output data

• present the notion of a variable for holding data

• introduce the central notions of “Type” and “Type Safety”

2

Data Types
Type safetyOutline

1. Data Types

2. Type safety

3

Data Types
Type safetyOutline

1. Data Types

2. Type safety

4

Data Types
Type safetyInput and Output

// read first name:
#include <iostream > // eller #include "std_lib_facilities.h" our course header
int main()
{

cout << "Please enter your first name (followed " << "by ’enter ’):\n";
string first_name;
cin >> first_name;
cout << "Hello , " << first_name << ’\n’;

}
// - note how several values can be output by a single statement
// - a statement that introduces a variable is called a declaration
// - a variable holds a value of a specified type
// - the final return 0; is optional in main()
// (but you may need to include it to pacify your compiler)

5

Data Types
Type safetySource Files

*

Header

std_lib_facilities.h

Interfaces to libraries
(declarations)

Source file

myfile.cpp

#include “std_lib_facilities.h”
My code
My data
(definitions)

6

Data Types
Type safetyInput and type

• We read into a variable
Here, first_name

• A variable has a type
Here, string

• The type of a variable determines what operations we can do on it
– Here, cin>>first_name; reads characters until a whitespace character is seen (“a word”)
– White space: space, tab, newline, ...

7

Data Types
Type safetyString Input

// read first and second name:
int main()
{

cout << "please enter your first and second names\n";
string first;
string second;
cin >> first >> second;
// read two strings
string name = first + ’ ’ + second;
// concatenate strings
// separated by a space
cout << "Hello , "<< name << ’\n’;

}
// We left out here the line #include "std_lib_facilities.h" to save space and
// reduce distraction
// Don’t forget it in real code!
// Similarly , we leave out the Windows -specific keep_window_open ();

8

Data Types
Type safetyIntegers

// read name and age:
int main()
{

cout << "please enter your first name and age\n";
string first_name;
// string variable
int age;
// integer variable
cin >> first_name >> age; // read
cout << "Hello , " << first_name << " age " << age << ’\n’;

}

9

Data Types
Type safetyIntegers and Strings

Strings

• cin >> reads a word
• cout << writes
• + concatenates
• += s adds the string s at end
• ++ is an error
• - is an error
• ...

Integers and floating-point numbers

• cin >> reads a number
• cout << writes
• + adds
• += n increments by the int n
• ++ increments by 1
• - subtracts
• ...

The type of a variable determines which operations are valid and what their meanings are for that
type (that’s called overloading or operator overloading)

10

Data Types
Type safetyNames

A name in a C++ program

• Starts with a letter, contains letters, digits, and underscores (only)
x, number_of_elements, Fourier_transform, z2
Not names:

• 12x
• timetomarket
• main line

Do not start names with underscores: _foo
those are reserved for implementation and system entities

• Users can’t define names that are taken as keywords
E.g.:

• int
• if
• while
• double

11

Data Types
Type safetyNames

Choose meaningful names

• Abbreviations and acronyms can confuse people
mtbf, TLA, myw, nbv

• Short names can be meaningful
(only) when used conventionally:

• x is a local variable
• i is a loop index

• Don’t use overly long names
Ok:
partial_sum, element_count, staple_partition
Too long:
the_number_of_elements,
remaining_free_slots_in_the_symbol_table

12

Data Types
Type safetySimple Arithmetic

// do a bit of very simple arithmetic:
int main()
{

cout << "please enter a floating -point number: "; // prompt for a number
double n; // floating -point variable
cin >> n;
cout << "n == " << n
<< "\nn+1 == " << n+1 // ’\n’ means ‘‘a newline ’’
<< "\nthree times n == " << 3*n
<< "\ntwice n == " << n+n
<< "\nn squared == " << n*n
<< "\nhalf of n == " << n/2
<< "\nsquare root of n == " << sqrt(n) // library function
<< ’\n’;

