
DM877

Constraint Programming

Filtering algorithms for global constraints

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Global Constraints
Scheduling

2. Soft Constraints

3. Optimization Constraints

2

Outline

1. Global Constraints
Scheduling

2. Soft Constraints

3. Optimization Constraints

3

Declarative and Operational Semantic

I Declarative Semantic: specify what the constraint means. Evaluation criteria is expressivity.

I Operational Semantic: specify how the constraint is computed, i.e., is kept consistent with its
declarative semantic. Evaluation criteria are efficiency and effectiveness.

Example

So far, we have defined only the Declarative Semantic of the alldifferent constraint, not its
Operational Semantic.

4

Domain Consistency

Definition
A constraint C on the variables x1, . . . , xr with respective domains D1, . . . ,Dr is called domain
consistent (or generalized/hyper-arc consistent) if for each variable xi and each value di ∈ Di there
exist compatible values in the domains of all the other variables of C , that is, there exists a tuple
(d1, . . . , di , . . . , dr) ∈ C .

In other terms: If value v is in the domain of variable x , then there exists a solution to the
constraint with value v assigned to variable x .

Examples: alldifferent (distinct), knapsack, ...

Definition

Filtering algorithm ≡ reduction rule: reduce D(xi) for 1 ≤ i ≤ r such that it still contains all values
that the variable can assume in a solution of C .

D(xi)← D(xi) ∩ {di ∈ D(xi)|D(x1 × D(xi−1)× {vi} × D(xi+1)× . . . ,D(xr)} ∩ C 6= ∅} Generic arc
consistency algorithms are in O(erd r).

5

Consistency and Filtering Algorithms

I Different filtering algorithms, which must be able to:
1. Check consistency of C w.r.t. the current variable domains
2. Remove inconsistent values from the variable domains

I The stronger is the level of consistency, the higher is the complexity of the filtering algorithm:
Different level of consistency (domain, bound(Z), bound(D), range, value):
I complete filtering, optimal pruning, domain completeness ≡ domain/arc consistency
I partial filtering, bound completeness ≡ bound relaxed completeness

... again the alldifferent case

There exist in literature several filtering algorithms for the alldifferent constraints.

6

Decomposition Approach

A decomposition of a global constraint C is a polynomial time transformation δk(P) replacing C by
some new bounded arity constraint (and possibly new variables) while preserving the set of tuples
allowed on X (C).

Global Constraint Decomposition

Given any P = 〈X (C),D, C = {C}〉, δk(P) is such that
I X (C) ⊆ Xδk (P)
I for all xi ∈ X (C), D(xi) = Dδk (P)(xi)
I for all Cj ∈ Cδk (P), |X (Cj)| ≤ k and
I sol(P) = πX (C)(sol(δk(P))

Example

atmost(x1, . . . , xn, p, v) (at most p variables in x1, . . . , xn take value v).
Decomposition: n + 1 additional variables y0, . . . , yn (xi = v ∧ yi = yi−1 + 1)∨ (xi 6= v ∧ yi = yi−1)
for all i , 1 ≤ i ≤ n, and domains D(y0) = {0} and D(yi) = {0, . . . , p} for 1 ≤ i ≤ n.

7

These decompositions can be:

I preserving solutions

I preserving generalized arc consistency

I preserving the complexity of enforcing generalized arc consistency

The decomposition of atmost preserves solutions and generalized arc consistency
For the alldifferent only preserving solutions. Yet sometimes it is possible to construct a
specialized algorithm that enforces GAC in polynomial time.

8

alldifferent

alldifferent constraint
Let x1, x2, . . . , xn be variables. Then:

alldifferent(x1, ..., xn) =

{(d1, ..., dn) | ∀i di ∈ D(xi), ∀i 6= j , di 6= dj}.

