DM560
Introduction to Programming in C++

Technicalities:
Declarations, Scopes, Functions, Namespaces

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]



Outline

1. Declarations and Definitions

2. Scopes

3. Functions

4. Namespaces



C++ Users: CERN'’s Higgs Boson Hunt

(2012) Higgs boson found! In email from CERN:

"all related computing done in C++." q
an

a follow-up from Fermilab:
"The reports are correct, almost all significant computing done for high energy physics (and
not only the LHC) is done in C++. And many (though not all) experiments are now in the
process of migrating to the use of C++11."
Sources:
® The Big Data Software Problem Behind CERN'’s Higgs Boson Hunt

® Root a data analysis framework based on C++ https://root.cern.ch//


https://root.cern.ch//

C++ Users: Mars Rover

https://www.youtube.com/watch?v=3SdSKZFoUa8


https://www.youtube.com/watch?v=3SdSKZFoUa8

Overview
Goals:

® broaden the view of C++'s basic facilities (types, functions, and initialization)

® provide a more systematic view of those facilities.

Contents:

® | anguage Technicalities

® Declarations
® Definitions
® Headers and the preprocessor
® Scope

® Functions
® Declarations and definitions
® Arguments
® Call by value, reference, and const reference

® Namespaces

using declarations



Language Technicalities

They are like the vocabulary and the grammar in a foreign language

In a formal language the rules governing the composition of well-formed expressions are
referred to as syntax

® \We need to learn them because programs must be precisely and completely specified

® A computer is a very stupid (though very fast) machine
® A computer can't guess what you “really meant to say” (and shouldn't try to)

However, here, we will look at only some of the C++ rules:
(the C++14 standard is 1,358 pages)



Language Technicalities

But! Don't spend your time on minor syntax and semantic issues

~~ Remember: we study programming concepts, the programming language is only a tool.

® Most design and programming concepts are universal, or at least very widely supported by
popular programming languages
So what you learn using C++ you can use with many other languages

® | anguage technicalities are specific to a given language
But many of the technicalities from C++ presented here have obvious counterparts in C, Java,

C#, etc.

® Moreover, there is more than one way to say everything



Outline

1. Declarations and Definitions



Declarations

A name must be declared before it can be used in a C++ program.
® A declaration introduces a name into a scope.
® A declaration also specifies a type for the named object.

® Sometimes a declaration includes an initializer.

Examples:

int a = 7; // an int variable named ’a’ is declared
const double cd = 8.7; // a double-precision floating-point constant
double sqrt(double); // a function taking a double argument and

// returning a double result
vector<Token> v; // a vector variable of Tokens (variable)



Declarations

A header is a file containing declarations providing an interface to other parts of a program

® Declarations are frequently introduced into a program through headers

® This allows for abstraction—you don't have to know the details of a function like cout in

order to use it.
When you add:

#include "std_lib_facilities.h"

to your code, the declarations in the file std_1ib_facilities.h become available (including

cout, etc.).

10



Examples

At least three errors:

int main ()
{

cout << f(i) <<
¥

Add declarations:

#include <iostream>
using namespace std;

int main ()
{

cout << f(i) <<
¥

’\n’;

// we find the declaration of

’\n’;

cout in here

11



Examples

Define your own functions and variables:

#include <iostream>
using namespace std;
int f(int x ) { /*
int main ()

{

int i = 7;
cout << f(i) <<

// we find the declaration of cout in here

*/ } // declaration of f

// declaration of i
)\n7;

12



Definitions

A definition is a declaration that (also) fully specifies the entity declared

Examples:

int a = 7;

int b; // an (uninitialized) int
vector<double> v; // an empty vector of doubles
double sqrt(double) { ... }; // a function with a body

struct Point { int x; int y; };

Examples of declarations that are not definitions

double sqrt(double); // function body missing
struct Point; // class members specified elsewhere
extern int a; // extern means "not definition"

// "extern" is archaic; we will hardly use

it

13



Declarations and Definitions

® You cannot define something twice.
A definition says what something is.

Examples

int a; // definition

int aj // error: double definition

double sqrt(double d) { ... } // definition

double sqrt(double d) { ... } // error: double definition

® You can declare something twice
A declaration says how something can be used

Example:

int a = 7; // definition (also a declaration)
extern int a; // declaration

double sqrt(double); // declaration

double sqrt(double d) { ... } // definition (also a declaration)

14



Why both Declarations and Definitions?

To refer to something, we need (only) its declaration

Often we want the definition "elsewhere"
Later in a file, in another file possibly written by someone else

Declarations are used to specify interfaces:
to your own code, and to libraries
~~ Libraries are key: we can't write all ourselves, and wouldn't want to

In larger programs, place all declarations in header files to ease sharing

15



Kinds of Declarations

The most interesting are

Variables
int x;
vector<int> vi2 {1,2,3,4};

Constants
void f(const X&) ;
constexpr int i = sqrt(2);

Functions

double sqrt(double d) { /*...