}

13

Data Types
Type safetyA Simple Computation

int main()
// inch to cm conversion
{

const double cm_per_inch = 2.54; // number of centimeters per inch
int length = 1; // length in inches
while (length != 0) // length == 0 is used to exit the program
{ // a compound statement (a block)

cout << "Please enter a length in inches: ";
cin >> length;
cout << length << "in. = "
<< cm_per_inch*length << "cm.\n";

}
}

A while-statement repeatedly executes until its condition becomes false

14

Data Types
Type safetyAnother Simple Computation

Solve Quadratic Equations

• ax2 + bx + c = 0: a * x * x + b * x + c = 0

x =
−b ±

√
b2 − 4ac
2a

#include <iostream >
#include <cmath > // For sqrt() function.
using namespace std;
int main()
{

double rootl , root2 , a, b, c, root;
cout << "Enter the coefficients a, b, c: ";
cin >> a >> b >> c;
root = sqrt(b * b - 4.0 * a * c);
rootl = 0.5 * (root - b) / a;
root2 = - 0.5 * (root + b) / a;
cout << "The solutions are " << rootl << " and " << root2 << "/n" <<endl;
return (0);

}

15

Data Types
Type safetyTypes and Literals

Built-in types Types Literals
Boolean bool true false
Character char ’a’, ’x’, ’4’, ’n’, ’$’
Integer int, short, long 0, 1, 123, -6, 034, 0xa3
Floating-point double and float 1.2, 13.345, .3, -0.54, 1.2e3, .3F

Standard-library types Types Literals
String string ’asdf’, ’Howdy, all y all!’
Complex Numbers complex<Scalar> complex<double>(12.3,99)

complex<float>(1.3F)

If you need more details, see the book! (pages 66-67, 1077-1080)

16

Data Types
Type safetyTypes

• C++ provides a set of types called built-in types
E.g. bool, char, int, double

• C++ programmers can define new types called user-defined types
We’ll get to that eventually

• The C++ standard library provides a set of types
E.g. string, vector, complex
Technically, these are user-defined types
they are built using only facilities available to every user

17

Data Types
Type safetyDeclaration and Initialization

18

Data Types
Type safetyObjects

• An object is some memory that can hold a value of a given type

• A variable is a named object

• A declaration names an object

19

Data Types
Type safetyTypes and Objects

• type defines a set of possible values and a set of operations (for an object)

• object is some memory that holds a value of a given type

• value is a set of bits in memory interpreted according to a type

• literal is a value conforming a type

• variable is a named object

• declaration is a statement that gives a name to an object

• definition is a declaration that sets aside memory for an object

20

Data Types
Type safetyOutline

1. Data Types

2. Type safety

21

Data Types
Type safetyType Safety

• Language rule: type safety
Every object will be used only according to its type

• A variable will be used only after it has been initialized
• Only operations defined for the variable’s declared type will be applied
• Every operation defined for a variable leaves the variable with a valid value

• Ideal: static type safety
A program that violates type safety will not compile
The compiler reports every violation (in an ideal system)

• Ideal: dynamic type safety
If you write a program that violates type safety it will be detected at run time
 Some code (typically "the run-time system") detects every violation not found by the
compiler (in an ideal system)

22

Data Types
Type safetyType Safety

• Type safety is a very big deal
Try very hard not to violate it
“when you program, the compiler is your best friend”

• C++ is not (completely) statically type safe
• No widely-used language is (completely) statically type safe
• Being completely statically type safe may interfere with your ability to express ideas

• C++ is not (completely) dynamically type safe
• Many languages are dynamically type safe
• Being completely dynamically type safe may interfere with the ability to express ideas and often

makes generated code bigger and/or slower

• Almost all of what you’ll be taught here is type safe
We’ll specifically mention anything that is not

23

Data Types
Type safetyAssignment and Increment

// changing the value of a variable
int a = 7; // a variable of type int called a

// initialized to the integer value 7

a = 9; // assignment: now change a’s value to 9

a = a+a; // assignment: now double a’s value

a += 2; // increment a’s value by 2

++a; // increment a’s value (by 1)

