
DM560

Introduction to Programming in C++

Object Oriented Programming: Classes

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

[Based on slides by Bjarne Stroustrup]



Outline

1. Classes

2. Enumerations

3. const

4. Operator Overloading

2



Outline

• Classes
• Interface and implementation
• Constructors
• Member functions

• Enumerations

• Operator overloading

3



Outline

1. Classes

2. Enumerations

3. const

4. Operator Overloading

4



Classes

The idea:

• A class directly represents a concept in a program

• If you can think of “it” as a separate entity, it is plausible that it could be a class or an object of
a class

• Examples: vector, matrix, input stream, string, FFT, valve controller, robot arm, device driver,
picture on screen, dialog box, graph, window, temperature reading, clock

• A class is a (user-defined) type that specifies how objects of its type can be created and used

• In C++ (as in most modern languages), a class is the key building block for large programs
and very useful for small ones also

5



Classes

The idea:

• A class directly represents a concept in a program
• If you can think of “it” as a separate entity, it is plausible that it could be a class or an object of

a class

• Examples: vector, matrix, input stream, string, FFT, valve controller, robot arm, device driver,
picture on screen, dialog box, graph, window, temperature reading, clock

• A class is a (user-defined) type that specifies how objects of its type can be created and used

• In C++ (as in most modern languages), a class is the key building block for large programs
and very useful for small ones also

5



Classes

The idea:

• A class directly represents a concept in a program
• If you can think of “it” as a separate entity, it is plausible that it could be a class or an object of

a class
• Examples: vector, matrix, input stream, string, FFT, valve controller, robot arm, device driver,

picture on screen, dialog box, graph, window, temperature reading, clock

• A class is a (user-defined) type that specifies how objects of its type can be created and used

• In C++ (as in most modern languages), a class is the key building block for large programs
and very useful for small ones also

5



Classes

The idea:

• A class directly represents a concept in a program
• If you can think of “it” as a separate entity, it is plausible that it could be a class or an object of

a class
• Examples: vector, matrix, input stream, string, FFT, valve controller, robot arm, device driver,

picture on screen, dialog box, graph, window, temperature reading, clock

• A class is a (user-defined) type that specifies how objects of its type can be created and used

• In C++ (as in most modern languages), a class is the key building block for large programs
and very useful for small ones also

5



Classes

The idea:

• A class directly represents a concept in a program
• If you can think of “it” as a separate entity, it is plausible that it could be a class or an object of

a class
• Examples: vector, matrix, input stream, string, FFT, valve controller, robot arm, device driver,

picture on screen, dialog box, graph, window, temperature reading, clock

• A class is a (user-defined) type that specifies how objects of its type can be created and used

• In C++ (as in most modern languages), a class is the key building block for large programs
and very useful for small ones also

5



Members and Member Access

• One way of looking at a class;

class X { // this class ’ name is X
// data members (they store information)
// function members (they do things , using the information)

};

• Example

class X {
public:

int m; // data member
int mf(int v) { int old = m; m=v; return old; } // function member

};

X var; // var is a variable of type X
var.m = 7; // access var’s data member m
int x = var.mf(9); // call var’s member function mf()

6



Members and Member Access

• One way of looking at a class;

class X { // this class ’ name is X
// data members (they store information)
// function members (they do things , using the information)

};

• Example

class X {
public:

int m; // data member
int mf(int v) { int old = m; m=v; return old; } // function member

};

X var; // var is a variable of type X
var.m = 7; // access var’s data member m
int x = var.mf(9); // call var’s member function mf()

6



Classes

A class is a user-defined type

class X { // this class ’ name is X
public: // public members -- that’s the interface to users

// (accessible by all)
// functions
// types
// data (often best kept private)

private: // private members -- that’s the implementation details
// (accessible by members of this class only)
// functions
// types
// data

};

7



Struct and Class

• In a Class, members are private by default:

class X {
int mf();
// ...

};

means

class X {
private:

int mf();
// ...

};

so

X x; // variable x of type X
int y = x.mf(); // error: mf is private (i.e., inaccessible)

8



Struct and Class

• A struct is a class where members are public by default:

struct X {
int m;
// ...

};

means

class X {
public:

int m;
// ...

