
DM877

Constraint Programming

Modeling Exercises

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Magic Squares

2. Sudoku

3. Seat Planning

4. 8-Queens

5. Bin Packing

6. Summary

2

Outline

1. Magic Squares

2. Sudoku

3. Seat Planning

4. 8-Queens

5. Bin Packing

6. Summary

6

Magic Squares 2 9 4
7 5 3
6 1 8

Unique solution for n=3, upon the
symmetry breaking of slide 99.

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 96

Magic Squares

� Find an n4n matrix such that
� every field is integer between 1 and n2

� fields pairwise distinct
� sums of rows, columns, two main diagonals are equal

� Very hard problem for large n
� Here: we just consider the case n=3

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 97

Model

� For each matrix field have variable xij
� xij � {1, .., 9}

� One additional variable s for sum
� s � {1, .., 949}

� All fields pairwise distinct
� distinct(xij)

� For each row i have constraint
� xi0 + xi1 + xi2 = s
� columns and diagonals similar

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 98

Script

� Straightforward
� Branching strategy

� first-fail
� split again: arithmetic constraints
� try to come up with something that is really good!

� Generalize it to arbitrary n

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 99

Symmetries

� Clearly, we can require for first row that first
and last variable must be in order

� Also, for opposing corners
� In all (other combinations possible)

� x00 < x02

� x02 < x20

� x00 < x22

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 100

Important Observation

� We know the sum of all fields
����	���0���
���
�
����	�
�

� ���2�"#)3�'���&(!�#��#"��%#)
s

� We know that we have three rows
34s = 45

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 101

Implied Constraints

� The constraint model already implies
34s = 45

� implies solutions are the same

� However, adding a propagator for the
constraint drastically improves propagation

� Often also: redundant or implied constraint

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 102

Effect

� Simple model 92 nodes
� Symmetry breaking 29 nodes
� Implied constraint 6 nodes

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 103

Summary: Magic Squares

� Add implied constraints
� are implied by model
� increase constraint propagation
� reduce search space
� require problem understanding

� Also as usual
� break symmetries
� choose appropriate branching

Magic Squares: MiniZinc Model� �
include "alldifferent.mzn";

int: n = 4;
set of int: NUMBERS = 1..n^2;
set of int: ROW = 1..n;
set of int: COL = 1..n;

int:l = sum(NUMBERS) div n;

array[ROW,COL] of var NUMBERS: pos;

constraint alldifferent ([pos[i,j] | i in ROW, j in COL]);
constraint forall(i in ROW)(sum(j in COL)(pos[i,j]) = l);
constraint forall(j in COL)(sum(i in ROW)(pos[i,j]) = l);
constraint sum(i in 1..n)(pos[i,i])= l;
constraint sum(i in 1..n)(pos[i,n-i+1])=l;

% Symmetry breaking constraints
constraint pos[n,1] < pos[1,n];
constraint pos[1,1] < pos[1,n];
constraint pos[1,1] < pos[n,1];

solve satisfy;
output[if j = 1 then "\n" else " " endif ++

show(pos[i,j])| i in ROW,j in COL] ++ ["\n"];� �
7

Outline

1. Magic Squares

2. Sudoku

3. Seat Planning

4. 8-Queens

5. Bin Packing

6. Summary

8

Example: Sudoku

Model and solve the following Sudoku in MIP and CP

4 3 8 2 5

6

1 9 4

9 4 7

6 8

1 2 3

8 2 5

5

3 4 9 7 1

9

Sudoku: ILP model

Let yijt be equal to 1 if digit t appears in cell (i , j). Let N be the set {1, . . . , 9}, and let Jkl be the
set of cells (i , j) in the 3× 3 square in position k , l .∑

j∈N

yijt = 1, ∀i , t ∈ N,

∑
j∈N

yjit = 1, ∀i , t ∈ N,

∑
i,j∈Jkl

yijt = 1, ∀k , l = {1, 2, 3}, t ∈ N,

∑
t∈N

yijt = 1, ∀i , j ∈ N,

yi,j,aij = 1, ∀i , j ∈ given instance.

10

Sudoku: CP model

Model:

Xij ∈ N, ∀i , j ∈ N,

Xij = aij , ∀i , j ∈ given instance,

alldi�erent([X1i , . . . ,X9i]), ∀i ∈ N,

alldi�erent([Xi1, . . . ,Xi9]), ∀i ∈ N,

alldi�erent({Xij | ij ∈ Jkl}), ∀k, l ∈ {1, 2, 3}.

