Course Overview

- Introduction
 - Artificial Intelligence
 - Intelligent Agents
- Search
 - Uninformed Search
 - Heuristic Search
- Uncertain knowledge and Reasoning
 - Probability and Bayesian approach
 - Bayesian Networks
 - Hidden Markov Chains
 - Kalman Filters

Learning

- Supervised
 - Decision Trees, Neural Networks
 - Learning Bayesian Networks
- Unsupervised
 - EM Algorithm

Reinforcement Learning

Games and Adversarial Search

- Minimax search and Alpha-beta pruning
- Multiagent search

Knowledge representation and Reasoning

- Propositional logic
- First order logic
- Inference
- Planning
1. Learning Graphical Models
 Parameter Learning in Bayes Nets
 Bayesian Parameter Learning

2. Unsupervised Learning
 k-means
 EM Algorithm
Outline

Methods:

1. Bayesian learning

2. Maximum \textit{a posteriori} and maximum likelihood learning

Bayesian networks learning with complete data

a. ML parameter learning

b. Bayesian parameter learning
Full Bayesian learning

- View learning as Bayesian updating of a probability distribution over the hypothesis space

- H hypothesis variable, values h_1, h_2, \ldots, prior $\Pr(h)$

- d_j gives the outcome of random variable D_j (the jth observation)

- training data $d = d_1, \ldots, d_N$

- Given the data so far, each hypothesis has a posterior probability:

 $$P(h_i|d) = \alpha P(d|h_i)P(h_i)$$

 where $P(d|h_i)$ is called the likelihood

- Predictions use a likelihood-weighted average over the hypotheses:

 $$\Pr(X|d) = \sum_i \Pr(X|d, h_i)P(h_i|d) = \sum_i \Pr(X|h_i)P(h_i|d)$$

 Or predict according to the most probable hypothesis (maximum a posteriori)
Suppose there are five kinds of bags of candies:
 10% are h_1: 100% cherry candies
 20% are h_2: 75% cherry candies + 25% lime candies
 40% are h_3: 50% cherry candies + 50% lime candies
 20% are h_4: 25% cherry candies + 75% lime candies
 10% are h_5: 100% lime candies

Then we observe candies drawn from some bag: ● ● ● ● ● ● ● ● ● ●
What kind of bag is it? What flavour will the next candy be?
Posterior probability of hypotheses

\[P(h_1 | d) \]
\[P(h_2 | d) \]
\[P(h_3 | d) \]
\[P(h_4 | d) \]
\[P(h_5 | d) \]
Prediction probability

$P(\text{next candy is lime} \mid d)$ vs Number of samples in d
MAP approximation

- Summing over the hypothesis space is often intractable (e.g., $18,446,744,073,709,551,616$ Boolean functions of 6 attributes)

- Maximum a posteriori (MAP) learning: choose h_{MAP} maximizing $P(h_i|d)$

 I.e., maximize $P(d|h_i)P(h_i)$ or $\log P(d|h_i) + \log P(h_i)$

 Log terms can be viewed as (negative of)

 bits to encode data given hypothesis + bits to encode hypothesis

 This is the basic idea of minimum description length (MDL) learning

- For deterministic hypotheses, $P(d|h_i)$ is 1 if consistent, 0 otherwise

 \implies MAP = simplest consistent hypothesis
ML approximation

- For large data sets, prior becomes irrelevant

- **Maximum likelihood** (ML) learning: choose h_{ML} maximizing $P(d|h_i)$

 i.e., simply get the best fit to the data; identical to MAP for uniform prior

 (which is reasonable if all hypotheses are of the same complexity)

- ML is the “standard” (non-Bayesian) statistical learning method
Parameter learning by ML

Bag from a new manufacturer; fraction \(\theta \) of cherry candies?

