
DM825

Introduction to Machine Learning

Lecture 10
Application Guidelines

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

A few useful things to know in Application
settings

I It is generalization that counts
 train on training set and evaluate on test set

I data alone is not enough: learners must embed some form of knowledge
or assumptions (ie. no free lunch theorem)

eg: learning a Boolean function 2100 from 106 examples

nearest neighbor (instance-based) if good knowledge about what makes
similar examples
graphical models if good knowledge about dependencies of variables
rule systems if knowledge of the type IF... THEN...

2

I Overfitting has many faces:

I Bias: tendency to consistently learn the same wrong thing
(if true releationship is not linear then we will see error even with infinite
training set)

I Variance: tendency to learn random things irrespective of real signal.
(we are fitting on a too small training set that does not reflect the true
relationship)

In general: if high training error and high test error bias
if low training error but high test error high variance

linear learners have high bias, decision trees high variance

be skeptical of claims that a particular technique “solves” the overfitting
problem. It is easy to avoid overfitting (variance) by falling into the
opposite error of underfitting (bias).

 Diagnostics
3

I intuition Fails in high Dimensions
Generalizing correctly becomes exponentially harder as the
dimensionality (number of features) of the examples grows, because a
fixed-size training set covers a dwindling fraction of the input space.

Similarity reasoning breaks down in high dimensions:
eg: nearest neighbor classifier with Hamming distance. Suppose the
class is just x1 ∧ x2. If no other features, easy. But if there are 98
irrelevant features the noise from them leads to random predictions.

4

I Theoretical Guarantees are not What they seem

Example of results:
1. bound on the number of examples needed to ensure good

generalization
2. given infinite data, the learner is guaranteed to output the correct

classifier

5

Example for 1.:

I H hypothesis space
I Let’s say a classifier is bad if its true error rate is greater than ε.

Probability that a bad classifier is consistent with n random,
independent training examples is less than (1− ε)n.

I union bound: Let A1, A2, . . . , Ak, be k different independent events.
Then

P (A1 ∪A2 ∪ . . . ∪Ak) ≤ P (A1) + P (A2) + . . .+ P (Ak)

I If b bad classifiers in H the probability that at least one is consistent is
less than b(1− ε)n (union bound)

I If the learner always returns a consistent classifier, the probability that
this classifier is bad is then less than b(1− ε)n ≤ |H|(1− ε)n

I So if we want this probability to be less than δ, it suffices to make
n > ln(δ/|H|)/ ln(1− ε) ≥ 1/ε(ln |H|+ ln 1/δ)

I but most interesting hypothesis spaces are doubly exponential in the
number of features d: eg Boolean functions of d Boolean variables.

I

2)

main role of theoretical guarantees is not as a criterion for practical
decisions, but as a source of understanding and for algorithm design.

I Feature engineering is the Key

most important factor is the features used. Learning is easy with many
independent features that each correlate well with the class.

not a one-shot process of building a data-set and running a learner, but
rather an iterative process of running the learner, analyzing the results,
modifying the data and/or the learner, and repeating.

automated feature engineering:
forward search, backward search, filter feature selection

7

Automated Feature Selection
With number features n� m size of training set, potential risk for
overfitting.

With n features there are 2n possible sub-sets. NP-hard problem.
Wrapper model feature selection: Heuristic to search among the 2n subsets:

Forward search
start with F = ∅;
repeat

for i = 1 . . . n do
try adding feature i from F ;
estimate generalization error
using CV

set F = F ∪
{best feature found in For loop}

until |F| ≤ n′ ≤ n ;
output the best subset seen F∗

Backward search
start with F = {1 . . . n};
repeat

for i = 1 . . . n do
try removing feature i to F ;
estimate generalization error
using CV

set F = F \
{best feature found in For loop}

until |F| ≥ n′ ≥ 0 ;
output the best subset seen F∗

Note that in statistical packages improvements are often assessed by the
F-ratio of residual sum of squares.

8

Wrapper model feature selection require O(n2) calls to the learning algorithm.
Computationally cheaper methods:

Filter feature selection
for each feature i do

compute some score S(i) of how informative xi is about y
select features with k highest scores.

Example of scores:

I absolute correlation between xi and y on training data
I mutual information
MI(xi, y) =

∑
xi∈{0,1}

∑
y∈{0,1} p(xi, y) log

p(xi,y)
p(xi)p(y)

(for binary features with probabilities estimated from training set)
(Kullback-Leibler divergence measures how different probability
distributions p(xi, y) and p(xi)p(y) are)

9

I more Data Beats a cleverer algorithm
try the simplest learners first (eg, näive Bayes before logistic regression,
k-nearest neighbor before support vector machines). More sophisticated
learners are usually harder to use, because they have more knobs to turn

I Learn many models, not Just one
best learner varies from application to application

model ensembles:
bagging: generate random variations of the training set by resampling,
learn a classifier on each, and combine the results by voting.
boosting: training examples have weights, and these are varied so that
each new classifier focuses on the examples the previous ones tended to
get wrong
stacking: outputs of individual classifiers become the inputs of a
“higher-level” learner that figures out how best to combine them

10

Combining Models
1) Bagging or bootstrap aggregation:
{(x1, y1), (x2, y2), . . . , (xm, ym)}, goal is predicting y
We bootstrap B times and each time fit a model fb(x) then:

ŷ = fBAG(~x) =
1

B

B∑
b=1

fb(~x)

Motivation:
Suppose h(~x) is the true function: fb(~x) = h(~x) + εb(~x)

E~x[{fb(~x)− h(~x)}2] = E~x[{εb(~x)}2] sum of squares

Hence expected error on the sample B:

EAV =
1

B

B∑
b=1

E~x[εb(~x)
2] for each model acting individually

ECOM = E~x

{(1

B

B∑
b=1

fb(~x)

)
− h(~x)

}2
 = E~x

{ 1

B

B∑
b=1

εb(~x)

}2

11

If we assume:

E~x[εb(~x)] = 0

E~x[εb(~x)εl(~x)] = 0 b 6= l

Then

EBAG =
1

B
EAV

The independence assumption is clearly not true but it works nevertheless.

12

2) Boosting

Adaptive Boosting (AdaBoost) (for both classification and regression)
training in sequence + weighted majority voting scheme

13

{x1, . . . , ~xm}, yi ∈ {−1, 1}
Set weights w1

i = 1/B, i = 1, . . . ,m
for b = 1 . . . B do

Fit model by weighted error function:

Jb =

m∑
i=1

wb
i I
{
hb(~x

i) 6= yi
}

Update weights:

εb =

∑m
i=1 w

b
i I
{
hb(~x

i) 6= yi
}∑

i w
b
i

αb = ln
1− εb
εb

wb+1
i = wb

i exp{αbI{hb(~x) 6= yi}}, i = 1, . . . ,m

Predict with sign
(∑B

b=1 αbhb(~x)
)

14

Example: Decision Stumps (single node decision tree)

15

I Simplicity Does not imply Accuracy
given two classifiers with the same training error, the simpler of the two
will likely have the lowest test error. But there are many counter
examples to this in the literature.

I Representable Does not imply Learnable
Eg, functions with local optima

I Correlation Does not imply Causation

learning is usually applied to observational data, where the predictive
variables are not under the control of the learner, as opposed to
experimental data, where they are.

we would like to predict the effects of our actions, not just correlations
between observable variables. If one can obtain experimental data (eg,
by randomly assigning visitors to different versions of a Web site), then
one should do so.

16

