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1. Magic Squares



Magic Squares 2|94

Unique solution for n=3, upon the
symmetry breaking of slide 99.




Magic Squares

Find an nxn matrix such that
every field is integer between 1 and n?
fields pairwise distinct
sums of rows, columns, two main diagonals are equal

Very hard problem for large n
Here: we just consider the case n=3
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Model

For each matrix field have variable X;
x;e {1, .., 9}

One additional variable s for sum
se{l,.,9%x9}

All fields pairwise distinct
distinct(x;)

For each row i have constraint
columns and diagonals similar
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Script

Straightforward

Branching strategy
first-fail
split again: arithmetic constraints
try to come up with something that is really good!

Generalize it to arbitrary n
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Symmetries

Clearly, we can require for first row that first
and last variable must be in order

Also, for opposing corners

In all (other combinations possible)

Xoo < Xo2
X2 < Xp
Xoo < Xp2
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Important Observation

We know the sum of all fields
1+2+...+9=9(9+1)/2=45

We “know” the sum of one row
S

We know that we have three rows
3xs =45

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH 100



Implied Constraints

The constraint model already implies
3xs =45

implies solutions are the same

However, adding a propagator for the
constraint drastically improves propagation

Often also: redundant or implied constraint
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Effect

Simple model 92 nodes
Symmetry breaking 29 nodes
Implied constraint 6 nodes
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Summary: Magic Squares

Add implied constraints
are implied by model
increase constraint propagation
reduce search space
require problem understanding

Also as usual
break symmetries
choose appropriate branching
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Magic Squares: MiniZinc Model

include "alldifferent.mzn";

int: n = 4;

set of int: NUMBERS = 1..n"2;
set of int: ROW = 1..n;

set of int: COL = 1..n;

int:1 = sum(NUMBERS) div n;
array[ROW,COL] of var NUMBERS: pos;

constraint alldifferent ([pos[i,j] | i in ROW, j in COL]);
constraint forall(i in ROW)(sum(j in COL) (pos[i,jl) = 1);
constraint forall(j in COL)(sum(i in ROW) (pos[i,j1) = 1);
constraint sum(i in 1..n)(pos[i,il)= 1;

constraint sum(i in 1..n)(pos[i,n-i+1])=1;

% Symmetry breaking constraints
constraint pos([n,1] < pos[1,n];
constraint pos[1,1] < pos[1,n];
constraint pos[1,1] < pos[n,1];

solve satisfy;
output[if j = 1 then "\n" else " " endif ++
show(pos[i,j])| i in ROW,j in COL] ++ ["\n"];
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2. Sudoku



Example: Sudoku

Model and solve the following Sudoku in MIP and CP

413 8
6
1
9 4
6 8
8|2
314 9




Sudoku: ILP model

Let y;i: be equal to 1 if digit ¢ appears in cell (i,/). Let N be the set {1,...,9}, and let J; be the
set of cells (7,/) in the 3 x 3 square in position k, /.

Z}/ijtzla Vit e N,
JEN

> i =1, Vit € N,
JEN

Zyijt:l’ Vk7/:{13273}7t€N7
ijE€Ju

> v =1, Vi,j € N,
tenN

Vijay = 1 Vi,j € given instance.



Sudoku: CP model

Model:
X,'j c N,
X,'j = a,-j,

alldifferent([X1;, . .., Xoi]),
alldifferent([Xj1, . .., Xio]),
aIIdifferent({X,-j | ij € Jk/}),

Search: backtracking

Vi,j €N,

Vi,j € given instance,
vVieNlN,

VieN,
Vk,l€{1,2,3}.
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Sudoku: MiniZinc model

include "alldifferent.mzn"; output [
show(solution[i, j1) ++
int: n = 9; if j = n then
set of int: NUMS = 1..9; if imod 3=0/\1!=n
set of int: SQUARES = 1..3; then
N "
array[NUMS, NUMS] of 0..n: sudoku; else
array[NUMS, NUMS] of var NUMS: solution;
endif ++ "\n"
% Fill sudoku with initial board elseif j mod 3 = 0 then
constraint forall(i, j in NUMS) ( e
if sudoku[i, j] !'= 0 then solution[i, j] = sudoku[i, j] else true endif else
05 o
endif
% Rows, columns, and squares must each contain numbers 1—9 | 1 in NUMS, j in NUMS
constraint forall(n in NUMS) (alldifferent(row(solution, n))); I
constraint forall(n in NUMS) (alldifferent(col(solution, n)));
constraint forall(r, c in SQUARES) (alldifferent( sudoku = [|
[solution[3*(r-1) + i, 3x(c-1) + j] | 1 in SQUARES, j in 0, 4, 3,0,8,0, 2,5, 0|
SQUARES] 6, 0, 0, 0, 6, 6, 0, 0, 0 |
)); 0, 0,0,0, 0,1, 0,09, 4|
9,0,0, 0,0, 4,0, 7, 0|
solve satisfy; 06, 6, 0, 6, 6, 8, 0, 0, 0 |
0,1, 0,2, 0,0,0,0, 3|
8, 2,0, 5 0, 0, 0,0,0 ]|
0, 6, 0, 6, 6, 0, 6, 0, 5 |
0, 3, 4,0,9,0,7,1, 0
11~




