DM877

Constraint Programming

Modeling Exercises

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Outline

1. Magic Squares
2. Sudoku

3. Seat Planning
4. 8-Queens

5. Bin Packing

6. Summary



Outline

1. Magic Squares



Magic Squares 2|94

Unique solution for n=3, upon the
symmetry breaking of slide 99.




Magic Squares

Find an nxn matrix such that
every field is integer between 1 and n?
fields pairwise distinct
sums of rows, columns, two main diagonals are equal

Very hard problem for large n
Here: we just consider the case n=3

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 96



Model

For each matrix field have variable X;
x;e {1, .., 9}

One additional variable s for sum
se{l,.,9%x9}

All fields pairwise distinct
distinct(x;)

For each row i have constraint
columns and diagonals similar

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 97



Script

Straightforward

Branching strategy
first-fail
split again: arithmetic constraints
try to come up with something that is really good!

Generalize it to arbitrary n

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 98



Symmetries

Clearly, we can require for first row that first
and last variable must be in order

Also, for opposing corners

In all (other combinations possible)

Xoo < Xo2
X2 < Xp
Xoo < Xp2

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH



Important Observation

We know the sum of all fields
1+2+...+9=9(9+1)/2=45

We “know” the sum of one row
S

We know that we have three rows
3xs =45

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 100



Implied Constraints

The constraint model already implies
3xs =45

implies solutions are the same

However, adding a propagator for the
constraint drastically improves propagation

Often also: redundant or implied constraint

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 101



Effect

Simple model 92 nodes
Symmetry breaking 29 nodes
Implied constraint 6 nodes

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH



Summary: Magic Squares

Add implied constraints
are implied by model
increase constraint propagation
reduce search space
require problem understanding

Also as usual
break symmetries
choose appropriate branching

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH



Magic Squares: MiniZinc Model

include "alldifferent.mzn";

int: n = 4;

set of int: NUMBERS = 1..n"2;
set of int: ROW = 1..n;

set of int: COL = 1..n;

int:1 = sum(NUMBERS) div n;
array[ROW,COL] of var NUMBERS: pos;

constraint alldifferent ([pos[i,j] | i in ROW, j in COL]);
constraint forall(i in ROW)(sum(j in COL) (pos[i,jl) = 1);
constraint forall(j in COL)(sum(i in ROW) (pos[i,j1) = 1);
constraint sum(i in 1..n)(pos[i,il)= 1;

constraint sum(i in 1..n)(pos[i,n-i+1])=1;

% Symmetry breaking constraints
constraint pos([n,1] < pos[1,n];
constraint pos[1,1] < pos[1,n];
constraint pos[1,1] < pos[n,1];

solve satisfy;
output[if j = 1 then "\n" else " " endif ++
show(pos[i,j])| i in ROW,j in COL] ++ ["\n"];




Outline

2. Sudoku



Example: Sudoku

Model and solve the following Sudoku in MIP and CP

413 8
6
1
9 4
6 8
8|2
314 9




Sudoku: ILP model

Let y;i: be equal to 1 if digit ¢ appears in cell (i,/). Let N be the set {1,...,9}, and let J; be the
set of cells (7,/) in the 3 x 3 square in position k, /.

Z}/ijtzla Vit e N,
JEN

> i =1, Vit € N,
JEN

Zyijt:l’ Vk7/:{13273}7t€N7
ijE€Ju

> v =1, Vi,j € N,
tenN

Vijay = 1 Vi,j € given instance.



Sudoku: CP model

Model:
X,'j c N,
X,'j = a,-j,

alldifferent([X1;, . .., Xoi]),
alldifferent([Xj1, . .., Xio]),
aIIdifferent({X,-j | ij € Jk/}),

Search: backtracking

Vi,j €N,

Vi,j € given instance,
vVieNlN,

VieN,
Vk,l€{1,2,3}.