Search: backtracking

11

Sudoku: MiniZinc model� �
include "alldifferent.mzn";

int: n = 9;
set of int: NUMS = 1..9;
set of int: SQUARES = 1..3;

array[NUMS, NUMS] of 0..n: sudoku;
array[NUMS, NUMS] of var NUMS: solution;

% Fi l l sudoku with i n i t i a l board
constraint forall(i, j in NUMS)(
if sudoku[i, j] != 0 then solution[i, j] = sudoku[i, j] else true endif
);

% Rows, columns, and squares must each contain numbers 1−9
constraint forall(n in NUMS)(alldifferent(row(solution, n)));
constraint forall(n in NUMS)(alldifferent(col(solution, n)));
constraint forall(r, c in SQUARES)(alldifferent(

[solution[3*(r-1) + i, 3*(c-1) + j] | i in SQUARES, j in
SQUARES]

));

solve satisfy;� �

� �
output [
show(solution[i, j]) ++
if j = n then
if i mod 3 = 0 /\ i != n

then
"\n-----------------"

else
""

endif ++ "\n"
elseif j mod 3 = 0 then
"|"

else
" "

endif
| i in NUMS, j in NUMS

];� �� �
sudoku = [|
0, 4, 3, 0, 8, 0, 2, 5, 0 |
6, 0, 0, 0, 0, 0, 0, 0, 0 |
0, 0, 0, 0, 0, 1, 0, 9, 4 |
9, 0, 0, 0, 0, 4, 0, 7, 0 |
0, 0, 0, 6, 0, 8, 0, 0, 0 |
0, 1, 0, 2, 0, 0, 0, 0, 3 |
8, 2, 0, 5, 0, 0, 0, 0, 0 |
0, 0, 0, 0, 0, 0, 0, 0, 5 |
0, 3, 4, 0, 9, 0, 7, 1, 0

|];� �12

Sudoku: CP model (revisited)

Xij ∈ N, ∀i , j ∈ N,

Xij = at , ∀i , j ∈ given instance,

alldi�erent([X1i , . . . ,X9i]), ∀i ∈ N,

alldi�erent([Xi1, . . . ,Xi9]), ∀i ∈ N,

alldi�erent({Xij | ij ∈ Jkl}), ∀k, l ∈ {1, 2, 3}.

Redundant Constraint:

∑
j∈N

Xij = 45, ∀i ∈ N,

∑
j∈N

Xji = 45, ∀i ∈ N,

∑
ij∈Jkl

Xij = 45, k , l ∈ {1, 2, 3}.

13

Outline

1. Magic Squares

2. Sudoku

3. Seat Planning

4. 8-Queens

5. Bin Packing

6. Summary

14

Version 1: from [SMT]� �
include "alldifferent.mzn";

enum Guests = { bride, groom, bestman, bridesmaid, bob, carol, ted, alice, ron, rona, ed, clara };
set of int: Seats = 1..12;
set of int: Hatreds = 1..5;
array[Hatreds] of Guests: h1 = [groom, carol, ed, bride, ted];
array[Hatreds] of Guests: h2 = [clara, bestman, ted, alice, ron];
set of Guests: Males = { groom, bestman, bob, ted, ron, ed };
set of Guests: Females = { bride, bridesmaid, carol, alice, rona, clara };

array[Guests] of var Seats: pos; % seat of guest
array[Hatreds] of var Seats: p1; % seat of guest 1 in hatred
array[Hatreds] of var Seats: p2; % seat of guest 2 in hatred
array[Hatreds] of var bool: sameside; % seats of hatred on same side
array[Hatreds] of var Seats: cost; % penalty of hatred

constraint alldifferent(pos);

% Males and females in odd and even positions
constraint forall(m in Males)(pos[m] mod 2 == 1);
constraint forall(w in Females)(pos[w] mod 2 == 0);

% Ed not on corners
constraint not (pos[ed] in {1, 6, 7, 12});

% Bride and groom next to each other
constraint abs(pos[bride] - pos[groom] <= 1 /\ (pos[bride] <= 6 <-> pos[groom] <= 6);� �15

� �
% Cost of positioning based on hatreds (use auxi l lary arrays to find cost)
constraint forall(h in Hatreds)(
p1[h] = pos[h1[h]] /\
p2[h] = pos[h2[h]] /\
sameside[h] = p1[h] <= 6 <-> p2[h] <= 6 /\
cost[h] = sameside[h] * abs(p1[h] - p2[h]) + (1 - sameside[h]) * (abs(13 - p1[h] - p2[h]) + 1)

);

solve minimize sum(h in Hatreds)(cost[h]);

output ["\(g) " | s in Seats, g in Guests where fix(pos[g]) == s];� �

16

Version 2: Di�erent Tables � Set Variables� �
include "all_disjoint.mzn";

int: n;
set of int: PERSON = 1..n;
int: T; % number of tables
set of int: TABLE = 1..T;
int: S; % table size
array[int, 1..2] of PERSON: couples;
array[int, 1..3] of PERSON: hatreds;