24

Data Types
Type safetyA type-safety violation

(“implicit narrowing”)

// Beware: C++ does not prevent you from trying to put a large value
// into a small variable (though a compiler may warn)

int main()
{

int a = 20000;
char c = a;
int b = c;
if (a != b) // != means ‘‘not equal ’’
cout << "oops!: " << a << "!=" << b << ’\n’;
else
cout << "Wow! We have large characters\n";

}

 Try it to see what value b gets on your machine

25

Data Types
Type safetyA Technical Detail

• In memory, everything is just bits; type is what gives meaning to the bits

(bits/binary) 01100001 is the int 97 is the char ’a’
(bits/binary) 01000001 is the int 65 is the char ’A’
(bits/binary) 00110000 is the int 48 is the char ’0’

char c = ’a’;
cout << c; // print the value of character c, which is a
int i = c;
cout << i; // print the integer value of the character c, which is 97

• This is just as in “the real world”:
What does “42” mean?
You don’t know until you know the unit used
Meters? Feet? Degrees Celsius? $s? a street number? Height in inches? ...

26

Data Types
Type safetyA Type-safety Violation

Uninitialized variables

// Beware: C++ does not prevent you from trying to use a variable
// before you have initialized it (though a compiler typically warns)

int main()
{

int x; // x gets a ’random ’ initial value
char c; // c gets a ’random ’ initial value
double d; // d gets a ’random ’ initial value

// not every bit pattern is a valid floating -point value
double dd = d; // potential error: some implementations

// can’t copy invalid floating -point values
cout << " x: " << x << " c: " << c << " d: " << d << ’\n’;

}

 Always initialize your variables – beware: ’debug mode’ may initialize (valid exception to this
rule: input variable)

27

Data Types
Type safetyType Conversions

They can be:
• safe (bool to char, bool to int, bool to double, char to int, char to double, int to double)
• unsafe (narrowing conversions: double to int, double to char, double to bool, int to char, int to

bool, char to bool)
The compilers accets them but warns against them. Use {} initialization to outlaw narrowing

They can be:
• implicit

char ch;
int x;
ch = x; (where ch is char and x is int)

• explicit, type casting

(type) expression

28

Data Types
Type safetyAbout Efficiency

• For now, don’t worry about efficiency
Concentrate on correctness and simplicity of code

• C++ is derived from C, which is a systems programming language
• C++’s built-in types map directly to computer main memory

a char is stored in a byte
an int is stored in a word
a double fits in a floating-point register

• C++’s built-in operations map directly to machine instructions
an integer + is implemented by an integer add operation
an integer = is implemented by a simple copy operation

• C++ provides direct access to most of the facilities provided by modern hardware

• C++ help users build safer, more elegant, and efficient new types and operations using built-in
types and operations.
E.g., string
Eventually, we’ll show some of how that’s done

29

Data Types
Type safetyAnother Simple Computation

// inch to cm and cm to inch conversion:

int main()
{

const double cm_per_inch = 2.54;
int val;
char unit;
while (cin >> val >> unit) { // keep reading

if (unit == ’i’) // ’i’ for inch
cout << val << "in == " << val*cm_per_inch << "cm\n";

else if (unit == ’c’) // ’c’ for cm
cout << val << "cm == " << val/cm_per_inch << "in\n";

else
return 0; // terminate on a ’bad unit ’, e.g. ’q’

}
}

30

Data Types
Type safetyC++14 Hint

You can use the type of an initializer as the type of a variable

// ’auto’ means ’the type of the initializer ’
auto x = 1; // 1 is an int , so x is an int
auto y = ’c’; // ’c’ is a char , so y is a char
auto d = 1.2; // 1.2 is a double , so d is a double

auto s = ‘‘Howdy’’; // ‘‘Howdy ’’ is a string literal of type const char[]
// so don’t do that until you know what it means!

auto sq = sqrt (2); // sq is the right type for the result of sqrt (2)
// and you don’t have to remember what that is

auto duh; // error: no initializer for auto

32

	Data Types
	Type safety