11



Sudoku: MiniZinc model

include "alldifferent.mzn"; output [
show(solution[i, j1) ++
int: n = 9; if j = n then
set of int: NUMS = 1..9; if imod 3=0/\1!=n
set of int: SQUARES = 1..3; then
N "
array[NUMS, NUMS] of 0..n: sudoku; else
array[NUMS, NUMS] of var NUMS: solution;
endif ++ "\n"
% Fill sudoku with initial board elseif j mod 3 = 0 then
constraint forall(i, j in NUMS) ( e
if sudoku[i, j] !'= 0 then solution[i, j] = sudoku[i, j] else true endif else
05 o
endif
% Rows, columns, and squares must each contain numbers 1—9 | 1 in NUMS, j in NUMS
constraint forall(n in NUMS) (alldifferent(row(solution, n))); I
constraint forall(n in NUMS) (alldifferent(col(solution, n)));
constraint forall(r, c in SQUARES) (alldifferent( sudoku = [|
[solution[3*(r-1) + i, 3x(c-1) + j] | 1 in SQUARES, j in 0, 4, 3,0,8,0, 2,5, 0|
SQUARES] 6, 0, 0, 0, 6, 6, 0, 0, 0 |
)); 0, 0,0,0, 0,1, 0,09, 4|
9,0,0, 0,0, 4,0, 7, 0|
solve satisfy; 06, 6, 0, 6, 6, 8, 0, 0, 0 |
0,1, 0,2, 0,0,0,0, 3|
8, 2,0, 5 0, 0, 0,0,0 ]|
0, 6, 0, 6, 6, 0, 6, 0, 5 |
0, 3, 4,0,9,0,7,1, 0
11~




Sudoku: CP model (revisited)

Xij €N,

Xij = at,

alldifferent([ X1/, ..., Xo/]),
alldifferent([Xj1, . .., Xio]),
alldifferent({X;; | ij € Ju}),

Redundant Constraint:

ZX,-J- =45,

JEN
> Xji =45,

JEN

> X =45,

€I

Vi,jeN,

Vi,j € given instance,
VieN,

vieNlN,

Vk,l €{1,2,3}.

VieN,
VieN,

kil e {1,2,3}.

13



Outline

3. Seat Planning

14



Version 1: from [SMT]

include "alldifferent.mzn";

enum Guests = { bride, groom, bestman, bridesmaid, bob, carol, ted, alice, ron, rona, ed, clara };
set of int: Seats = 1..12;

set of int: Hatreds = 1..5;

array[Hatreds] of Guests: hl = [groom, carol, ed, bride, ted];

array[Hatreds] of Guests: h2 = [clara, bestman, ted, alice, ron];

set of Guests: Males = { groom, bestman, bob, ted, ron, ed };

set of Guests: Females = { bride, bridesmaid, carol, alice, rona, clara };

array[Guests] of var Seats: pos; % seat of guest

array[Hatreds] of var Seats: pl; % seat of guest 1 in hatred
array[Hatreds] of var Seats: p2; % seat of guest 2 in hatred
array[Hatreds] of var bool: sameside; % seats of hatred on same side
array[Hatreds] of var Seats: cost; % penalty of hatred

constraint alldifferent(pos);
% Males and females in odd and even positions
constraint forall(m in Males)( pos[m] mod 2 == 1 );

constraint forall(w in Females)( pos[w] mod 2 == 0 );

% Ed not on corners
constraint not (pos[ed] in {1, 6, 7, 12});

% Bride and groom next to each other
constraint abs(pos[bride] - pos[groom] <= 1 /\ (pos[bride] <= 6 <-> pos[groom] <= 6);

15



% Cost of positioning based on hatreds (use auxillary arrays to find cost)

constraint forall(h in Hatreds) (

pl[h] = pos[h1[h]] /\

p2[h] = pos[h2[h]] /\

sameside[h] = pl[h] <= 6 <-> p2[h] <= 6 /\

cost[h] = sameside[h] * abs(pl[h] - p2[h]) + (1 - sameside[h]) * (abs(13 - pl[h] - p2[h]) + 1)
)i

solve minimize sum(h in Hatreds) (cost[h]);

output [ "\(g) " | s in Seats, g in Guests where fix(pos[g]) == sl;

16



Version 2: Different Tables — Set Variables

include "all _disjoint.mzn";

int: n;

set of int: PERSON = 1..n;

int: T; % number of tables

set of int: TABLE = 1..T;

int: S; % table size

array[int, 1..2] of PERSON: couples;
array[int, 1..3] of PERSON: hatreds;