Sudoku: CP model (revisited)

Xij €N,

Xij = at,

alldifferent([ X1/, ..., Xo/]),
alldifferent([Xj1, . .., Xio]),
alldifferent({X;; | ij € Ju}),

Redundant Constraint:

ZX,-J- =45,

JEN
> Xji =45,

JEN

> X =45,

€I

Vi,jeN,

Vi,j € given instance,
VieN,

vieNlN,

Vk,l €{1,2,3}.

VieN,
VieN,

kil e {1,2,3}.
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3. Seat Planning
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Version 1: from [SMT]

include "alldifferent.mzn";

enum Guests = { bride, groom, bestman, bridesmaid, bob, carol, ted, alice, ron, rona, ed, clara };
set of int: Seats = 1..12;

set of int: Hatreds = 1..5;

array[Hatreds] of Guests: hl = [groom, carol, ed, bride, ted];

array[Hatreds] of Guests: h2 = [clara, bestman, ted, alice, ron];

set of Guests: Males = { groom, bestman, bob, ted, ron, ed };

set of Guests: Females = { bride, bridesmaid, carol, alice, rona, clara };

array[Guests] of var Seats: pos; % seat of guest

array[Hatreds] of var Seats: pl; % seat of guest 1 in hatred
array[Hatreds] of var Seats: p2; % seat of guest 2 in hatred
array[Hatreds] of var bool: sameside; % seats of hatred on same side
array[Hatreds] of var Seats: cost; % penalty of hatred

constraint alldifferent(pos);
% Males and females in odd and even positions
constraint forall(m in Males)( pos[m] mod 2 == 1 );

constraint forall(w in Females)( pos[w] mod 2 == 0 );

% Ed not on corners
constraint not (pos[ed] in {1, 6, 7, 12});

% Bride and groom next to each other
constraint abs(pos[bride] - pos[groom] <= 1 /\ (pos[bride] <= 6 <-> pos[groom] <= 6);
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% Cost of positioning based on hatreds (use auxillary arrays to find cost)

constraint forall(h in Hatreds) (

pl[h] = pos[h1[h]] /\

p2[h] = pos[h2[h]] /\

sameside[h] = pl[h] <= 6 <-> p2[h] <= 6 /\

cost[h] = sameside[h] * abs(pl[h] - p2[h]) + (1 - sameside[h]) * (abs(13 - pl[h] - p2[h]) + 1)
)i

solve minimize sum(h in Hatreds) (cost[h]);

output [ "\(g) " | s in Seats, g in Guests where fix(pos[g]) == sl;
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Version 2: Different Tables — Set Variables

include "all _disjoint.mzn";

int: n;

set of int: PERSON = 1..n;

int: T; % number of tables

set of int: TABLE = 1..T;

int: S; % table size

array[int, 1..2] of PERSON: couples;
array[int, 1..3] of PERSON: hatreds;

% Result is the sets of people on each table (unknown seats)
array[TABLE] of var set of PERSON: table;

predicate same_table(PERSON: pl, PERSON: p2) = exists(t in TABLE) ({pl, p2} subset table[t]);

% Tables seat at most S people each, and each person has one seat
constraint forall(t in TABLE) (card(table[t]) <= S);

constraint forall(p in PERSON) (exists(t in TABLE)(p in table[t]));

% exists is logical disjunction hence a person can still be in more than
% one table:

constraint all_disjoint(table);