};

• structs are primarily used for data structures where the members can take any value

9



Structs

// simplest Date (just data)
struct Date {

int y,m,d; // year , month , day
};

Date my_birthday; // a Date variable (object)

my_birthday.y = 12;
my_birthday.m = 30;
my_birthday.d = 1950; // oops! (no day 1950 in month 30)

// later in the program , we’ll have a problem

y:

m:

d:

my_birthday

10



Structs

// simple Date (with a few helper functions for convenience)
struct Date {

int y,m,d; // year , month , day
};

Date my_birthday; // a Date variable (object)

// helper functions:

void init_day(Date& dd , int y, int m, int d); // check for validity and initialize
// Note: these y, m, and d are local

void add_day(Date& dd , int n); // increase the Date by n days
// ...

init_day(my_birthday , 12, 30, 1950); // run time error: no day 1950 in month 30

y:

m:

d:

my_birthday

11



Structs

// simple Date
// guarantee initialization with constructor
// provide some notational convenience
struct Date {

int y,m,d; // year , month , day
Date(int y, int m, int d); // constructor: check for validity and initialize
void add_day(int n); // increase the Date by n days

};

// ...
Date my_birthday; // error: my_birthday not initialized
Date my_birthday {12, 30, 1950}; // oops! Runtime error
Date my_day {1950, 12, 30}; // ok
my_day.add_day (2); // January 1, 1951
my_day.m = 14; // ouch! (now my_day is a bad date)

y: 1950
m: 12
d: 30

my_birthday

12



Classes

// simple Date (control access)
class Date {

int y,m,d; // year , month , day
public:

Date(int y, int m, int d); // constructor: check for valid date and initialize

// access functions:
void add_day(int n); // increase the Date by n days
int month() { return m; }
int day() { return d; }
int year() { return y; }

};

y: 1950
m: 12
d: 30

my_birthday

// ...
Date my_birthday {1950, 12, 30}; // ok
cout << my_birthday.month() << endl; // we can read
my_birthday.m = 14;

// error: Date::m is private

13



Classes

// simple Date (control access)
class Date {

int y,m,d; // year , month , day
public:

Date(int y, int m, int d); // constructor: check for valid date and initialize

// access functions:
void add_day(int n); // increase the Date by n days
int month() { return m; }
int day() { return d; }
int year() { return y; }

};

y: 1950
m: 12
d: 30

my_birthday

// ...
Date my_birthday {1950, 12, 30}; // ok
cout << my_birthday.month() << endl; // we can read
my_birthday.m = 14; // error: Date::m is private

13



Classes

• The notion of a valid Date is an important special case of the idea of a valid value

• We try to design our types so that values are guaranteed to be valid
Or we have to check for validity all the time

• A rule for what constitutes a valid value is called an invariant
The invariant for Date (“a Date must represent a date in the past, present, or future”) is
unusually hard to state precisely – Remember February 28, leap years, etc.

• If we can’t think of a good invariant, we are probably dealing with plain data

• If so, use a struct
• Try hard to think of good invariants for your classes (that saves you from poor buggy code)

14



Classes

• The notion of a valid Date is an important special case of the idea of a valid value

• We try to design our types so that values are guaranteed to be valid
Or we have to check for validity all the time

• A rule for what constitutes a valid value is called an invariant
The invariant for Date (“a Date must represent a date in the past, present, or future”) is
unusually hard to state precisely – Remember February 28, leap years, etc.

• If we can’t think of a good invariant, we are probably dealing with plain data

• If so, use a struct
• Try hard to think of good invariants for your classes (that saves you from poor buggy code)

14



Classes

• The notion of a valid Date is an important special case of the idea of a valid value

• We try to design our types so that values are guaranteed to be valid
Or we have to check for validity all the time

• A rule for what constitutes a valid value is called an invariant
The invariant for Date (“a Date must represent a date in the past, present, or future”) is
unusually hard to state precisely – Remember February 28, leap years, etc.

• If we can’t think of a good invariant, we are probably dealing with plain data

• If so, use a struct
• Try hard to think of good invariants for your classes (that saves you from poor buggy code)

14



Classes

• The notion of a valid Date is an important special case of the idea of a valid value

• We try to design our types so that values are guaranteed to be valid
Or we have to check for validity all the time

• A rule for what constitutes a valid value is called an invariant
The invariant for Date (“a Date must represent a date in the past, present, or future”) is
unusually hard to state precisely – Remember February 28, leap years, etc.

• If we can’t think of a good invariant, we are probably dealing with plain data

• If so, use a struct
• Try hard to think of good invariants for your classes (that saves you from poor buggy code)

14



Classes

• The notion of a valid Date is an important special case of the idea of a valid value

• We try to design our types so that values are guaranteed to be valid
Or we have to check for validity all the time

• A rule for what constitutes a valid value is called an invariant
The invariant for Date (“a Date must represent a date in the past, present, or future”) is
unusually hard to state precisely – Remember February 28, leap years, etc.