% Result is the sets of people on each table (unknown seats)
array[TABLE] of var set of PERSON: table;

predicate same_table(PERSON: pl, PERSON: p2) = exists(t in TABLE) ({pl, p2} subset table[t]);

% Tables seat at most S people each, and each person has one seat
constraint forall(t in TABLE) (card(table[t]) <= S);

constraint forall(p in PERSON) (exists(t in TABLE)(p in table[t]));

% exists is logical disjunction hence a person can still be in more than
% one table:

constraint all_disjoint(table);

% Ensure couples sit together
constraint forall(p in index_set lof2(couples)) (same_table(couples[p, 1], couples[p, 21));

17



% Objective function — cost of seating, based on hatreds
% Unhappiness of a table is just the maxmum unhappiness within that table
var int: obj = sum(t in TABLE) (
max(c in index_set_lof2(hatreds)) (
hatreds[c, 3] * same_table(hatreds[c, 1], hatreds[c, 2])
)
)i

solve minimize obj;

output ["\(table) = \(obj)"1;

n = 10; hatreds = [| 1, 3, 2
T =3 | 1, 6, 8
S = 4; | 1,9, 3
couples = [| 1, 2 | 2,5, 4
| 4, 7 2,6, 9
| 8, 9 |1; | 2, 10, 4
| 3,6, 1
| 3,8, 2
| 4, 5, 2
| 4,9, 5
| 5, 10, 3
| 7, 8, 6
| 8, 10, 2
| 9,10, 4 |];

18



Version 2: Integer Variables 4+ Set Variables

include ‘‘globals.mzn’’;

int: n;

set of int: PERSON = 1..n;

int: T; % number of tables

set of int: TABLE = 1..T;

int: S; % tables size
array[int,1..2] of PERSON: couples;

array[PERSON] of var TABLE: seat;
array[TABLE] of var set of PERSON: table;

predicate not_same_table(PERSON:pl, PERSON: p2) =
seat[pl] !'= seat[p2];

constraint global_cardinality_low_up(seat, [t|t in TABLE],
[6|t in TABLE], [S|t in TABLE]);

constraint forall(c in index_set_lof2(couples))
(not_same_table(couples[c,1],couples[c,2]));

var int: obj = sum(c in index_set_lof2(couples))
(seat[couples[c,1]] + seat[couples[c,2]1]);

constraint forall(t in TABLE, p in PERSON)
(p in table[t] <-> seat[p] = t);

solve minimize obj;

output [show(table), " = ", show(obj)];
n = 20;

T=25;

S =5;

couples = [| 1, 2 | 4,5 ]| 6, 7| 8, 10
| 11, 12 | 13, 14 | 17, 18 |];

Solution:

-

[{1,4,6,8,11}, {2,5,7,13,17},
{3,10,12,14,18}, {9,15,16,19,20}, {}]
= 27

But it took long. Symmetry breaking?

19



Outline

4. 8-Queens

20



‘ Problem Statement

= Place 8 queens on a chess board such that the
queens do not attack each other
= Straightforward generalizations

= place an arbitrary number: n Queens
= place as closely together as possible

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH



What Are the Variables?

Representation of position on board

First idea: two variables per queen

one for row

one for column

2-nvariables
Insight: on each column there will be a
queen!

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

64



Fewer Variables...

Have a variable for each column
value describes row for queen

nvariables
Variables: Xgs -y X7
where x; {0, ..., 7}

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 65



Other Possibilities

For each field: number of queen
which queen is not interesting, so...
n? variables

For each field on board: is there a queen on
the field?

8x8 variables

variable has value 0: no queen
variable has value 1: queen

n? variables

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 66



Constraints: No Attack

not in same column
by choice of variables

not in same row
X #x fori#j

not in same diagonal
Xi—I# X -] fori #j
Xi—J# X - fori #j

3-n-( n— 1) constraints

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

67



Fewer Constraints...

Sufficient by symmetry
i <j instead of | #j

Constraints
X; # X; fori <j
Xi—i# X -] fori <j
Xi—J# X - fori <j

3/2-n-( n— 1) constraints

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

68



Even Fewer Constraints

Not same row constraint
X; % X; fori <j
means: values for variables pairwise distinct

Constraints
distinct(xy, ..., X7)
Xi—i#X;- | fori <j
Xi—j# X -0 fori <j

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH

69



Pushing it Further...