9

Complete Filtering for alldifferent

1. build value graph G = (X ,D(X),E)

2. compute maximum matching M in G

3. if |M| < |X | then return false
4. mark all arcs in oriented graph GM that are not in M as unused
5. compute SCCs in GM and mark all arcs in a SCC as used
6. perform breadth-first search in GM starting from M-free vertices, and mark all traversed arcs

as used if they belong to an even path
7. for all arcs (xi , d) in GM marked as unused do

D(xi) := D(xi) \ d
if D(xi) = ∅ then return false

8. return true

Overall complexity: O(n
√
m + (n + m) + m)

It can be updated incrementally if other constraints remove some values.

10

Example

11

Example

12

Relaxed Consistency

Definition

A constraint C on the variables x1, . . . , xm with respective domains D1, . . . ,Dm is called bound(Z)
consistent if for each variable xi and each value di ∈ {min(Di),max(Di)} there exist compatible
values between the min and max domain of all the other variables of C , that is, there exists a value
dj ∈ [min(Di),max(Di)] for all j 6= i such that (d1, . . . , di , . . . , dk) ∈ C .

Definition
A constraint C on the variables x1, . . . , xm with respective domains D1, . . . ,Dm is called range
consistent if for each variable xi and each value di ∈ Di there exist compatible values between the
min and max domain of all the other variables of C , that is, there exists a value
dj ∈ [min(Di),max(Di)] for all j 6= i such that (d1, . . . , di , . . . , dk) ∈ C .

(bound(D) if its bounds belong to a support on C)
GAC < (bound(D), range) < bound(Z)

13

Bound Consistency [Mehlorn&Thiel2000]

Definition (Convex Graph)

A bipartite graph G = (X ,Y ,E) is convex if the vertices of Y can be assigned distinct integers
from [1, |Y |] such that for every vertex x ∈ X , the numbers assigned to its neighbors form a
subinterval of [1, |Y |].

In convex graph we can find a matching in linear time.

14

Example

15

Survey of complexity: effectiveness and efficiency

Consistency Idea Complexity Amort. Reference(s)
arc O(n2) [VanHentenryck1989]
bound Hall O(n log n) [Puget1998]

Flows [Mehlhorn&Thiel2000]
Hall [Lopez&All2003]

O(n) [Mehlhorn&Thiel2000]
[Lopez&All2003]

range Hall O(n2) [Leconte1996]
domain Flows O(n

√
m) O(n

√
k) [Régin1994],[Costa1994]

Where n = number of variables, m =
∑

i∈1...n |Di |, and k = number of values removed.

16

Filtering cardinality

cardinality or gcc (global cardinality constraint)

Let x1, . . . , xn be assignment variables whose domains are contained in {v1, . . . , vn′} and let
{cv1 , . . . , cvn′} be count variables whose domains are sets of integers. Then

cardinality([x1, ..., xn],[cv1 , ..., cvn′]) =

{(w1, ...,wn, o1, ..., on′) | wj ∈ D(xj)∀j ,
occ(vi , (w1, ...,wn)) = oi ∈ D(cvi)∀i}.

(occ number of occurrences)

 generalization of alldifferent
NP-hard to filter domain of all variables. But if constant intervals, then polynomial algorithm via
network flows. (integral feasible (s, t)-flow)

17

Filtering knapsack

Knapsack and Sum constraints (Linear constraints over integer variables)

Let x1, . . . , xn, z , c be integer variables:

knapsack([x1, . . . , xn], z , c) =(d1, . . . , dn, d) | di ∈ D(xi)∀i , d ∈ D(z), d ≤
∑

i=1,...,n

cidi

∩(d1, . . . , dn, d) | di ∈ D(xi)∀i , d ∈ D(z), d ≥
∑

i=1,...,n

cidi

 .

Binary Knapsack (Linear constraints over Boolean variables)∑
cixi = z , xi ∈ {0, 1} lz ≤

∑
cixi ≤ uz

18

Variant of the subset sum problem: Given a set of numbers find a subset whose sum is 0.
Eg: −7,−3,−2, 5, 8 −3− 2 + 5 = 0
10 ≤ 2x1 + 3x2 + 4x3 + 5x4 ≤ 12

19

Filtering regular

“regular” constraint

Let M = (Q,Σ, δ, q0,F) be a DFA and let X = {x1, x2, . . . , xn} be a set of variables with D(xi) ⊆ Σ
for 1 ≤ i ≤ n. Then regular(X ,M) = {(d1, ..., dn) | ∀i , di ∈ D(xi), [d1, d2, . . . , dn] ∈ L(M)}.

