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Exercise 1 – Probability theory
Prove the following rule:

p(xi|x−i) =
p(x1, . . . , xN)∫
p(x1, . . . , xN)dxi

where x−i = {x1, . . . , xN} \ xi.

Solution By the product rule

p(x1, . . . , xN) = p(xi|x−i)p(x−i)

Rearranging and marginalizing:

p(xi|x−i) =
p(x1, . . . , xN)

p(x−i)

=
p(x1, . . . , xN)∫
p(x1, . . . , xN)dxi

Exercise 2 – Naive Bayes
Consider the binary classification problem of spam email in which a binary label Y ∈
{0, 1} is to be predicted from a feature vector X = (X1, X2, . . . , Xn), where Xi = 1 if
the word i is present in the email and 0 otherwise. Consider a naive Bayes model, in
which the components Xi are assumed mutually conditionally independent given the
class label Y.

a Draw a directed graphical model corresponding to the naive Bayes model.

Solution

b Find a mathematical expression for the posterior class probability p(Y = 1|x), in terms
of the prior class probability p(Y = 1) and the class-conditional densities p(xi|y).

Solution

p(Y = 1|x) =
p(~x|Y = 1)p(Y = 1)

p(~x)

=
Πn

i=1 p(xi|Y = 1)p(Y = 1)
∑y=0,1 Πn

i=1 p(xi|Y = y)p(Y = y)
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c Make now explicit the hyperparameters of the Bernoulli distributions for Y and Xi.
Call them, µ and θi, respectively. Assume a beta distribution for the prior of these hy-
perparameters and show how to learn the hyperparameters from a set of training data
(yj,~xj)m

j=1 using a Bayesian approach. Compare this solution with the one developed
in class via maximum likelihood.

Solution

Solution

The hierarchical model is represented in the figure.

For Y we assume
p(Y = 1|µ) = Bern(µ) = µ

For Xi we the distribution depends by the parent and we assume

p(Xi = 1|Y = 1, θi1) = Bern(θi1) = θi1

p(Xi = 1|Y = 0, θi0) = Bern(θi0) = θi0

The prior distribution on the θs and µ captures the uncertainty on these parameters.
Assuming a beta distribution and referring by θ to both the θiys and µ

p(θ) = Beta(θ|α, β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

The Gamma function Γ(·) is a normalizing function. The parameters α and β with
α > 0 and β > 0 are hyperparameters of the prior distribution. The mean of a beta
distribution is E[θ] = α

α+β .

The beta distribution has the conjugacy property, that is, the posterior distribution
has the same functional form as the prior. This property is convenient because the
posterior can be derived in closed form. For the Y node:

p(µ|d) =
p(d|µ)p(µ)

p(d)

=
Bin(s|µ)p(µ)

p(d)
∝ Beta(µ|α + s, β + (m− s)).

where s are the cases of m with Y = 1.

Y

X1 X2 . . . Xn
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For the Xi nodes assuming the independence

p(~θ|d) = Πm
j=1Πy=0,1 p(θjy|d)

and
p(θi1|d) = Beta(µ|α + si1, β + (s− si1))

where si1 is the number of cases in d with Xi = 1 and Y = 1 and s is the number of
cases in d with Y = 1.

Thus the prediction for each variable after learning occurred is given by

p(Y = 1|d) = ∑ p(Y = 1|d)p(µ|d) = Ep(µ|d)[µ|d] =
α + s

α + β + m

p(Xi = 1|Y = 1, d) = ∑ p(Xi = 1|Y = 1, d, θi1)p(θi1|d) = Ep(θi1|d)[θi1|d] =
α + si1

α + β + s

This is very similar to what we saw in class derived from the joint likelihood:

φy =
∑m

j=1 I{Y j = 1}
m

=
s
m

φi|Y=1 =
∑m

j=1 I{X j
i = 1, Y j = 1}

∑m
j=1 I{Y j = 1}

=
si1

s

If we want to predict Y given ~x then we use:

p(Y = 1|x, d) =
p(~x|Y = 1, d)p(Y = 1, d)

p(~x, d)

=
Πn

i=1 p(xi|Y = 1, d)p(Y = 1, d)
∑y=0,1 Πn

i=1 p(xi|Y = y, d)p(Y = y, d)

Exercise 3 – Directed Graphical Models
Consider the graph in Figure left.
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• Write down the standard factorization for the given graph.

Solution The standard factorization for any directed graphical model can be writ-
ten as p(x) = Πv∈V p(xv|xpa(v)), where xpa(v) are the nodes parent of xv. Here, this
yields

p(x) = p(x1)p(x2)p(x3|x10)p(x4|x2, x6, x7)p(x5|x9)p(x6|x1, x2)p(x7)p(x8)p(x9|x3, x7, x8)p(x10|x3).

