Written Exam
Introduction to Machine Learning (DM825)

Institute for Mathematics and Computer Science
University of Southern Denmark

Wednesday, June 22, 2010, 9:00-12:00, U49

All usual helping tools (textbooks, lecture notes, etc.) together with pocket calculators are
allowed. It is not allowed to use computers, smart-phones and personal digital assistants.

The exam consists of 5 tasks and relative subtasks distributed on 10 pages.

The weight in the evaluation of each task and subtask is given in points. The total
sum is 100 points. More points have been assigned to tasks that require fundamental
knowledge that the course aimed to transmit. Points are not necessarily representative of
the difficulty of the task.

Remember to justify all your statements. You may refer to results from the text-
books or the lecture notes in the syllabus. In particular, it is possible to justify a statement
by saying that it derives trivially from a result in the textbook (if this is true!). You may
use all methods or extensions that have been used in the assignment sheets, published
during the course. However, it is not allowed to answer a subtask exclusively by refer-
ence to an exercise seen during the course. Reference to other books (outside the course
material) is not accepted as answer to a task!

You may write your answers in Danish or in English.



Task 1 Boosting (10 points)

Figure 1 shows positive and negative examples in a two dimensional feature space. The
figure also shows the normalized weights on the examples resulting from having run the
AdaBoost algorithm for some number of iterations. There are also three decision bound-
aries drawn in the figure, h(x;604), h(x;0p), and h(x;0c) or A, B and C for short.
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Figure 1: Points with identifiers and weights, and decision boundaries for Task 1.

Subtask 1l.a (5 points)

Using the weighted misclassification error which one of the region splits would you use at
the next iteration (please answer A, B, or C)? Briefly justify your answer.

Subtask 1.b (5 points)

Which training point(s) (possibly none) the ensemble hy(x) = h(x;604) + h(x;0¢) cannot
classify correctly?



Task 2 Exponential family and geometric distribution (20 points)

A way to solve constraint satisfaction problems is by complete tree search. In other
courses, we saw that random restart of the solver may reduce the time for solving a
specific problem instance. Let y; = 1,2,3, ... be the number of times we need to restart
the solver in a specific run j before being able to solve the given instance. For each
run of the solver we know the features of the instance to solve (eg, size, density and
type of constraints, etc.) and the heuristics used in the search procedure. We use this
information to construct for each run j a feature vector x;. On the basis of the results
collected 41,42, ¥s, ... and the corresponding feature vectors xi, Xs, X3, ... we could learn
to predict how many times we need to restart the solver in a particular run.

The probability that the first occurrence of a success requires £ number of independent
trials, each with success probability ¢, is p(Y = y,¢) = (1 — ¢)V t¢,y = 1,2,3,.... This
distribution is known as the geometric distribution and it seems well suited to model y|x
in our learning task.

Subtask 2.a (10 points)

Show that the geometric distribution is in the exponential family

p(yln) = b(y)g(n) exp{n"u(y)}

by giving b(y), g(n), n and u(y).

Subtask 2.b (5 points)

Consider performing regression using a GLM model with a geometric response variable.
What is the canonical response function for the family”? You may use the fact that the
mean of a geometric distribution is given by 1/¢.

Subtask 2.c (5 points)

For a training set (x7,97);j = 1,...,m, let the log-likelihood of an example be log p(y’|x’, 8).
By taking the derivative of the log-likelihood with respect to 6;, derive the stochastic gra-
dient ascent rule for learning using a GLM model with geometric responses y. Show
that this rule depends on the training responses 3’ and their predicted value through the
canonical response function.



Task 3 SVM (20 points)

Consider a classification problem on m labelled training points in a two-dimensional input
space that we want to separate with a linear classifier through origin.

The following is a condensed description of the SVM procedure as given in class and in
the text book [B2]. (You can go directly to the subtasks if you remember it but please
refer to the given equation numbers in the justifications to your answers.)

The discriminant function is a hyperplane {z : 6"x = 0} with y = 0 and the classifi-
cation rule h(x,8) = sign(”x). The parameters @ are learned by solving the following
optimization problem

Primal : Mlnlrmze _H9H2+CZ€J (1)
7j=1

subject to /(87 -x)>1-¢&, j=1,....m (2)

ijO, j: N 11 (3)

To solve Primal we Lagrange relax the constraints in the objective function with multi-
pliers o; > 0 and p; > 0,5 =1,...,m:

1 e Ny [
Lo =3l01F +CY 6~ 0y [y(67 %) - (1 - )] Z“Jff
=1 =1

Setting the derivatives of Lp in 0;, ¢ = 1,2 and §;,5 = 1,...,m to zero we get
0, = Zajij{, i=1,2 (4)
CY]‘ = C—/,Lj, jzl,...,m (5)

Substituting in Lp we get Lp, a lower bound to Lp that we wish to maximize. This is
done in the Lagrangian dual problem

Dual : Max1m1ze Z aj — = Z Z aonyly'xd - (6)

j 1 1=1
subject to OgoszC', j=1,....,m (7)

In addition, for the solution of Primal we have the KKT conditions

o [0 X))~ (1-g)] =0, j=1..m (8)
w& = 0, j=1...,m (9)
yj(eT'Xj>_<1_§j) > 0, =L...,m (10)

& >0, j=1,....m (11)



Subtask 3.a (5 points)

If the points in the training set are not linearly separable we can use basis expansion. Let
¢ be a feature mapping but suppose that ¢(x) is so high-dimensional that it is infeasible
to compute it explicitly. Describe briefly how you would apply the “Kernel trick” to learn
and predict in the high-dimensional feature space ¢, but without ever explicitly computing
¢(x). Indicate precisely which computations can be done efficiently (there are two).