Namespaces
Types (classes and enumerations)

Templates (see Chapter 19)

*/}

16



Header files and Preprocessor

® A header is a file that holds declarations of functions, types, constants, and other program
components.

® The construct
#include "std_lib_facilities.h"

is a preprocessor directive that adds declarations to your program
Typically, the header file is simply a text (source code) file

® A header gives you access to functions, types, etc. that you want to use in your programs.

® Usually, you don't really care about how they are written.
® The actual functions, types, etc. are defined in other source code files
® Often as part of libraries

17



Source Files

el GG A header file defines an

// declarations/definitions: interface between user code
class Token { ... }; and implementation code

class Token stream { (usually in a library)
Token get();

+

extern Token stream ts;

B
tokenize.cpp c
#include “tokenize.h” The same #include use.cpp
// implementations: deC|a'fat'ons n _b_Oth #include "token.h"
Token Token _stream::get() .cpp files (definitions
{/*..*} and uses) ease Token t = ts.get();
Token _stream ts; consistency checking

18



Conditional Compilation

A common use of preprocessor is to avoid reading files more than once:

#ifndef MY_TOKENIZE_H
#define MY_TOKENIZE_H

/* here the header information */
#endif

These directives are called macros

#ifdef WINDOWS

#include ‘‘my_windows_header.h’’
#else

#include ‘‘my_linux_header.h’’
#endif

19



Outline

2. Scopes

20



Scope

® A scope is a region of program text

® Global scope (outside any language construct)

® Class scope (within a class)
® Local scope (between { ... } braces)
® Statement scope (e.g. in a for-statement)

® A name in a scope can be seen from within its scope and within scopes nested within that
scope

® Only after the declaration of the name (“can't look ahead” rule)
® Class members can be used within the class before they are declared

® A scope keeps “things” local

® Prevents one's variables, functions, etc., from interfering with others’
Remember: real programs have many thousands of entities
® | ocality is good! Keep names as local as possible

21



Scope

#include "std_lib_facilities.h"
// no r, i, or v here
class My_vector {

vector<int> v;

public:
int largest ()
{
int r = 0;
for (int i = 0; i<v.size();
r = max(r,abs(v[il]));

// no i here
return r;
T
// no r here
I3

// no v here

++1i)

//

//

//

//
//

get max and abs from here

v is in class scope
largest is in class scope

r is local
i is in statement scope

22



Scopes Nest

int x; // global variable - avoid those where you can
int y; // another global variable

int f£(Q)

{
int x; // local variable (Note - now there are two x’s)
x =73 // local x, not the global x
{

int x = y; // another local x, initialized by the global y
// (Now there are three x’s)
++x; // increment the local x in this scope
¥
}

Avoid such complicated nesting and hiding: keep it simple!

23



Outline

3. Functions

24



Recap: Why Functions?

® Chop a program into manageable pieces
“divide and conquer”

® Match our understanding of the problem domain
® Name logical operations

® A function should do one thing well

® Functions make the program easier to read

A function can be useful in many places in a program

® Ease testing, distribution of labor, and maintenance

Keep functions small
Easier to understand, specify, and debug

25



Functions

® General form:

return_type name (formal arguments); // a declaration
return_type name (formal arguments) body // a definition

For example:
double f(int a, double d) { return ax*xd; }

® Formal arguments are often called parameters

® |f you don't want to return a value give void as the return type
void increase_power_to(int level);
Here, void means “doesn’t return a value”

® A body is a block or a try block

For example

{ /* code *x/ } // a block
try { /* code %/ } catch(exception& e) { /* code */ } // a try block

® Functions represent/implement computations/calculations
26



Functions: Call by Value

call-by-value = send the function a copy of the argument'’s value

int f(int a) { a = a+1; return a; }

int main ()

{
int xx = 03
cout << f(xx) << ’\n’; // writes 1
cout << xx << ’\n’; // writes 0; f() doesn’t change xx
int yy = 7;
cout << f(yy) << ’\mn’; // writes 8; f() doesn’t change yy
cout << yy << ’\n’; // writes 7

0]

copy theé value
XX:

27



Functions: Call by Reference

call-by-reference = pass a reference to the argument

int f(int& a) { a = a+1;

int main ()

{

int xx = 0;
cout << f(xx)
cout << xx <<
int yy = 7;
cout << f(yy)

cout << yy <<

<< ’\n’;
)\n;;
<< ’\n?’;

1\n7;

return a; }

// writes 1
// £() changed the value of xx
// writes 1

// writes 8
// £() changes the value of yy
// writes 8

28



Functions

® Avoid (non-const) reference arguments when you can
They can lead to obscure bugs when you forget which arguments can be changed

int incr1(int a) { return a+1; }
void incr2(int& a) { ++a; }

int x = 7;
x = incril(x); // pretty obvious
incr2(x); // pretty obscure

® So why have reference arguments?

