DM560
Introduction to Programming in C++

Developing a Program

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]

Outline

1. Writing a Program

2. A First Version

3. Improvements

Outline

1. Writing a Program

Overview

We focus on the task of designing a program through the example of a simple "desk calculator.”

® Some thoughts on software development

The idea of a calculator
® Using a grammar
® Expression evaluation

® Program organization

Developing a Program

Analysis

® Refine our understanding of the problem
® Think of the final use of our program

® Design
® Create an overall structure for the program

® |Implementation
® Write code
® Debug
® Test

Go through these stages repeatedly

Reminder

® We learn by example

® Not by just seeing explanations of principles
® Not just by understanding programming language rules

® The more and the more varied examples the better

® You won't get it right the first time
® “You can't learn to ride a bike from a correspondence course”

Developing a Program: Example

We'll build a program in stages, making lot of “typical mistakes” along the way
® Even experienced programmers make mistakes

® Designing a good program is genuinely difficult

It's often faster to let the compiler detect gross mistakes than to try to get every detail right
the first time

® Concentrate on the important design choices
® Developing a simple, incomplete version allows us to experiment and get feedback

® Good programs are “grown”

A Simple Calculator

® Given expressions as input from the keyboard, evaluate them and write out the resulting value.

For example:
Expression: 242 Result: 4
Expression: 2+2*3 Result: 8
Expression: 243-25/5 Result: 0

® |et's refine this a bit more ...

A Pseudo-Code

A first idea in pseudo code:

int main ()

{
variables
while (get a line) { // what is a line?
analyze the expression // what does that mean?
evaluate the expression
print the result
¥
}

® How do we represent 45+5/7 as data?
® How do we find 45 + 5 / and 7 in an input string?
How do we make sure that 45+5/7 means 45+(5/7) rather than (45+5) /77

Should we allow floating-point numbers (sure!)

® Can we have variables? v=7; m=9; v*n (later)

10

A Simple Calculator

e Wait! What would the experts do?
“Don’t re-invent the wheel”

® Computers have been evaluating expressions for 50+ years
There has to be a solution!
What did the experts do?

® Reading is good for you
Asking more experienced friends/colleagues can be far more effective, pleasant, and
time-effective than slogging along on your own

11

Outline

2. A First Version

12

Expression Grammar

This is what the experts usually do: write a grammar:

Expression :
Term
Expression ‘+’ Term e.g., 1+2, (1-2)+3, 2%3+1
Expression ‘-’ Term
Term :
Primary
Term ‘%’ Primary e.g., 1%2, (1-2)%3.5

Term ¢/’ Primary
Term ‘%’ Primary

Primary :
Number e.g., 1, 3.5
>(’ Expression ’)’ e.g., (1+2%3)
Number :
floating-point literal e.g., 3.14, 0.274el, or 42 - as defined for C++

A program is built out of Tokens (e.g., numbers and operators) = something we consider a unit.

13

Grammars

What's a grammar?

A set of (syntax) rules for expressions.
The rules say how to analyze (“parse”) an expression.

Some rules seem hard-wired into our brains
Example, you know what this means:
2%3+44/2
birds fly but fish swim
You know that this is wrong:
2% 4+34/2
fly birds fish but swim
How can we teach what we know to a computer?
Why is it right/wrong?
How do we know?

14

Grammars - “English”

15

Grammars - Expressions

16

Grammars - Expressions

17

Grammars - Expressions

18

Functions for Parsing

We need functions to match the grammar rules

get () // read characters and compose tokens
// calls cin for input

expression () // deal with + and -
// calls term() and get ()

term() // deal with =*, /, and %
// calls primary () and get ()

primary () // deal with numbers and parentheses
// calls expression() and get ()

® Note: each function deals with a specific part of an expression and leaves everything else to
other functions — this radically simplifies each function.

® Analogy: a group of people can deal with a complex problem by each person handling only
problems in his/her own specialty, leaving the rest for colleagues.

19

Function Return Types

What should the parser functions return? How about the result?

Token get_token(); // read characters and compose tokens
double expression(); // deal with + and -
// return the sum (or difference)
double term(); // deal with =*, /, and %
// return the product (or ...)
double primary(); // deal with numbers and parentheses
// return the value

What is a Token?

20

What is a Token?