Subtask 3.b (5 points)

Consider the kernel
K(x,2z) =x-z+4(x-2)?

where the vectors x and z are 2-dimensional. This kernel is equal to an inner product
o(x) - ¢(z) for some definition of ¢. What is the feature mapping ¢?



Subtask 3.c (10 points)

Figure 2 shows both decision boundaries and support vectors (circled) from different
SVM-like training methods. In all cases, the boundaries correspond to 87 - x + 6, where
0y = 0 unless 6, is included in the training method. Below there are four methods. The
number of figures is instead five. Please assign each method to all the figures that they
could potentially produce (there may be multiple choices and some figure may remain
unassigned).

Method I:
Primal: Minimize 1H0H2 +C if
' 0.€ 2 pu !
subject to y/(87 - x/ +6p) >1-¢;, j=1,....m

ngO, jzl,...,m

where C' = oco.

Method II:
. . Lo =
Primal: M1ne1’r£nlze §||0|| + C’jzlfj
subject to y/(87 -x/)>1-¢&, j=1,....m
ijO, jzl,...,m
where C' = oco.
Method III:
: NPT S -
Primal: Mmel’lémze §H9H + C;fj
subject to /(87 -x))>1-¢&, j=1,....m
ijO, jzl,...,m
where C' = 1.
Method IV:

Dual : Maxémize Zaj 3 Z Z ajalyﬁle(xj7xl)
7j=1 7j=1 [=1
subject to 0<o; <C, j=1,...,m

where K (x7,x') = exp(—1/2||x — x'[|?)
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Figure 2: Plots of 87¢(x) = 0 for different training methods along with the support
vectors. In addition we show the lines 87 ¢(x) = 1 and 8" ¢(x) = —1. Support vectors
have bold circles surrounding them.



Task 4 Probabilistic graphical models (40 points)

In this task, we use probabilistic graphical models to tune heuristic algorithms for solving
combinatorial optimization problems. Let’s consider the case of a local search heuristic
in which we have to choose two components: an initial solution and a neighborhood. The
table on the left in Figure 3 shows the details of the components. We will identify the
construction heuristic by the variable X, the local search by X5, and their correspond-
ing choices by x; and z;, respectively. The probabilistic graphical model is depicted in
Figure 3, left.

Factor Type Levels

{nn, nearest_insertion,
categorical farthest_insertion,
cheapest_insertion,

arbitrary_insertion}
local search categorical {none, 2-opt, linkern}

Figure 3: On the left the variables and the values they can take. On the right the
probabilistic graphical model.

construction
heuristics

We use the model to predict the configuration that will perform best. The tuning algo-
rithm works as follows. At each iteration N configurations are sampled from the joint
probability distribution p(X;, X3). These sampled configurations are then run on a num-
ber of instances and the best p- N, 0 < p < 1 are selected. The model is updated on
the basis of the selected best configurations to learn the parameters that will increase the
probability of sampling these best configurations.

Subtask 4.a (3 points)

Define the parameterized probability distributions for X; and X5|Xj.

Subtask 4.b (6 points)
After the first iteration the p- N = 5 best configurations out of the N = 100 sampled are

nn-linkern
nn-linkern
arbitrary_insertion-linkern
arbitrary_insertion-linkern
arbitrary_insertion-linkern

These are to be considered joint realizations of the variables X; and X, that explain good
performance and that therefore we want to learn. For example, nn-linkern indicates
that the event (X; = nn, Xy = linkern) is likely to occur when the configuration is good
and we want our model to increase the chances of sampling it.

Let D denote this data base of five observations. Calculate the maximum likelihood
estimate of P(Xy = linkern|X; = nn, D).



Subtask 4.c (3 points)

Following the frequentist approach of the previous point what would be the probability
of the configuration nearest_insertion-linkern on the basis of the five observations?
Indicate which problem this solution exhibits and sketch a repair procedure.

Subtask 4.d (6 points)

In a full Bayesian approach the uncertainty of the parameters of the distributions of X;
and X3|X; are captured by prior probability distributions. Define these probabilities in
some hyperparameters for the parameters that you introduced in the first subtask of this
task.

Subtask 4.e (12 points)

Show how to derive the value of
P(X5 = linkern|X; = nn, D)

where D are the same five observations of point Subtask 4.b. In the numerical compu-
tations, assume that all initial local prior distributions are uniform distributions, that is,
all values for p(X; = 1) and p(Xy = x9| X7 = x1x) are equally likely.

Subtask 4.f (6 points)

What is the configuration most likely to perform best after the learning phase with the
data base D and what is its probability?

Subtask 4.g (4 points)

Without carrying out the numerical computations, derive p(Xs = linkern|D).



Task 5 Hidden Markov Models (10 points)

Consider a homogeneous HMM with four underlying states and a two dimensional space
as illustrated in Figure 4. Also shown in the figure are the initial state distribution 7,
permitted state transitions A, and the Gaussian emission distributions. The emission
distributions p(y|z, p,, 0% I) = N(y; p,,0%-I) for x = {1,2, 3,4} share the same overall
variance parameter o2.

If we were to sample a sequence of the two dimensional space emissions y from this HMM
model, we would get y1,y2,¥s,... (first time point is t = 1).
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Figure 4: The Hidden Markov Model of Task 4.

Subtask 5.a (3 points)

Draw the state transition graph for the model of Figure 4.

Subtask 5.b (5 points)

Suppose we only observe y3 in the figure (at time ¢ = 3). What is the most likely hidden
state sequence given y37 Briefly justify your answer.

Subtask 5.c (2 points)

Would the most likely initial state in Subtask 5.b change if we were to decrease 02? Briefly
justify your answer.
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