• For what pairs (i, j) does the statement Xi is independent of Xj hold? (Don’t
assume any conditioning in this part.)

Solution

The goal is to find all pairs (i, j) such that Xi and Xj are independent. We can
achieve this by computing from each node its reachability, that is, the nodes that
are reachable by a path that does not have head-to-head subcomponents. From
node 1 we can get to nodes 6 and 4. From node 2 we can reach nodes 6, 4, 10, 3, 9,
and 5. From nodes 3 and 10 we can reach the sames nodes as node 2. From node
4 we can reach every node but node 8. From node 5 we can reach every node but
node 1. From node 6 we can reach any node but nodes 7 and 8. From node 7 we
can reach node 9, 4, and 5. Node 8 can only reach nodes 9 and 5. Node 9 can’t
reach node 1. Finally, node 10 can’t reach nodes 1, 7, and 8. Thus (1, 2), (1, 3), (1,
5), (1, 7), (1, 8), (1, 9), (1, 10), (2, 7), (2, 8), (3, 7), (3, 8), (4, 8), (6, 7), (6, 8), (7, 8), (7,
10), and (8, 10) are all independent pairs. In all there are 17 distinct pairs.

• Suppose that we condition on {X2, X9}, shown shaded in the graph. What is the
largest set A for which the statement X1 is conditionally independent of XA given
{X2, X9} holds? Solution We say that X ⊥ Y |Z if X and Y are d-separated given Z

in the digraph, that is, if there is no active path between any node X ∈ X to Y ∈ Y
given Z ∈ Z. In class we defined the four conditions for a path to be active.

Checking d-separation implies checking all paths from a vertex to another. This
maybe exponential. The following is a linear time algorithm for d-separation. We
begin by traversing the graph bottom up, from the leaves to the roots, marking all
nodes that are in Z or that have descendants in Z. Intuitively, these nodes will
serve to identify a head-to-head structure, ie., X → Z ← Y. In the second phase,
we traverse breadth-first from X to Y, stopping the traversal along a path when
we get to a blocked node. A node is blocked if: (a) it is in the “middle” node of a
structure X → Z ← Y and unmarked in phase I, or (b) is not such a node and is in
Z. If our breadth-first search gets from X to Y, then there is a path between them
through Z.

Conditioned on {X2, X9} there is no active path to nodes 3, 10, 7, 8 and 5. Hence,
A = {3, 5, 7, 8, 10}. Note that nodes 2 and 9 are not elements of the set A because
we are conditioning on them.

• What is the largest set B for which X8 is conditionally independent of XB given
{X2, X9} holds? Solution Conditioned on {X2, X9} starting at node 8 we cannot

reach with an active path nodes 1, 5, and 6. Therefore, B = {1, 5, 6}.
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Figure 1: A directed graph.

• Suppose that I wanted to draw a sample from the marginal distribution p(x5) =
Pr[X5 = x5]. (Don’t assume that X2 and X9 are observed.) Describe an efficient
algorithm to do so without actually computing the marginal. Solution

We wish to generate a sample of x5 from the marginal distribution p(x5). We can
achieve this by sampling from the join distribution p(~x) and then marginalizing.
For example, given a joint distribution Pr[x1, x2], one can generate a sample from
the marginal distribution of x1 by sampling from the joint distribution and dis-
carding x2. To see this, let A be the event that the sample x̄1 lies in some set F.
Therefore, Pr[A] = Pr[x1 ∈ F ∪ x2 ∈ R] = Pr[x1 ∈ F]. Thus, x̄1 and x1 have the
same distribution.

Hence we can avoid unnecessary computations applying the following algorithm:

– calculate the Topological order of the graph

– sample using the factorization and the topological sorting until you sample
x5.

Hence, we can first generate a sample of x2, x7, and x8. Then, using factorization,
we can generate a sample of from the distribution p(x10|x2), followed by a sample
from the distribution p(x3|x10) by using the sample obtained of x10. Next, we can
generate a sample of x9 from the distribution p(x9|x7, x8, x2). Finally, we can obtain
a sample for x5 by sampling from the distribution p(x5|x9). We can immediately
see that generating a sample of x5 did not require actually sampling from x1, x6,
or x4 because conditioned on nodes 2, 7, and 8, x5 is independent of nodes 1, 6,
and 4. Thus, what we’ve done is generating a sample from the joint distribution
p(x2, x3, x10, x7, x8, x9, x5) = p(x2)p(x7)p(x8)p(x10|x2)p(x3|x10)p(x9|x3, x8, x7)p(x5|x9).
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