® \We want to see input as a stream of tokens
® We read characters 1 + 4%(4.5-6) (That's 13 characters incl. 2 spaces)
® 9 tokens in that expression: 1 + 4 * (4.5 - 6)
® 6 kinds of tokens in that expression: number + * (-)

® \We want each token to have two parts
® A “kind"; e.g., number
® Avalue; eg., 4

® We need a type to represent this “Token" idea
® We need to define a class (Chp. 7). For now:

® get_token() gives us the next token from input
® t.kind gives us the kind of the token
® +t.value gives us the value of the token

21

Dealing with + and -

Expression:
Term

Expression ’+’ Term // Note: every Expression starts with a Term
Expression ’-’ Term

double expression () // read and evaluate: 1 1+2.5

{
double left = term();
while (true) {

Token t = get_token();
switch (t.kind) { //

// get the Term

// get the next token...
and do the right thing with it

1+2+3.14

case ’+7: left += term(); break;

case ’-’: left -= term(); break;

default: return left; // return the value of the
}

FBEE o

expression

22

Dealing with *, / and 7,

Term :
Primary
Term ‘%’ Primary // Note: every Term starts with a Primary
Term ¢/’ Primary

double term() // exactly like expression(), but for *, /, and
{

double left = primary(); // get the Primary
while (true) {
Token t = get_token(); // get the next Token...
switch (t.kind) {
case ’%7: left *= primary(); break;
case ’/7: left /= primary(); break;
case ’%’: left %= primary(); break;
default: return left; // return the value
¥
¥

} // Oops: doesn’t compile: % isn’t defined for floating-point numbers
23

Dealing with * and /

Term :

Primary

Term ‘%’ Primary // Note: every Term starts with a Primary

Term ¢/’ Primary

double term() // exactly like expression(), but for *, and /

{

double left = primary();
while (true) {
Token t = get_token();
switch (t.kind) {

case x7: left *= primary();
case ’/’: left /= primary();
default: return left;

// get the Primary
// get the next Token
break;

break;
// return the value

24

Dealing with Divide by 0

double term() // exactly like expression(), but for * and

{
double left = primary();

// get the Primary
while (true) {

Token t = get_token(); // get the next Token
switch (t.kind) {

case 2*’: left *= primary(); break;

case ’/7:

{

double d = primary();

if (d==0) runtime_error ("divide by zero");
left /= d;

break;

}

default: return left; // return the value

Note: in switch you need a block {} if you want to declare variables in a case

25

Dealing with Numbers and Parentheses

Primary :

Number

> (> Expression ’)’
Number :

floating-point literal

double primary () // Number or ’(’ Expression ’)°
{

Token t = get_token();

switch (t.kind) {

case ’(’: // handle ’(’expression
{

double d = expression();

t = get_token();

if (t.kind != ’)’) runtime_error("’)’ expected");

return d;
}
case ’87: // we use ’8’ to represent the ‘‘kind’’
return t.value; // return the number’s value
default:

runtime_error ("primary expected");

7);

of a number

26

Program Organization

Who calls whom? (note the loop)

istream
cin

ostream
cout
<<

¢ primary

0)

27

The Program

// #include "std_lib_facilities.h"
#include <iostream>
#include <stdexcept>

// Token stuff (explained in the next lecture)

double

double
double
double

expression(); // declaration so that primary() can call expression ()

primary() { /* ... %/ } // deal with numbers and parentheses
term() { /x ... %/ } // deal with * and / (pity about %)
expression() { /* ... %/ } // deal with + and -

int main() { /* ... */ } // on next slide

28

The Program - main()

int main ()

try {
while (cin)
cout << expression() << ’\n’;
// keep_window_open ();

¥

catch (runtime_error& e) {
cerr << e.what () << endl;
// keep_window_open ();
return 1;

¥

catch (...) {
cerr << "exception \n";
// keep_window_open ();
return 2;

}

Find the code in Sheet 4.