Yes, also diagonal constraints can be
captured by distinct constraints
see-assignment

distinct(x0, x1, .., X7)
distinct(x0-0, x1-1, ..., x7-7)
distinct(x0+0, x1+1, ..., X7+7)

2009-03-25 1D2204-1.02, Christian Schulte, ICT, KTH



Good Branching?

Naive is not a good strategy for branching

Try the following (see assignment)
first fail
place queen as much in the middle of a row
place queen in knight move fashion

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH



Summary 8 Queens

Variables
model should require few variables
good: already impose constraints

Constraints
do not post same constraint twice

try to find “big” constraints subsuming many small
constraints

more efficient

often, more propagation (to be discussed)

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH



Outline

5. Bin Packing

21



Bin-packing

Objects of different height must be packed into a finite number of bins or containers each of height
H in a way that minimizes the number of bins used.
Model the problem and solve the following specific instance:

num_objs = 6;
objs = [360, 850, 630, 70, 700, 210]; % heights of objects
bin_capacity = 1440; % height of bins

22



Let m be the number of bins and n the number of items

Variables:

binary variables to represent for each bin whether the object is packed or not
xjj € B™" for i € [1..m] and j € [1..n]

Auxiliary variables to represent the load of a bin.

% binary variables

array[l..num_bins, 1..num_stuff] of var 0..1: bins;
% calculate how many things a bin takes
array[l..num_bins] of var 0..bin_capacity: bin_loads;

% number of loaded bins (which we will minimize)
var 0..num_bins: num_loaded _bins;

% minimize the number of loaded bins
% solve minimize num_loaded _bins;

% alternative solve statement
solve :: int_search(
[bins[i,j] | 1 in 1..num_bins, j in 1..num_stuff], %+ bin loads
input_order, % first_fail,
indomain_max,
complete)
minimize num_loaded_bins;

23



constraint
% sanity clause: No thing can be larger than capacity.
% forall(s in 1..num _stuff) (
% stuff[s] <= bin_ capacity
% )
% /\ % the total load in the bin cannot exceed bin capacity
forall(b in 1..num_bins) (
bin_loads[b] = sum(s in 1..num_stuff) (stuff[s]lxbins[b,s])
)
/\ % calculate the total load for a bin
sum(s in 1..num_stuff) (stuff[s]) = sum(b in 1..num_bins) (bin_loads[b])
/\ % a thing is packed just once
forall(s in 1..num_stuff) (
sum(b in 1..num_bins) (bins[b,s]) =1

)

% /\ % symmetry breaking:

% % if bin_loads[i+1] is > 0 then bin loads[i] must be > 0
% forall(b in 1..num_bins—1) (

% (bin_loads[b+1] > 0 —> bin_loads[b] > 0)

% % /\ % and should be filled in order of weight

% % bin_loads[b] >= bin_loads[b+1]

% )

/\

decreasing(bin_loads) :: domain

/\ % another symmetry breaking: first bin must be loaded
bin_loads[1] > 0

/\ % calculate num _loaded bins

num_loaded_bins = sum(b in 1..num_bins) (bool2int(bin_loads[b] > 0))




Outline

6. Summary

25



Common modeling principles

> what are the variables

» finding the constraints

» finding the propagators

» implied (redundant) constraints
» finding the branching

» symmetry breaking

26



Modeling Strategy

» Understand problem

> identify variables
> identify constraints
> identify optimality criterion

» Attempt initial model ~ simple?
try on examples to assess correctness

» Improve model ~~ much harder!
scale up to real problem size

27



Viewpoints

Viewpoint (definition of variables and domain extension (X', D)):

> same solutions
» can be combined
» rule of thumb in choosing a viewpoint:
it should allow the constraints to be easily and concisely expressed;

the problem to be described using as few constraints as possible, as long as those constraints
have efficient, low-complexity propagation algorithms

Releated concept: auxiliary variables and linking or channelling

28



Modeling Constraints

Better understood if:

> aware of the range of constraints supported by the constraint solver and the level of
consistency enforced on each

> have some idea of the complexity of the corresponding propagation algorithms.
» combine them

> use global constraints

> extensional constraints

» implied constraints

29



	Magic Squares
	Sudoku
	Seat Planning
	8-Queens
	Bin Packing
	Summary