• If we can’t think of a good invariant, we are probably dealing with plain data
• If so, use a struct

• Try hard to think of good invariants for your classes (that saves you from poor buggy code)

14



Classes

• The notion of a valid Date is an important special case of the idea of a valid value

• We try to design our types so that values are guaranteed to be valid
Or we have to check for validity all the time

• A rule for what constitutes a valid value is called an invariant
The invariant for Date (“a Date must represent a date in the past, present, or future”) is
unusually hard to state precisely – Remember February 28, leap years, etc.

• If we can’t think of a good invariant, we are probably dealing with plain data
• If so, use a struct
• Try hard to think of good invariants for your classes (that saves you from poor buggy code)

14



Classes

// simple Date
class Date {
public:

Date(int yy, int mm, int dd); // constructor: check for validity and initialize
void add_day(int n); // increase the Date by n days
int month ();
// ...

private: // some people prefer implementation details last
int y,m,d; // year , month , day

};

Date::Date(int yy, int mm , int dd) // definition; note :: ‘‘member of’’
:y{yy}, m{mm}, d{dd} { /* ... */ }; // note: member initializers

void Date:: add_day(int n) { /* ... */ }; // definition

y: 1950
m: 12
d: 30

my_birthday

15



Classes

// simple Date (some people prefer implementation details last)
class Date {
public:

Date(int yy, int mm, int dd); // constructor: check for validity and initialize
void add_day(int n); // increase the Date by n days
int month ();
// ...

private:
int y,m,d; // year , month , day

};

y: 1950
m: 12
d: 30

my_birthday

int month () { return m; } // error: forgot Date::
// this month() will be seen as a global function
// not the member function , so can’t access members

int Date:: season () { /* ... */ }

// error: no member called season

16



Classes

// simple Date (some people prefer implementation details last)
class Date {
public:

Date(int yy, int mm, int dd); // constructor: check for validity and initialize
void add_day(int n); // increase the Date by n days
int month ();
// ...

private:
int y,m,d; // year , month , day

};

y: 1950
m: 12
d: 30

my_birthday

int month () { return m; } // error: forgot Date::
// this month() will be seen as a global function
// not the member function , so can’t access members

int Date:: season () { /* ... */ } // error: no member called season

16



Classes

// simple Date (what can we do in case of an invalid date?)
class Date {
public:

class Invalid { }; // to be used as exception
Date(int y, int m, int d); // check for valid date and initialize
// ...

private:
int y,m,d; // year , month , day
bool is_valid(int y, int m, int d); // is (y,m,d) a valid date?

};

Date:: Date(int yy , int mm, int dd)
: y{yy}, m{mm}, d{dd} // initialize data members

{
if (! is_valid (y,m,d)) throw Invalid (); // check for validity

}

y: 1950
m: 12
d: 30

my_birthday

17



Classes

• Why bother with the public/private distinction?

• Why not make everything public?

• To provide a clean interface
Data and messy functions can be made private

• To maintain an invariant
Only a fixed set of functions can access the data

• To ease debugging
Only a fixed set of functions can access the data
(known as the “round up the usual suspects” technique)

• To allow a change of representation
You need only to change a fixed set of functions
You don’t really know who is using a public member

18



Classes

• Why bother with the public/private distinction?

• Why not make everything public?

• To provide a clean interface
Data and messy functions can be made private

• To maintain an invariant
Only a fixed set of functions can access the data

• To ease debugging
Only a fixed set of functions can access the data
(known as the “round up the usual suspects” technique)

• To allow a change of representation
You need only to change a fixed set of functions
You don’t really know who is using a public member

18



Classes

• Why bother with the public/private distinction?

• Why not make everything public?

• To provide a clean interface
Data and messy functions can be made private

• To maintain an invariant
Only a fixed set of functions can access the data

• To ease debugging
Only a fixed set of functions can access the data
(known as the “round up the usual suspects” technique)

• To allow a change of representation
You need only to change a fixed set of functions
You don’t really know who is using a public member

18



Classes

• Why bother with the public/private distinction?

• Why not make everything public?

