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• Interface and implementation
• Constructors
• Member functions

• Enumerations
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Classes

The idea:

• A class directly represents a concept in a program

• If you can think of “it” as a separate entity, it is plausible that it could be a class or an object of
a class

• Examples: vector, matrix, input stream, string, FFT, valve controller, robot arm, device driver,
picture on screen, dialog box, graph, window, temperature reading, clock

• A class is a (user-defined) type that specifies how objects of its type can be created and used

• In C++ (as in most modern languages), a class is the key building block for large programs
and very useful for small ones also
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Members and Member Access

• One way of looking at a class;

class X { // this class ’ name is X
// data members (they store information)
// function members (they do things , using the information)

};

• Example

class X {
public:

int m; // data member
int mf(int v) { int old = m; m=v; return old; } // function member

};

X var; // var is a variable of type X
var.m = 7; // access var’s data member m
int x = var.mf(9); // call var’s member function mf()
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Classes

A class is a user-defined type

class X { // this class ’ name is X
public: // public members -- that’s the interface to users

// (accessible by all)
// functions
// types
// data (often best kept private)

private: // private members -- that’s the implementation details
// (accessible by members of this class only)
// functions
// types
// data

};
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Struct and Class

• In a Class, members are private by default:

class X {
int mf();
// ...

};

means

class X {
private:

int mf();
// ...

};

so

X x; // variable x of type X
int y = x.mf(); // error: mf is private (i.e., inaccessible)
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Struct and Class

• A struct is a class where members are public by default:

struct X {
int m;
// ...

};

means

class X {
public:

int m;
// ...

};

• structs are primarily used for data structures where the members can take any value
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Structs

// simplest Date (just data)
struct Date {

int y,m,d; // year , month , day
};

Date my_birthday; // a Date variable (object)

my_birthday.y = 12;
my_birthday.m = 30;
my_birthday.d = 1950; // oops! (no day 1950 in month 30)

// later in the program , we’ll have a problem

y:

m:

d:

my_birthday
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Structs

// simple Date (with a few helper functions for convenience)
struct Date {

int y,m,d; // year , month , day
};

Date my_birthday; // a Date variable (object)

// helper functions:

void init_day(Date& dd , int y, int m, int d); // check for validity and initialize
// Note: these y, m, and d are local

void add_day(Date& dd , int n); // increase the Date by n days
// ...

init_day(my_birthday , 12, 30, 1950); // run time error: no day 1950 in month 30

y:

m:

d:

my_birthday
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Structs

// simple Date
// guarantee initialization with constructor
// provide some notational convenience
struct Date {

int y,m,d; // year , month , day
Date(int y, int m, int d); // constructor: check for validity and initialize
void add_day(int n); // increase the Date by n days

};

// ...
Date my_birthday; // error: my_birthday not initialized
Date my_birthday {12, 30, 1950}; // oops! Runtime error
Date my_day {1950, 12, 30}; // ok
my_day.add_day (2); // January 1, 1951
my_day.m = 14; // ouch! (now my_day is a bad date)

y: 1950
m: 12
d: 30

my_birthday
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Classes

// simple Date (control access)
class Date {

int y,m,d; // year , month , day
public:

Date(int y, int m, int d); // constructor: check for valid date and initialize

// access functions:
void add_day(int n); // increase the Date by n days
int month() { return m; }
int day() { return d; }
int year() { return y; }

};

y: 1950
m: 12
d: 30

my_birthday

// ...
Date my_birthday {1950, 12, 30}; // ok
cout << my_birthday.month() << endl; // we can read
my_birthday.m = 14;

// error: Date::m is private
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Classes

• The notion of a valid Date is an important special case of the idea of a valid value

• We try to design our types so that values are guaranteed to be valid
Or we have to check for validity all the time

• A rule for what constitutes a valid value is called an invariant
The invariant for Date (“a Date must represent a date in the past, present, or future”) is
unusually hard to state precisely – Remember February 28, leap years, etc.