// for some Windows versions

29

Execution

30

A Detective Job

® Expect “mysteries’

® Your first try rarely works as expected

® That's normal and to be expected even for experienced programmers
® |f it looks as if it works be suspicious and test a bit more
® Now comes the debugging finding out why the program misbehaves

We have to understand what our code is doing and explain why it does the right thing

Analyzing our errors is often also the best way to find a correct solution

31

1 2 3 445 6+7 8+9 10 11 12

1 // an answer
4 // an answer
6 // an answer
8 // an answer
10 // an answer

Aha! Our program “eats” two out of three inputs.
How come?
Let's have a look at expression()

Dealing with + and -

Expression:
Term

Expression ’+’ Term // Note: every Expression starts with a Term
Expression ’-’ Term

double expression () // read and evaluate: 1 1143, 5

{
double left = term();
while (true) {

Token t = get_token();
switch (t.kind) { //

// get the Term

// get the next token...

1+2+3.14

case ’+7:
case ’-7:
default:

and do the right thing with it
left += term(); break;
left -= term(); break;

return left; // <= does not use ‘next Token’’

BBE o

33

Dealing with + and -

So, we need a way to “put back” a token!
® Put back into what?

® “the input,” of course: we need an input stream of tokens, a “token stream”

double expression () // deals with ’+’ and ’-’
{
double left = term(); // get the Term
while (true) {
Token t = get (); // get the next token from a token stream
switch (t.kind) { // ... and do the right thing with it
case ’+7: left += term(); break;
case ’-7: left -= term(); break;
default: ts.putback(t); return left; // put the unused token
}
}

back

34

Dealing with * and /

Now make the same change to term()

double term() // deal with * and /
{
double left = primary();
while (true) {
Token t = ts.get(); // get the next Token from input
switch (t.kind) {
case ’*7:
// deal with *
case ’/’:
// deal with /
default:
ts.putback(t); // put unused token back into input stream
return left;

The Program

® Now the program sort of work

® \We get feedback and it starts the fun

36

Another Case for our Detective

2 3 4 2+3 2%3

2 an answer
& an answer
4 an answer
5 an answer

What!? No “6" ?
® The program looks ahead one token. It's waiting for the user
® So, we introduce a “print result” command. Let it be ;

® While we're at it, we also introduce a “quit” command. Let it be g

The main() Program

int main ()
{
double val = 0;
while (cin) {
Token t = ts.get(); // rather than get_token ()

if (t.kind == ’q’) break; // ’q’ for ¢‘quit’’
if (t.kind == 7;7?) // ?;? for ‘‘print now?’’
cout << val << ’\n’; // print result
else
ts.putback(t); // put a token back into the input stream
val = expression(); // evaluate

¥

keep_window_open () ;

// ... exception handling

38

Execution

39

Completing the Program

Now wee need to complete the implementation

® Token and Token_stream; struct and class
® Get the calculator to work better
® Add features based on experience

® Clean up the code:
After many changes code often becomes a bit of a mess
We want to produce maintainable code
® Prompts
® Program organization
constants
Recovering from errors
Commenting
Code review
Testing

Token

We want a type that can hold a “kind” and a value:

+

struct Token {

char kind;

g

2.3

double value;

¥

Token t;
t.kind =

t.value =

]

Token u

cout << u

)87;

// define a type called Token

// what kind of token
// used for numbers (only): a value
// semicolon is required

// . (dot) is used to access members
// (use ’8’ to mean ’number’)

// a Token behaves much like a built-in type, such as
// so u becomes a copy of t
// will print 2.3

int

41

Token

struct Token { // user-defined type called Token

char kind; // what kind of token
double value; // used for numbers (only): a value
};
Token{’+’}; // make a Token of ¢‘kind?’’ I 40
Token{’8?,4.5}; // make a Token of ‘‘kind’’ ’8’ and value 4.5
® A struct is the simplest form of a class
® Class is C++'s term for user-defined type
® Defining types is the crucial mechanism for organizing programs in C++ as in most other
modern languages
®

a class (including structs) can have
® data members (to hold information), and
® function members (providing operations on the data)

42

Token_stream

® A Token_stream reads characters, producing Tokens on demand
® We can put a Token into a Token_stream for later use

® A Token_stream uses a “buffer’ to hold tokens we put back into it

Example:
Token_stream buffer: | empty
Input stream: | 1+2%3;

For 1+2%3;, expression() calls term() which reads 1, then reads +, decides that + is a job for
“someone else” and puts + back in the Token_stream (where expression() will find it)

Token_stream buffer: | Token(?+?)
Input stream: 2%3

43

Token_stream

A Token_stream reads characters, producing Tokens. We can put back a Token.