• To provide a clean interface
Data and messy functions can be made private

• To maintain an invariant
Only a fixed set of functions can access the data

• To ease debugging
Only a fixed set of functions can access the data
(known as the “round up the usual suspects” technique)

• To allow a change of representation
You need only to change a fixed set of functions
You don’t really know who is using a public member

18



Outline

1. Classes

2. Enumerations

3. const

4. Operator Overloading

19



Enumerations

An enum (enumeration) is a simple user-defined type, specifying its set of values (its enumerators)

For example:

enum class Month {
jan=1, feb , mar , apr , may , jun , jul , aug , sep , oct , nov , dec

};

Month m = Month::feb;
m = 7; // error: can’t assign int to Month
int n = m; // error: we can’t get the numeric value of a Month
Month mm = Month (7); // convert int to Month (unchecked)

20



Enumerations

An enum (enumeration) is a simple user-defined type, specifying its set of values (its enumerators)

For example:

enum class Month {
jan=1, feb , mar , apr , may , jun , jul , aug , sep , oct , nov , dec

};

Month m = Month::feb;
m = 7; // error: can’t assign int to Month
int n = m; // error: we can’t get the numeric value of a Month
Month mm = Month (7); // convert int to Month (unchecked)

20



“Plain” Enumerations

• Simple list of constants:

enum { red , green }; // a ‘‘plain ’’ enum { } doesn’t define a scope

int a = red; // red is available here
enum { red , blue , purple }; // error: red defined twice

• Type with a list of named constants

enum Color { red , green , blue , /* ... */ };
enum Month { jan , feb , mar , /* ... */ };

Month m1 = jan;
Month m2 = red; // error: red isn’t a Month
Month m3 = 7; // error: 7 isn’t a Month
int i = m1; // ok: an enumerator is converted to its value , i==0

21



Class Enumeration

• Type with a list of typed named constants

enum class Color { red , green , blue , /* ... */ };
enum class Month { jan , feb , mar , /* ... */ };
enum class Traffic_light { green , yellow , red }; // OK: scoped enumerators

Month m1 = jan; // error: jan not in scope
Month m1 = Month ::jan; // OK
Month m2 = Month ::red; // error: red isn’t a Month
Month m3 = 7; // error: 7 isn’t a Month
Color c1 = Color ::red; // OK
Color c2 = Traffic_light ::red; // error
int i = m1; // error: an enumerator is not converted to int

22



Enumerations – Values

• By default:
the first enumerator has the value 0,
the next enumerator has the value “one plus the value of the enumerator before it”

enum { horse , pig , chicken }; // horse ==0, pig==1, chicken ==2

You can control numbering

enum { jan=1, feb , march /* ... */ }; // feb==2, march ==3
enum stream_state { good=1, fail=2, bad=4, eof=8 };
int flags = fail+eof; // flags ==10
stream_state s = flags; // error: can’t assign an int to a stream_state
stream_state s2 = stream_state(flags); // explicit conversion (be careful !)

23



Classes

// simple Date (use enum class Month)

enum class Month { jan , feb , mar , /* ... */ };

class Date {
public:

Date(int y, Month m, int d); // check for valid date and initialize
// ...

private:
int y; // year
Month m;
int d; // day

};

Date my_birthday (1950, 30, Month::dec); // error: 2nd argument not a Month
Date my_birthday (1950, Month::dec , 30); // OK

y: 1950
m: Month::dec
d: 30

my_birthday

24



Outline

1. Classes

2. Enumerations

3. const

4. Operator Overloading

25



const
class Date {
public:

// ...
int day() const { return d; } // const member: can’t modify
void add_day(int n); // non-const member: can modify

};

Date d {2000 , Month ::jan , 20};
const Date cd {2001, Month ::feb , 21};

cout << d.day() << ‘‘ - ‘‘ << cd.day() << endl; // ok
d.add_day (1); // ok
cd.add_day (1); // error: cd is a const

Date d {2004 , Month ::jan , 7}; // a variable
const Date d2 {2004, Month ::feb , 28}; // a constant
d2 = d; // error: d2 is const
d2.add_day (1); // error d2 is const
d = d2; // fine
d.add_day (1); // fine

d2.f();
should work if and only if f() doesn’t modify d2 how do we achieve that?
(say that’s what we want, of course)

26



const
class Date {
public:

// ...
int day() const { return d; } // const member: can’t modify
void add_day(int n); // non-const member: can modify

};

Date d {2000 , Month ::jan , 20};
const Date cd {2001, Month ::feb , 21};

cout << d.day() << ‘‘ - ‘‘ << cd.day() << endl; // ok
d.add_day (1); // ok
cd.add_day (1); // error: cd is a const

Date d {2004 , Month ::jan , 7}; // a variable
const Date d2 {2004, Month ::feb , 28}; // a constant
d2 = d; // error: d2 is const
d2.add_day (1); // error d2 is const
d = d2; // fine
d.add_day (1); // fine

d2.f();
should work if and only if f() doesn’t modify d2 how do we achieve that?
(say that’s what we want, of course)

26



const
class Date {
public:

// ...
int day() const { return d; } // const member: can’t modify
void add_day(int n); // non-const member: can modify