• If we can’t think of a good invariant, we are probably dealing with plain data

• If so, use a struct
• Try hard to think of good invariants for your classes (that saves you from poor buggy code)
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Classes

// simple Date
class Date {
public:

Date(int yy, int mm, int dd); // constructor: check for validity and initialize
void add_day(int n); // increase the Date by n days
int month ();
// ...

private: // some people prefer implementation details last
int y,m,d; // year , month , day

};

Date::Date(int yy, int mm , int dd) // definition; note :: ‘‘member of’’
:y{yy}, m{mm}, d{dd} { /* ... */ }; // note: member initializers

void Date:: add_day(int n) { /* ... */ }; // definition

y: 1950
m: 12
d: 30

my_birthday
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Classes

// simple Date (some people prefer implementation details last)
class Date {
public:
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void add_day(int n); // increase the Date by n days
int month ();
// ...

private:
int y,m,d; // year , month , day

};

y: 1950
m: 12
d: 30
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int month () { return m; } // error: forgot Date::
// this month() will be seen as a global function
// not the member function , so can’t access members

int Date:: season () { /* ... */ }

// error: no member called season
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Classes

// simple Date (what can we do in case of an invalid date?)
class Date {
public:

class Invalid { }; // to be used as exception
Date(int y, int m, int d); // check for valid date and initialize
// ...

private:
int y,m,d; // year , month , day
bool is_valid(int y, int m, int d); // is (y,m,d) a valid date?

};

Date:: Date(int yy , int mm, int dd)
: y{yy}, m{mm}, d{dd} // initialize data members

{
if (! is_valid (y,m,d)) throw Invalid (); // check for validity

}

y: 1950
m: 12
d: 30

my_birthday
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Classes

• Why bother with the public/private distinction?

• Why not make everything public?

• To provide a clean interface
Data and messy functions can be made private

• To maintain an invariant
Only a fixed set of functions can access the data

• To ease debugging
Only a fixed set of functions can access the data
(known as the “round up the usual suspects” technique)

• To allow a change of representation
You need only to change a fixed set of functions
You don’t really know who is using a public member
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Enumerations

An enum (enumeration) is a simple user-defined type, specifying its set of values (its enumerators)

For example:

enum class Month {
jan=1, feb , mar , apr , may , jun , jul , aug , sep , oct , nov , dec

};

Month m = Month::feb;
m = 7; // error: can’t assign int to Month
int n = m; // error: we can’t get the numeric value of a Month
Month mm = Month (7); // convert int to Month (unchecked)
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“Plain” Enumerations

• Simple list of constants:

enum { red , green }; // a ‘‘plain ’’ enum { } doesn’t define a scope

int a = red; // red is available here
enum { red , blue , purple }; // error: red defined twice

• Type with a list of named constants

enum Color { red , green , blue , /* ... */ };
enum Month { jan , feb , mar , /* ... */ };

Month m1 = jan;
Month m2 = red; // error: red isn’t a Month
Month m3 = 7; // error: 7 isn’t a Month
int i = m1; // ok: an enumerator is converted to its value , i==0
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Class Enumeration

• Type with a list of typed named constants

enum class Color { red , green , blue , /* ... */ };
enum class Month { jan , feb , mar , /* ... */ };
enum class Traffic_light { green , yellow , red }; // OK: scoped enumerators

Month m1 = jan; // error: jan not in scope
Month m1 = Month ::jan; // OK
Month m2 = Month ::red; // error: red isn’t a Month
Month m3 = 7; // error: 7 isn’t a Month
Color c1 = Color ::red; // OK
Color c2 = Traffic_light ::red; // error
int i = m1; // error: an enumerator is not converted to int

22



Enumerations – Values

• By default:
the first enumerator has the value 0,
the next enumerator has the value “one plus the value of the enumerator before it”

enum { horse , pig , chicken }; // horse ==0, pig==1, chicken ==2

You can control numbering

enum { jan=1, feb , march /* ... */ }; // feb==2, march ==3
enum stream_state { good=1, fail=2, bad=4, eof=8 };
int flags = fail+eof; // flags ==10
stream_state s = flags; // error: can’t assign an int to a stream_state
stream_state s2 = stream_state(flags); // explicit conversion (be careful !)
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Classes

// simple Date (use enum class Month)

enum class Month { jan , feb , mar , /* ... */ };

class Date {
public:

Date(int y, Month m, int d); // check for valid date and initialize
// ...

private:
int y; // year
Month m;
int d; // day

};

Date my_birthday (1950, 30, Month::dec); // error: 2nd argument not a Month
Date my_birthday (1950, Month::dec , 30); // OK

y: 1950
m: Month::dec
d: 30

my_birthday
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const
class Date {
public:

// ...
int day() const { return d; } // const member: can’t modify
void add_day(int n); // non-const member: can modify

};

Date d {2000 , Month ::jan , 20};
const Date cd {2001, Month ::feb , 21};

cout << d.day() << ‘‘ - ‘‘ << cd.day() << endl; // ok
d.add_day (1); // ok
cd.add_day (1); // error: cd is a const

Date d {2004 , Month ::jan , 7}; // a variable
const Date d2 {2004, Month ::feb , 28}; // a constant
d2 = d; // error: d2 is const
d2.add_day (1); // error d2 is const
d = d2; // fine
d.add_day (1); // fine

d2.f();
should work if and only if f() doesn’t modify d2 how do we achieve that?
(say that’s what we want, of course)
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const Member Functions

Distinguish between functions that can modify (mutate) objects and those that cannot (“const
member functions”)

class Date {
public:

// ...
int day() const; // get (a copy of) the day
// ...
void add_day(int n); // move the date n days forward
// ...

};

const Date dx {2008, Month ::nov , 4};
int d = dx.day (); // fine
dx.add_day (4); // error: can’t modify constant (immutable) date

27



Classes

What makes a good interface?

• Minimal: as small as possible

• Complete: and no smaller

• Type safe
Beware of confusing argument orders
Beware of over-general types (e.g., int to represent a month)

• const correct
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Classes

Essential operations:

• Default constructor (defaults to: nothing)
• No default if any other constructor is declared
• Copy constructor (defaults to: copy the members)
• Copy assignment (defaults to: copy the members)
• Destructor (defaults to: nothing)

For example:

Date d; // error: no default constructor
Date d2 = d; // ok: copy constructor/initialized (copy the elements)
d = d2; // ok copy assignment (copy the elements)
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Interfaces and “Helper ‘Functions”

• A class interface is the set of public functions

• Keep a class interface minimal
• Simplifies understanding
• Simplifies debugging
• Simplifies maintenance

• When we keep the class interface simple and minimal, we need extra “helper functions” outside
the class (non-member functions). Examples:

• == (equality), != (inequality)
• next_weekday(), next_Sunday()
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Helper Functions

Date next_Sunday(const Date& d)
{

// access d using d.day(), d.month(), and d.year()
// make new Date to return

}

Date next_weekday(const Date& d) { /* ... */ }

bool operator ==( const Date& a, const Date& b)
{

return a.year ()==b.year()
&& a.month ()==b.month()
&& a.day ()==b.day();

}

bool operator !=( const Date& a, const Date& b) { return !(a==b); }
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Operator Overloading

You can define almost all C++ operators for a class or enumeration operands
That’s often called operator overloading

enum class Month {
jan=1, feb , mar , apr , may , jun , jul , aug , sep , oct , nov , dec

};

Month operator ++( Month& m) // prefix increment operator
{

// ‘‘wrap around ’’:
m = (m== Month::dec) ? Month ::jan : Month(m+1);
return m;

}

Month m = Month::nov;
++m; // m becomes dec
++m; // m becomes jan
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Operator Overloading

• You can define only existing operators
E.g., + - * / % [] () ^ ! & < <= > >=

• You can define operators only with their conventional number of operands E.g., no unary <=
(less than or equal) and no binary ! (not)

• An overloaded operator must have at least one user-defined type as operand
int operator +(int ,int); // error: you can’t overload built -in +
vector operator +( const Vector&, const Vector &); // ok

• Advice (not language rule):
Overload operators only with their conventional meaning:
+ should be addition, * be multiplication, [] be access, () be call, etc.

• Advice (not language rule):
Don’t overload unless you really have to
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Summary

1. Classes

2. Enumerations

3. const

4. Operator Overloading
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