20

21

Other Filtering Algorithms

I linear

I element

I disjunctive

I cumulative

22

linear

n∑
i=1

aixi + b S 0 xi ∈ [li , hi]

Example

3x + 4y − 5z ≤ 7

x ≤ 7− 4y + 5z
3

=⇒ x ≤
⌊
7− 4`y + 5hz

3

⌋

[`x , hx]←−
[
`x ,min

(
hx ,

⌊
7− 4`y + 5hz

3

⌋)]

23

∑
i∈POS

aixi −
∑

i∈NEG

aixi ≤ b

x≤
b − 4y + 5z

3
=⇒ xj ≤

b −
∑

i∈POS\{j} aixi +
∑

i∈NEG aixi

aj

αj =
b −

∑
i∈POS\{j} ai li +

∑
i∈NEG aihi

aj

βj =
b −

∑
i∈POS\{j} aihi +

∑
i∈NEG ai li

aj

[lj , hj]←− [max(lx , dβje),min(hj , bαjc)]

(domain consistency is NP-complete, this one is bound(Z))
24

element

I element(y , ~a, z) ≡ z = ay

D(z)←− D(z) ∩ {ai | i ∈ D(y)}
D(y)←− {i ∈ D(y) | ai ∈ D(z)}

I element(y , ~x , z) ≡ z = xy

D(z)←− D(z) ∩
⋃

i∈D(y)

Dxi

D(y)←− {i ∈ D(y) | D(z) ∩ Dxi 6= ∅}

D(xi)←−

{
D(xi) ∩ D(z) if D(y) = {i}
D(xi) else

25

Outline

1. Global Constraints
Scheduling

2. Soft Constraints

3. Optimization Constraints

26

Edge Finding

27

O(n2) algorithm

28

Not first, Not Last

29

Cumulative Scheduling

30

Edge Finding

31

Filtering Algorithm Design

1. Filtering algorithms based on a generic algorithm
Simple AC algorithms. Eg, element:

element(y , [2, 4, 8, 16, 32], x), x ∈ {1, 2, 3, 4, 5}

2. Filtering algorithms based on existing algorithms
Reuse existing algorithms for filtering (e.g., flows algorithms, dynamic programming).

3. Filtering algorithms based on ad-hoc algorithms
Pay particular attention to incrementality and amortized complexity

4. Filtering algorithms based on model reformulation
See the Constraint Decomposition approach

32

Outline

1. Global Constraints
Scheduling

2. Soft Constraints

3. Optimization Constraints

33

Soft Constraints

Soft constraint
A soft constraint is a constraint that may be violated. We measure the violation of each constraint,
and the goal is to minimize the total amount of violation of all soft-constraints.

Definition

A violation measure for a soft-constraint C (x1, . . . , xn) is a function

µ : D(x1)× · · · × D(xn)→ Q.

This measure is represented by a cost variable z .

34

Violation measures

I The variable-based violation measure µvar counts the minimum number of variables that need
to change their value in order to satisfy the constraint.

I The decomposition-based violation measure µdec counts the number of constraints in the
binary decomposition that are violated.

35

The soft-alldifferent

Definition

Let x1, x2, ..., xn, z be variables with respective finite domains D(x1),D(x2), ...,D(xn),D(z). Let µ
be a violation measure for the alldifferent constraint. Then

soft-alldifferent(x1, ..., xn, z , µ) =

{(d1, ..., dn, d) | ∀i .di ∈ D(xi), d ∈ D(z), µ(d1, ..., dn) ≤ d}

is the soft alldifferent constraint with respect to µ.

36

The soft-alldifferent: an example

Example

Consider the following CSP

x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {a, b, c}, z ∈ Z+

soft-alldifferent(x1, x2, x3, x4, µ, z)
min z

We have for instance µvar (b, b, b, b) = 3 and µdec(b, b, b, b) = 6.