Definition:

class Token_stream {
public: // user interface:
Token get ();

// get a Token

void putback(Token); // put a Token back into the Token_stream

private: // representation:

bool full {falsel};
Token buffer; //
¥

// the Token_stream starts

Implementation:

not directly accessible to users:
// is there a Token in the buffer?
here is where we keep a Token put back using putback ()

out empty: full==false

void Token_stream::putback(Token t) // mnote void when nothing returned

{

if (full) runtime_error ("putback() into a full buffer");

buffer=t;
full=true;

a4

Token_stream

Token Token_stream::get () // read a Token from the Token_stream
{

// check if we already have a Token ready

if (full) { full=false; return buffer; }

char ch;
cin >> ch; // note that >> skips whitespace (space, newline, tab, etc.)

switch (ch) {
case ’(’: case ’)’: case ’;’: case ’q’:
case ’+’: case ’-’: case ’*’: case ’/’:
return Token{ch}; // let each character represent itself
case ’.’: case ’0’: case ’1’: case ’2’: case ’3’: case ’4’7:
case ’5’: case ’6’: case ’7’: case ’8’: case ’97:

{ cin.putback(ch); // put digit back into the input stream
double val;
cin >> val; // read a floating-point number
return Token{’8’,vall}; // let ’8° represent "a number"

}

default: runtime_error("Bad token");

Streams

Note that the notion of a stream of data is extremely general and very widely used
® Most /O systems
E.g., C++ standard 1/O streams

® with or without a putback/unget operation
We used putback for both Token_stream and cin

46

Outline

3. Improvements

a7

Improvements

We can improve the calculator in stages

Style — clarity of code
Comments

Naming

Use of functions
Better prompts
Recovery after error

Functionality/Features — what it can do

® Negative numbers

% (remainder/modulo)
Pre-defined symbolic values
Variables

~ Major Point
® Providing “extra features” early causes major
problems, delays, bugs, and confusion
® "“Grow" your programs

® First get a simple working version
® Then, add features that seem worth the
effort

48

Prompting

® |nitially we said we wanted

Expression: 2+3; 5*7; 2+9;
Result : 5

Expression: Result: 35
Expression: Result: 11
Expression:

® But this is what we implemented

2+3; b*7; 2+9;
5
35
11

® What do we really want?

2+3;
5
5%7;
35

v i v v

49

Adding Prompts and Output Indicators

double val = 0;
cout << "> ";
while (cin) {

Token t = ts.get();
if (t.kind == ’q’) break;
if (t.kind == ’;7)
cout << "= " << vyal << "\n > ";
else

ts.putback(t);

val = expression();
}
> 2+3; 5%7; 2+9;
=5
> = 35
> = 11
>

//

//

//

//

//the program doesn’t see input before you hit

print prompt

check for "quit"
print "= result" and prompt
read and evaluate expression

"enter/return"

50

But my Window Disappeared!

Test case: +1;

cout << "> ";
while (cin) {
Token t = ts.
while (t.kind
if (t.kind ==
keep_win
return O
}
ts.putback(t)
cout << "= "
}
keep_window_open
return O;

// prompt
get ()
== ;) t=ts.get(); // eat all
7q7) {
dow_open("~7");

3

>

<< expression() << "\n > ";

(n~~u);

semicolons

51

The Code is Getting Messy

® Bugs thrive in messy corners

® Time to clean up!

® Read through all of the code carefully
Try to be systematic (“have you looked at all the code?”)
® Improve comments
® Replace obscure names with better ones
® Improve use of functions
Add functions to simplify messy code
® Remove “magic constants”
E.g. '8' (What could that mean? Why '8'7)

® Once you have cleaned up, let a friend/colleague review the code (“code review”)
Typically, do the review together

52

Remove Magic Constants

® |f a “constant” could change (during program maintenance) or if someone might not recognize

it, use a symbolic constant

® |f a constant is used twice, it shou

// Token "kind" values:
const char number = ’8’;
const char quit = ’q’;
const char print = ’;7;

// User interaction strings:
const string prompt = "> ";
const string result = "= ";