Any \(\theta \) is possible: continuum of hypotheses \(h_\theta \)

\(\theta \) is a parameter for this simple (binomial) family of models

Suppose we unwrap \(N \) candies, \(c \) cherries and \(\ell = N - c \) limes

These are i.i.d. (independent, identically distributed) observations, so

\[
P(d|h_\theta) = \prod_{j=1}^{N} P(d_j|h_\theta) = \theta^c \cdot (1 - \theta)\ell
\]

Maximize this w.r.t. \(\theta \)—which is easier for the log-likelihood:

\[
L(d|h_\theta) = \log P(d|h_\theta) = \sum_{j=1}^{N} \log P(d_j|h_\theta) = c \log \theta + \ell \log(1 - \theta)
\]

\[
\frac{dL(d|h_\theta)}{d\theta} = \frac{c}{\theta} - \frac{\ell}{1 - \theta} = 0 \quad \Rightarrow \quad \theta = \frac{c}{c + \ell} = \frac{c}{N}
\]

Seems sensible, but causes problems with 0 counts!
Red/green wrapper depends probabilistically on flavor: Likelihood for, e.g., cherry candy in green wrapper:

\[
P(F = \text{cherry}, W = \text{green}| h_{\theta, \theta_1, \theta_2})
= P(F = \text{cherry}| h_{\theta, \theta_1, \theta_2})P(W = \text{green}| F = \text{cherry})
= \theta \cdot (1 - \theta_1)
\]

\(N\) candies, \(r_c\) red-wrapped cherry candies, etc.:

\[
P(d|h_{\theta, \theta_1, \theta_2}) = \theta^c (1 - \theta)^\ell \cdot \theta_1^{r_c} (1 - \theta_1)^{g_c} \cdot \theta_2^{r_\ell} (1 - \theta_2)^{g_\ell}
\]

\[
L = [c \log \theta + \ell \log (1 - \theta)]
+ [r_c \log \theta_1 + g_c \log (1 - \theta_1)]
+ [r_\ell \log \theta_2 + g_\ell \log (1 - \theta_2)]
\]
Derivatives of L contain only the relevant parameter:

\[
\frac{\partial L}{\partial \theta} = \frac{c}{\theta} - \frac{\ell}{1 - \theta} = 0 \quad \implies \quad \theta = \frac{c}{c + \ell}
\]

\[
\frac{\partial L}{\partial \theta_1} = \frac{r_c}{\theta_1} - \frac{g_c}{1 - \theta_1} = 0 \quad \implies \quad \theta_1 = \frac{r_c}{r_c + g_c}
\]

\[
\frac{\partial L}{\partial \theta_2} = \frac{r_\ell}{\theta_2} - \frac{g_\ell}{1 - \theta_2} = 0 \quad \implies \quad \theta_2 = \frac{r_\ell}{r_\ell + g_\ell}
\]

With complete data, parameters can be learned separately.
Continuous models

\[P(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \]

Parameters \(\mu \) and \(\sigma^2 \)
Maximum likelihood:
Continuous models, Multiple param.

Maximizing $P(y|x) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{(y-(\theta_1 x + \theta_2))^2}{2\sigma^2}}$ w.r.t. θ_1, θ_2

= minimizing $E = \sum_{j=1}^{N} (y_j - (\theta_1 x_j + \theta_2))^2$

That is, minimizing the sum of squared errors gives the ML solution for a linear fit assuming Gaussian noise of fixed variance
Summary

- Full Bayesian learning gives best possible predictions but is intractable
- MAP learning balances complexity with accuracy on training data
- Maximum likelihood assumes uniform prior, OK for large data sets

1. Choose a parameterized family of models to describe the data
 requires substantial insight and sometimes new models
2. Write down the likelihood of the data as a function of the parameters
 may require summing over hidden variables, i.e., inference
3. Write down the derivative of the log likelihood w.r.t. each parameter
4. Find the parameter values such that the derivatives are zero
 may be hard/impossible; gradient techniques help
Bayesian Parameter Learning

If small data set the ML method leads to premature conclusions:
From the Flavor example:

\[P(d|h_\theta) = \prod_{j=1}^{N} P(d_j|h_\theta) = \theta^c \cdot (1 - \theta)^\ell \]

\[\implies \theta = \frac{c}{c + \ell} \]

If \(N = 1 \) and \(c = 1, \ell = 0 \) we conclude \(\theta = 1 \). Laplace adjustment can mitigate this result but it is artificial.
Bayesian approach:

\[P(\theta|d) = \alpha P(d|\theta) P(\theta) \]

we saw the likelihood to be

\[p(X = 1|\theta) = \text{Bern}(\theta) = \theta \]

which is known as Bernoulli distribution. Further, for a set of \(n \) observed outcomes \(d = (x_1, \ldots, x_n) \) of which \(s \) are 1s, we have the **binomial sampling model**:

\[p(D = d|\theta) = p(s|\theta) = \text{Bin}(s|\theta) = \binom{n}{s} \theta^s (1 - \theta)^{n-s} \]