37

Filtering of soft-alldiff

Flow network and feasible flow Residual graph

38

Outline

1. Global Constraints
Scheduling

2. Soft Constraints

3. Optimization Constraints

40

Optimization Constraints

Optimization Constraint bring the costs of variable-value pair into the declarative semantic of the
constraints.

The filtering does take into account the cost, and a tuple may be inconsistent because it does not
lead to a solution of “at least” a given cost.
Basic approach, solve a sequence of decision problems, allows one-way inference.
More powerful approach takes into account two-way inference.

41

gcc with costs

cardinality or cost_gcc (global cardinality constraint with costs)

Let x1, . . . , xn be assignment variables whose domains are contained in {v1, . . . , vn′} and let
{cv1 , . . . , cvn′} be count variables whose domains are sets of integers and w(x , d) ∈ Q are costs.
Then

cost_gcc([x1, ..., xn], [cv1 , ..., cvn′], z ,w) =

{(d1, ..., dn, o1, ..., on′) |
{(d1, ..., dn, o1, ..., on′) ∈ gcc(([x1, ..., xn], [cv1 , ..., cvn′]),

∀dj ∈ D(xj) d ∈ D(z)
∑
i

w(xi , di) ≤ d}.

42

Filtering for cost_gcc

(works on constant intervals)
Extend the (s, t)-network saw for gcc by weigths w(xi , vi) ∀vi

1. compute initial min-cost feasible (s, t)-flow, f . (O(n(m + n log n)

2. For an arc uv with f (a) = 0 compute min cost directed path P from v to u in the residual
graph. P + a is a directed circuit.

3. since f is integer we can rerout one unit in the circuit and obtain:
cost(f ′) = cost(f) + cost(P).

4. if cost(f ′) > max(D(z)) remove v from D(xi)

2.-4. in O(∆(m + n log n))

43

Reduced-Cost Based Filtering [Focacci&all1999]

Definition

Let X = {x1, ..., xn} be a set of variables with corresponding finite domains D(x1), ...,D(xn). We
assume that each pair (xi , j) with j ∈ D(xi) induces a cost cij .
We extend any global constraint C on X to an optimization constraint opt_C by introducing
a cost variable z (that we wish to minimize) and defining

opt_C(x1, ..., xn, z , c) = {(d1, ..., dn, d)|(d1, ..., dn) ∈ C (x1, ..., xn),

∀i .di ∈ D(xi), d ∈ D(z),
∑

i=1,...,n

cidi ≤ d}.

44

Linear Relaxation

We introduce binary variables yij for all i ∈ {1, ..., n} and j ∈ D(xi), such that

xi = j ⇔ yij = 1, ∀i = 1, . . . , n, ∀j ∈ D(xi),

xi 6= j ⇔ yij = 0, ∀i = 1, . . . , n, ∀j ∈ D(xi)∑
j∈D(xi)

yij = 1, ∀i = 1, . . . , n.

+ constraint dependent linear inequalities

The reduced-costs are given w.r.t. the objective:∑
i=1,...,n

∑
j∈D(xi)

cijyij

45

Example
alldiff

min
∑

i,j ci,jyi,j∑
j∈D(xi)

yij = 1, ∀i = 1, . . . , n∑
i=1,...,n yij ≤ 1, ∀j ∈ D(xi)

yij ≥ 0

46

Filtering by Reduced-Cost (aka “variable fixing”)

Recall that reduced-costs estimate the increase of the objective function when we force a variable
into the solution.

Let c̄ij be the reduced cost for the variable-value pair xi = j , and let z∗ be the optimal value of the
current linear relaxation.

We apply the following filtering rule:

if z∗ + c̄ij > maxD(z) then D(xi)← D(xi) \ {j}.

47

References

van Hoeve W. and Katriel I. (2006). Global constraints. In Handbook of Constraint Programming, chap. 6.
Elsevier.

Algorithms from the paper discussed at the blackboard

48

	Global Constraints
	Scheduling

	Soft Constraints
	
	
	

	Optimization Constraints
	