% Result i s the sets of people on each table (unknown seats)
array[TABLE] of var set of PERSON: table;

predicate same_table(PERSON: p1, PERSON: p2) = exists(t in TABLE)({p1, p2} subset table[t]);

% Tables seat at most S people each , and each person has one seat
constraint forall(t in TABLE)(card(table[t]) <= S);
constraint forall(p in PERSON)(exists(t in TABLE)(p in table[t]));
% exists i s logical disjunction hence a person can s t i l l be in more than
% one table :
constraint all_disjoint(table);

% Ensure couples s i t together
constraint forall(p in index_set_1of2(couples))(same_table(couples[p, 1], couples[p, 2]));� �

17

� �
% Objective function − cost of seating , based on hatreds
% Unhappiness of a table i s just the maximum unhappiness within that table
var int: obj = sum(t in TABLE)(
max(c in index_set_1of2(hatreds))(
hatreds[c, 3] * same_table(hatreds[c, 1], hatreds[c, 2])

)
);

solve minimize obj;

output ["\(table) = \(obj)"];� �� �
n = 10;
T = 3;
S = 4;
couples = [| 1, 2

| 4, 7
| 8, 9 |];� �

� �
hatreds = [| 1, 3, 2

| 1, 6, 8
| 1, 9, 3
| 2, 5, 4
| 2, 6, 9
| 2, 10, 4
| 3, 6, 1
| 3, 8, 2
| 4, 5, 2
| 4, 9, 5
| 5, 10, 3
| 7, 8, 6
| 8, 10, 2
| 9, 10, 4 |];� �

18

Version 2: Integer Variables + Set Variables

� �
include ‘‘globals.mzn’’;

int: n;
set of int: PERSON = 1..n;
int: T; % number of tables
set of int: TABLE = 1..T;
int: S; % tables size
array[int,1..2] of PERSON: couples;

array[PERSON] of var TABLE: seat;
array[TABLE] of var set of PERSON: table;

predicate not_same_table(PERSON:p1, PERSON: p2) =
seat[p1] != seat[p2];

constraint global_cardinality_low_up(seat, [t|t in TABLE],
[0|t in TABLE], [S|t in TABLE]);

constraint forall(c in index_set_1of2(couples))
(not_same_table(couples[c,1],couples[c,2]));

var int: obj = sum(c in index_set_1of2(couples))
(seat[couples[c,1]] + seat[couples[c,2]]);� �

� �
constraint forall(t in TABLE, p in PERSON)

(p in table[t] <-> seat[p] = t);

solve minimize obj;

output [show(table), " = ", show(obj)];� �� �
n = 20;
T = 5;
S = 5;
couples = [| 1, 2 | 4, 5 | 6, 7 | 8, 10

| 11, 12 | 13, 14 | 17, 18 |];� �
Solution:� �
[{1,4,6,8,11}, {2,5,7,13,17},

{3,10,12,14,18}, {9,15,16,19,20}, {}]
= 27� �

But it took long. Symmetry breaking?

19

Outline

1. Magic Squares

2. Sudoku

3. Seat Planning

4. 8-Queens

5. Bin Packing

6. Summary

20

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 63

Problem Statement

� Place 8 queens on a chess board such that the
queens do not attack each other

� Straightforward generalizations
� place an arbitrary number: n Queens
� place as closely together as possible

�

�

�

�

�

�

�

�

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 64

What Are the Variables?

� Representation of position on board
� First idea: two variables per queen

� one for row
� one for column
� 2�n variables

� Insight: on each column there will be a
queen!

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 65

���������	������

� Have a variable for each column
� value describes row for queen
� n variables

� Variables: x0��0��x7

where xi � +���0���,

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 66

Other Possibilities

� For each field: number of queen
�)�����$(��"��&�"#'��"'�%�&'�"����
� n2 variables

� For each field on board: is there a queen on
the field?

� 848 variables
� variable has value 0: no queen
� variable has value 1: queen
� n2 variables

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 67

Constraints: No Attack

� not in same column
� by choice of variables

� not in same row
� xi -�xj for i -�j

� not in same diagonal
� xi 1 i -�xj - j for i -�j
� xi 1 j -�xj - i for i -�j

� 3�n�(n 1 1) constraints

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 68

�������
�����	����

� Sufficient by symmetry
i < j instead of i -�j

� Constraints
� xi -�xj for i < j
� xi 1 i -�xj - j for i < j
� xi 1 j -�xj - i for i < j

� 3/2�n�(n 1 1) constraints

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 69

Even Fewer Constraints

� Not same row constraint
xi -�xj for i < j

means: values for variables pairwise distinct
� Constraints

� distinct(x0��0��x7)
� xi 1 i -�xj - j for i < j
� xi 1 j -�xj - i for i < j

())*")+"(, -.(()/"0)(123456'768&29:4$;7%12-3<12=<> I)

12+3(/4%(0%!2$03"$,

! S%+R&#"+,&04#5,*#"&$,*+1/#4*1+&$#*&.%&
$#91)/%0&.:&04+14*$1&$,*+1/#4*1+

! +%%&#++45*;%*1

distinct(x0, x1, ..., x7)
distinct(x0-0, x1-1, ..., x7-7)
distinct(x0+0, x1+1, ..., x7+7)

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 74

Good Branching?