Id probably be symbolic

// a floating-point number
// an exit command
// a print command

// indicate that a result follows

53

Remove Magic Constants

// In Token_stream::get():

case ’.’7:
case ’0’: case ’1’: case ’2’: case ’3’: case ’47:
case ’5’: case ’6’: case ’7’: case ’8’: case ’9’:
{ cin.putback(ch); // put digit back into the input
double val;
cin >> val; // read a floating-point number

return Token{number,vall}; // rather than Token{’8’,val}

}
// In primary():

case number: // rather than case ’87:
return t.value; // return the number’s value

Re-test the program whenever you have made a change

54

Remove Magic Constants

// In main():

while (cin) {

cout << prompt; // rather than "> "
Token t = ts.get();
while (t.kind == print) t=ts.get();
if (t.kind == quit) { // rather than ==’q’
keep_window_open () ;
return O0;
}
ts.putback(t);
cout << result << expression() << endl;

// rather than

2.

)

)

55

Recover from Errors

Currently, any user error terminates the program: That's not ideal!
Structure of code

int main ()

try {
// ... do "everything"

}

catch (exception& e) { // catch errors we understand something about
//

}

catch (...) { // catch all other errors
//

}

56

Recover from Errors

® Move code that actually does something out of main ()

® leave main() for initialization and cleanup only

int main () // step 1

try {
calculate ();
keep_window_open () ; //
return O;

}

catch (exception& e) { //
cerr << e.what () << endl;
keep_window_open (""" ");
return 1;

}

catch (...) { !/
cerr << "exception \n";
keep_window_open (""" ");

return 2;

cope with Windows console mode

errors we understand something about

other errors

57

Recover from Errors

Separating the read and evaluate loop out into calculate() allows us to simplify it no more ugly
keep_window_open() !

void calculate ()
{
while (cin) {
cout << prompt;
Token t = ts.get();
while (t.kind == print) t=ts.get (); // first discard all "prints"
if (t.kind == quit) return; // quit
ts.putback(t);
cout << result << expression() << endl;

58

Recover from Errors

Move code that handles exceptions from which we can recover from runtime_error () to
calculate()

int main () // step 2

try {
calculate ();
keep_window_open () ; // cope with Windows console mode
return O;

¥

catch (...) { // other errors (don’t try to recover)
cerr << "exception \n";
keep_window_open("~7");

return 2;

59

Recover from Errors

void calculate ()
{
while (cin) try {
cout << prompt;
Token t = ts.get();
while (t.kind == print) t=ts.get (); //
if (t.kind == quit) return; //
ts.putback(t);
cout << result << expression() << endl;

}
catch (exception& e) {
cerr << e.what() << endl; //
clean_up_mess () ; // <<< The
}

first discard all "prints"
quit

write error message
tricky part!

Recover from Errors

First try:
void clean_up_mess ()
{
while (true) { // skip until we find a print
Token t = ts.get();
if (t.kind == print) return;
}
}

Unfortunately, that doesn't work that well. Why not? Consider the input 1@$z; 1+3; When you
try to clean_up_mess () from the bad token @, you get a “"Bad token"” error trying to get rid of $
We always try not to get errors while handling errors

61

Recover from Errors

® Classic problem: the higher levels of a program can't recover well from low-level errors (i.e.,
errors with bad tokens).
Only Token_stream knows about characters

® \We must drop down to the level of characters
The solution must be a modification of Token_stream:

class Token_stream {

public:

Token get (); // get a Token

void putback(Token t); // put back a Token

void ignore(char c); // discard tokens up to and including a c
private:

bool full {falsel}; // is there a Token in the buffer?

Token buffer; // here is where we keep a Token put back using putback()

62

Recover from Errors

void Token_stream::ignore (char c)

// skip characters until we find a c; also discard that c

{
// first look in buffer:
if (full && c==buffer.kind) {
full = false;
return;

}

// && means and

full = false; // discard the contents of buffer

// mnow search input:
char ch = 0;
while (cin>>ch)
if (ch==c) return;

63

Recover from Errors

clean_up_mess() now is trivial and it works

void clean_up_mess ()
{
ts.ignore (print);

}

Note the distinction between what we do and how we do it:

® clean_up_mess() is what users see; it cleans up messes The users are not interested in
exactly how it cleans up messes

® ts.ignore(print) is the way we implement clean_up_mess()
We can change/improve the way we clean up messes without affecting users

64

Summary

1. Writing a Program

2. A First Version

3. Improvements

65

	Writing a Program
	A First Version
	Improvements