(1)
The Beta Distribution

We define the prior probability \(p(\theta) \) to be Beta distributed

\[
p(\theta) = \text{Beta}(\theta|a, b) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \theta^{a-1}(1 - \theta)^{b-1}
\]

Reasons for this choice:
- provides flexibility varying the hyperparameters \(a \) and \(b \)
 Eg. the uniform distribution is included in this family with \(a = 1, b = 1 \)
- conjugacy property
Eg: we observe $N = 1, c = 1, l = 0$:

$$p(\theta|d) = \alpha p(d|\theta)p(\theta)$$
$$= \alpha \text{Bin}(d|\theta)p(\theta)$$
$$= \alpha \text{Beta}(\theta|a + c, b + l).$$
In Presence of Parents

- Denote by Pa_i^j the jth parent variable/node of X_i

 \[p(x_i | \text{pa}_i^j, \theta_i) = \theta_{ij}, \]

 where $\text{pa}_i^1, \ldots, \text{pa}_i^{q_i}, q_i = \prod_{X_i \in \text{Pa}_i} r_i$, denote the configurations of Pa_i, and $\theta_i = (\theta_{ij}), j = 1, \ldots, q_i$, are the local parameters of variable i.

- In the case of no missing values, that is, all variables of the network have a value in the random sample d, and independence among parameters, the parameters remain independent given d, that is,

 \[p(\theta | d) = \prod_{i=1}^{d} \prod_{j=1}^{q_i} p(\theta_{ij} | d) \]

- In other terms, we can update each vector parameter θ_{ij} independently, just as in the one-variable case. Assuming each vector has the prior distribution $\text{Beta}(\theta_{ij} | a_{ij}, b_{ij})$, we obtain the posterior distribution

 \[p(\theta_{ij} | d) = \text{Beta}(\theta_{ij} | a_{ij} + s_{ij}, b_{ij} + n - s_{ij}) \]

 where s_{ij} is the number of cases in d in which $X_i = 1$ and $\text{Pa}_i = \text{pa}_i^j$.

Outline

1. Learning Graphical Models
 - Parameter Learning in Bayes Nets
 - Bayesian Parameter Learning

2. Unsupervised Learning
 - k-means
 - EM Algorithm
K-means clustering

Init: select k cluster centers at random

repeat
- assign data to nearest center.
- update cluster center to the centroid of assigned data points

until no change ;
Expectation-Maximization Algorithm

Generalization of \(k \)-means that uses soft assignments

Mixture model: exploit an hidden variable \(z \)

\[
p(x) = \sum_z p(x, z) = \sum_z p(x \mid z)p(z)
\]

Both \(p(x \mid z) \) and \(p(z) \) are unknown:

- assume \(p(x \mid z) \) is multivariate Gaussian distribution \(N(\mu_i, \sigma_i) \)
- assume \(p(z) \) is multinomial distribution with parameter \(\theta_i \)

\(\sim \mu_i, \sigma_i, \theta_i \) are unknown
E-step: Assume we know $\mu_i, \sigma_i, \theta_i$, calculate for each sample j the probability of coming from i

$$p_{ij} = \alpha \theta_i (2\pi)^{-N/2} |\Sigma|^{-1} \exp\{-1/2(x - \mu)\Sigma(x - \mu)^T\}$$

M-step: update $\mu_i, \sigma_i, \theta_i$:

$$\pi_i = \sum_j \frac{p_{ij}}{N}$$

$$\mu_i = \sum_j \frac{p_{ij} x_j}{\sum_j p_{ij}}$$

$$\Sigma_i = \frac{\sum_j p_{ij} (x_j - \mu_i)(x_j - \mu_j)^T}{\sum_j p_{ij}}$$
the ML method on $\prod_j p(x_j \mid \mu_i, \sigma_i, \theta_i)$ does not lead to a closed form. Hence we need to proceed by assuming values for some parameters and deriving the others as a consequence of these choices.

The procedure finds local optima

It can be proven that the procedure converges

p_{ij} are soft guesses as opposed to hard links in the k-means algorithm