® Occasionally, they are essential
E.g., for changing several values
For manipulating containers (e.g., vector)
® const reference arguments are very often useful

29



Call by Value / by Reference / by const-Reference

void f(int a, int& r, const int& cr) { ++a; ++r; ++cr; } // error: cr is const
void g(int a, int& r, const int& cr) { ++a; ++r; int x = cr; ++x; } // ok

int main ()

{
int x = 0;
int y = 0;
int z = 0;
g(x,y,2); // x==0; y==1; z==
g(1,2,3); // error: reference argument r needs a variable to refer to
g(1,y,3); // ok: since cr is const we can pass ‘‘a temporary’’
¥

const references are very useful for passing large objects

30



References

® reference is a general concept
Not just for call-by-reference

int i = 7;

int& r = 1i;

r =9; // i becomes 9

const int& cr = i;

// cr = T; // error: cr refers to const

i = 8;

cout << cr << endl; // write out the value of i (that’s 8)
® You can

think of a reference as an alternative name for an object

® You can't
modify an object through a const reference
make a reference refer to another object after initialization

31



Example

A range-for loop:

for (string s : v) cout << s << ’\n’;
for (string& s : v) cout << s << ’\n’;
for (const string& s : v) cout << s << ’\n’;

// s is a copy of some vl[il
// no copy
// and we don’t modify v

32



Compile-time Functions

You can define functions that can be evaluated at compile time: constexpr functions

constexpr double xscale = 10; // scaling factors
constexpr double yscale 083

constexpr Point scale(Point p) { return {xscalex*p.x,yscale*p.yl}; I};
constexpr Point x = scale({123,456}); // evaluated at compile time

void use(Point p)

{
constexpr Point x1 = scale(p); // error: compile-time evaluation
// requested for variable argument
Point x2 = scale(p); // OK: run-time evaluation
}

Note: these functions must be very simple, just a return statement.

33



Guidance for Passing Variables

® Use call-by-value for very small objects
® Use call-by-const-reference for large objects
® Use call-by-reference only when you have to

® Return a result rather than modify an object through a reference argument

For example:

class Image { /* objects are potentially huge */ };

void f(Image i); ... f(my_image); // oops: this could be s-1-0-0-0-w
void f(Image& i); ... f(my_image); // no copy, but £() can modify my_image
void f(const Image&); ... f(my_image); // £() won’t mess with my_image

Image make_image (); // most likely fast! (‘‘move semantics?’’

later)

34



Outline

4. Namespaces

35



Namespaces

Consider this code from two programmers Jack and Jill

class
class

class
class

Glob { /*..

Widget { /*..

Blob { /*..

#include "jack.h";
#include "jill.h";

void my_func(Widget p)

{
//
}

Lx/ 0}

x/ };

A
Widget { /*..

.x/ 1}

// this

// oops!

//
//

//
//

is

//

in Jack’s header file jack.h

also in jack.h

in Jill’s header file
also in jill.h

in your code
so is this

error: multiple definitions of Widget

jill.h

36



Namespaces

® The compiler will not compile multiple definitions; such clashes can occur from multiple
headers.

® One way to prevent this problem is with namespaces:
namespace Jack { // in Jack’s header file

class Glob{ /*...%x/ };
class Widget{ /*...%*/ };

}

#include "jack.h"; // this is in your code

#include "jill.h"; // so is this

void my_func(Jack::Widget p) // 0K, Jack’s Widget class will not

{ // clash with a different Widget

//
}

37



Namespaces

® A namespace is a named scope

® The :: syntax is used to specify which namespace we are using and which (of many possible)
objects of the same name we are referring to

® For example, cout is in namespace std, we could write:

std::cout << "Please enter stuff... \n";

38



using Declarations and Directives

® To avoid the tedium of

std::cout << "Please enter stuff... \n";

® you could write a using declaration

using std::cout; // when I say cout, I mean std::cout
cout << "Please enter stuff... \n"; // ok: std::cout
cin >> x; // error: cin not in scope

® or you could write a using directive

using namespace std; // ‘‘make all names from namespace std available’’
cout << "Please enter stuff... \n"; // ok: std::cout
cin >> x; // ok: std::cin

® More about header files in chapter 12

39



Summary

1. Declarations and Definitions
2. Scopes
3. Functions

4. Namespaces

40



	Declarations and Definitions
	Scopes
	Functions
	Namespaces