};

Date d {2000 , Month ::jan , 20};
const Date cd {2001, Month ::feb , 21};

cout << d.day() << ‘‘ - ‘‘ << cd.day() << endl; // ok
d.add_day (1); // ok
cd.add_day (1); // error: cd is a const

Date d {2004 , Month ::jan , 7}; // a variable
const Date d2 {2004, Month ::feb , 28}; // a constant
d2 = d; // error: d2 is const
d2.add_day (1); // error d2 is const
d = d2; // fine
d.add_day (1); // fine

d2.f();
should work if and only if f() doesn’t modify d2 how do we achieve that?
(say that’s what we want, of course)

26



const
class Date {
public:

// ...
int day() const { return d; } // const member: can’t modify
void add_day(int n); // non-const member: can modify

};

Date d {2000 , Month ::jan , 20};
const Date cd {2001, Month ::feb , 21};

cout << d.day() << ‘‘ - ‘‘ << cd.day() << endl; // ok
d.add_day (1); // ok
cd.add_day (1); // error: cd is a const

Date d {2004 , Month ::jan , 7}; // a variable
const Date d2 {2004, Month ::feb , 28}; // a constant
d2 = d; // error: d2 is const
d2.add_day (1); // error d2 is const
d = d2; // fine
d.add_day (1); // fine

d2.f();
should work if and only if f() doesn’t modify d2 how do we achieve that?
(say that’s what we want, of course)

26



const Member Functions

Distinguish between functions that can modify (mutate) objects and those that cannot (“const
member functions”)

class Date {
public:

// ...
int day() const; // get (a copy of) the day
// ...
void add_day(int n); // move the date n days forward
// ...

};

const Date dx {2008, Month ::nov , 4};
int d = dx.day (); // fine
dx.add_day (4); // error: can’t modify constant (immutable) date

27



Classes

What makes a good interface?

• Minimal: as small as possible

• Complete: and no smaller

• Type safe
Beware of confusing argument orders
Beware of over-general types (e.g., int to represent a month)

• const correct

28



Classes

Essential operations:

• Default constructor (defaults to: nothing)
• No default if any other constructor is declared
• Copy constructor (defaults to: copy the members)
• Copy assignment (defaults to: copy the members)
• Destructor (defaults to: nothing)

For example:

Date d; // error: no default constructor
Date d2 = d; // ok: copy constructor/initialized (copy the elements)
d = d2; // ok copy assignment (copy the elements)

29



Outline

1. Classes

2. Enumerations

3. const

4. Operator Overloading

30



Interfaces and “Helper ‘Functions”

• A class interface is the set of public functions

• Keep a class interface minimal
• Simplifies understanding
• Simplifies debugging
• Simplifies maintenance

• When we keep the class interface simple and minimal, we need extra “helper functions” outside
the class (non-member functions). Examples:

• == (equality), != (inequality)
• next_weekday(), next_Sunday()

31



Helper Functions

Date next_Sunday(const Date& d)
{

// access d using d.day(), d.month(), and d.year()
// make new Date to return

}

Date next_weekday(const Date& d) { /* ... */ }

bool operator ==( const Date& a, const Date& b)
{

return a.year ()==b.year()
&& a.month ()==b.month()
&& a.day ()==b.day();

}

bool operator !=( const Date& a, const Date& b) { return !(a==b); }

32



Operator Overloading

You can define almost all C++ operators for a class or enumeration operands
That’s often called operator overloading

enum class Month {
jan=1, feb , mar , apr , may , jun , jul , aug , sep , oct , nov , dec

};

Month operator ++( Month& m) // prefix increment operator
{

// ‘‘wrap around ’’:
m = (m== Month::dec) ? Month ::jan : Month(m+1);
return m;

}

Month m = Month::nov;
++m; // m becomes dec
++m; // m becomes jan

33



Operator Overloading

• You can define only existing operators
E.g., + - * / % [] () ^ ! & < <= > >=

• You can define operators only with their conventional number of operands E.g., no unary <=
(less than or equal) and no binary ! (not)

• An overloaded operator must have at least one user-defined type as operand
int operator +(int ,int); // error: you can’t overload built -in +
vector operator +( const Vector&, const Vector &); // ok

• Advice (not language rule):
Overload operators only with their conventional meaning:
+ should be addition, * be multiplication, [] be access, () be call, etc.

• Advice (not language rule):
Don’t overload unless you really have to

34



Summary

1. Classes

2. Enumerations

3. const

4. Operator Overloading

35


	Classes
	Enumerations
	const
	Operator Overloading

