Credit risk assessment

The Basel II Capital Accord on Banking Supervision imposes that, in order for a bank to adequately compute its capital requirements, a reliable credit risk quantification technique should be applied.

Available are data of 76 small firms that are client of a bank. The sample is rather diversified and distributed across industries and the scenario is relevant in practical terms. The data set is confidential and is available only from the BlackBoard system (package `credit-risk.tgz`, it includes an R script to load the data). There are annual data between 2001 and 2003, so that the sample period covers three years. For each firm there are 15 indices. The first 8 are financial ratios drawn from the balance sheet. The remaining 7 are credit-position ratios calculated by comparing the credit positions with respect to benchmarks.

The sample firms are split into two groups: the in bonis group (firms repaying their loan obligations at the end of the analysing period, for a total of 48 firms) and the default group (firms not repaying their loans at the end of the period, 28 firms).

A pre-processing phase is important to understand the type of data at hand, to reveal anomalies and to choose proper representations. Sometimes normalizations and transformations of data are convenient. A relevant problem with the data here is the presence of missing values. Under the hypothesis of missing data at random (MAR) three possible ways to handle missing values are:

- **mean imputation**: assign the average of the available data for each variable.
- **ad-hoc refinement** of the mean imputation method: assign to the missing value the mean per firm over the available years. Only if, for a variable and a firm, all years are missing, assign the overall mean for that variable.
- **multiple imputation method**: first, create plausible values for missing observations that reflect uncertainty about a model for the input variables. Use these values to “fill-in” or impute the missing values. Repeat this process, resulting in the creation
of a number of “completed” datasets, which allows the uncertainty regarding the imputation to be taken into account. Use the augmented data set that includes all the completed datasets in your analysis.

For more ideas on how to handle missing data you are referred to [1]. For the assessment of your prediction models you will use a precomputed bootstrap. With the data set, you will find indication of which observations are to be used as \textit{training data} and which as \textit{test data}. Recall that the former data are to be used to learn the parameters of the models proposed and the latter data are for comparing and assessing their performance. Specifically, from the bulk of data available comprising all the 76 financial firms over a period of three years, a sample of 53 firms is indicated for the training data. In all, there are 50 such training data set indicated. For every training data the firms left out are considered for the test data. Note that you have only to consider the prediction on the third year.

Your tasks:

(a) Use logistic regression and neural networks to predict the group of the firms.

(b) Assess the classification performance of the prediction methods by computing the confusion matrix on the test data. Report the average confusion matrix over the 50 bootstraps.

(c) Generally speaking, banks are most interested in correctly classifying default firms, since mis-classifications of default would lead to grant the loan to an unsafe firm: it has been reported that trade experts deem misdefault as 20 times more serious than misbonis.

Use this information to create a loss matrix and reassess the prediction of the classifiers on the test set letting them to select for each sample the class that minimizes the corresponding loss function.

(d) Are there any other methods encountered during the course that you deem appropriate for this analysis and that you may be willing to try?

References