� Naïve is not a good strategy for branching

� Try the following (see assignment)
� first fail
� place queen as much in the middle of a row
� place queen in knight move fashion

2010-03-25 ID2204-L02, Christian Schulte, ICT, KTH 75

Summary 8 Queens

� Variables
� model should require few variables
� good: already impose constraints

� Constraints
� do not post same constraint twice
� '%*�'#���"��2���3��#"&'%��"'&�&(�&(!�"��!�"*�&!� �

constraints
� more efficient
� often, more propagation (to be discussed)

Outline

1. Magic Squares

2. Sudoku

3. Seat Planning

4. 8-Queens

5. Bin Packing

6. Summary

21

Bin-packing

Objects of di�erent height must be packed into a �nite number of bins or containers each of height
H in a way that minimizes the number of bins used.
Model the problem and solve the following speci�c instance:

num_objs = 6;
objs = [360, 850, 630, 70, 700, 210]; % heights of objects
bin_capacity = 1440; % height of bins

22

Let m be the number of bins and n the number of items
Variables:
binary variables to represent for each bin whether the object is packed or not
xij ∈ Bm×n for i ∈ [1..m] and j ∈ [1..n]
Auxiliary variables to represent the load of a bin.� �
% binary variables
array[1..num_bins, 1..num_stuff] of var 0..1: bins;
% calculate how many things a bin takes
array[1..num_bins] of var 0..bin_capacity: bin_loads;

% number of loaded bins (which we wi l l minimize)
var 0..num_bins: num_loaded_bins;

% minimize the number of loaded bins
% solve minimize num_loaded_bins;

% alternative solve statement
solve :: int_search(

[bins[i,j] | i in 1..num_bins, j in 1..num_stuff], %++ bin_loads
input_order, % first_fai l ,
indomain_max,
complete)

minimize num_loaded_bins;� �
23

� �
constraint

% sanity clause : No thing can be larger than capacity .
% fora l l (s in 1. .num_stuff) (
% stuff [s] <= bin_capacity
%)
% /\ % the total load in the bin cannot exceed bin_capacity
forall(b in 1..num_bins) (

bin_loads[b] = sum(s in 1..num_stuff) (stuff[s]*bins[b,s])
)
/\ % calculate the total load for a bin
sum(s in 1..num_stuff) (stuff[s]) = sum(b in 1..num_bins) (bin_loads[b])
/\ % a thing i s packed just once
forall(s in 1..num_stuff) (

sum(b in 1..num_bins) (bins[b,s]) = 1
)
% /\ % symmetry breaking :
% % i f bin_loads [i+1] i s > 0 then bin_loads [i] must be > 0
% fora l l (b in 1. .num_bins−1) (
% (bin_loads [b+1] > 0−> bin_loads [b] > 0)
% % /\ % and should be f i l l e d in order of weight
% % bin_loads [b] >= bin_loads [b+1]
%)
/\
decreasing(bin_loads) :: domain
/\ % another symmetry breaking : f i r s t bin must be loaded
bin_loads[1] > 0
/\ % calculate num_loaded_bins
num_loaded_bins = sum(b in 1..num_bins) (bool2int(bin_loads[b] > 0))� �

Outline

1. Magic Squares

2. Sudoku

3. Seat Planning

4. 8-Queens

5. Bin Packing

6. Summary

25

Common modeling principles

I what are the variables

I �nding the constraints

I �nding the propagators

I implied (redundant) constraints

I �nding the branching

I symmetry breaking

26

Modeling Strategy

I Understand problem

I identify variables
I identify constraints
I identify optimality criterion

I Attempt initial model simple?
try on examples to assess correctness

I Improve model much harder!
scale up to real problem size

27

Viewpoints

Viewpoint (de�nition of variables and domain extension (X ,D)):

I same solutions

I can be combined

I rule of thumb in choosing a viewpoint:
it should allow the constraints to be easily and concisely expressed;
the problem to be described using as few constraints as possible, as long as those constraints
have e�cient, low-complexity propagation algorithms

Releated concept: auxiliary variables and linking or channelling

28

Modeling Constraints

Better understood if:

I aware of the range of constraints supported by the constraint solver and the level of
consistency enforced on each

I have some idea of the complexity of the corresponding propagation algorithms.

I combine them

I use global constraints

I extensional constraints

I implied constraints

29

	Magic Squares
	Sudoku
	Seat Planning
	8-Queens
	Bin Packing
	Summary