% Ensure couples sit together
constraint forall(p in index_set lof2(couples)) (same_table(couples[p, 1], couples[p, 21));
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% Objective function — cost of seating, based on hatreds
% Unhappiness of a table is just the maxmum unhappiness within that table
var int: obj = sum(t in TABLE) (
max(c in index_set_lof2(hatreds)) (
hatreds[c, 3] * same_table(hatreds[c, 1], hatreds[c, 2])
)
)i

solve minimize obj;

output ["\(table) = \(obj)"1;

n = 10; hatreds = [| 1, 3, 2
T =3 | 1, 6, 8
S = 4; | 1,9, 3
couples = [| 1, 2 | 2,5, 4
| 4, 7 2,6, 9
| 8, 9 |1; | 2, 10, 4
| 3,6, 1
| 3,8, 2
| 4, 5, 2
| 4,9, 5
| 5, 10, 3
| 7, 8, 6
| 8, 10, 2
| 9,10, 4 |];
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Version 2: Integer Variables 4+ Set Variables

include ‘‘globals.mzn’’;

int: n;

set of int: PERSON = 1..n;

int: T; % number of tables

set of int: TABLE = 1..T;

int: S; % tables size
array[int,1..2] of PERSON: couples;

array[PERSON] of var TABLE: seat;
array[TABLE] of var set of PERSON: table;

predicate not_same_table(PERSON:pl, PERSON: p2) =
seat[pl] !'= seat[p2];

constraint global_cardinality_low_up(seat, [t|t in TABLE],
[6|t in TABLE], [S|t in TABLE]);

constraint forall(c in index_set_lof2(couples))
(not_same_table(couples[c,1],couples[c,2]));

var int: obj = sum(c in index_set_lof2(couples))
(seat[couples[c,1]] + seat[couples[c,2]1]);

constraint forall(t in TABLE, p in PERSON)
(p in table[t] <-> seat[p] = t);

solve minimize obj;

output [show(table), " = ", show(obj)];
n = 20;

T=25;

S =5;

couples = [| 1, 2 | 4,5 ]| 6, 7| 8, 10
| 11, 12 | 13, 14 | 17, 18 |];

Solution:

-

[{1,4,6,8,11}, {2,5,7,13,17},
{3,10,12,14,18}, {9,15,16,19,20}, {}]
= 27

But it took long. Symmetry breaking?
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4. 8-Queens
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‘ Problem Statement

= Place 8 queens on a chess board such that the
queens do not attack each other
= Straightforward generalizations

= place an arbitrary number: n Queens
= place as closely together as possible
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What Are the Variables?

Representation of position on board

First idea: two variables per queen

one for row

one for column

2-nvariables
Insight: on each column there will be a
queen!
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Fewer Variables...

Have a variable for each column
value describes row for queen

nvariables
Variables: Xgs -y X7
where x; {0, ..., 7}
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Other Possibilities

For each field: number of queen
which queen is not interesting, so...
n? variables

For each field on board: is there a queen on
the field?

8x8 variables

variable has value 0: no queen
variable has value 1: queen

n? variables
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Constraints: No Attack

not in same column
by choice of variables

not in same row
X #x fori#j

not in same diagonal
Xi—I# X -] fori #j
Xi—J# X - fori #j

3-n-( n— 1) constraints

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH
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Fewer Constraints...

Sufficient by symmetry
i <j instead of | #j

Constraints
X; # X; fori <j
Xi—i# X -] fori <j
Xi—J# X - fori <j

3/2-n-( n— 1) constraints
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Even Fewer Constraints

Not same row constraint
X; % X; fori <j
means: values for variables pairwise distinct

Constraints
distinct(xy, ..., X7)
Xi—i#X;- | fori <j
Xi—j# X -0 fori <j

2010-03-25 1D2204-1.02, Christian Schulte, ICT, KTH
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Pushing it Further...

Yes, also diagonal constraints can be
captured by distinct constraints
see-assignment

distinct(x0, x1, .., X7)
distinct(x0-0, x1-1, ..., x7-7)
distinct(x0+0, x1+1, ..., X7+7)
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Good Branching?

Naive is not a good strategy for branching

Try the following (see assignment)
first fail
place queen as much in the middle of a row
place queen in knight move fashion
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Summary 8 Queens

Variables
model should require few variables
good: already impose constraints

Constraints
do not post same constraint twice

try to find “big” constraints subsuming many small
constraints

more efficient

often, more propagation (to be discussed)
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5. Bin Packing
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Bin-packing

Objects of different height must be packed into a finite number of bins or containers each of height
H in a way that minimizes the number of bins used.
Model the problem and solve the following specific instance:

num_objs = 6;
objs = [360, 850, 630, 70, 700, 210]; % heights of objects
bin_capacity = 1440; % height of bins
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Let m be the number of bins and n the number of items

Variables:

binary variables to represent for each bin whether the object is packed or not
xjj € B™" for i € [1..m] and j € [1..n]

Auxiliary variables to represent the load of a bin.

% binary variables

array[l..num_bins, 1..num_stuff] of var 0..1: bins;
% calculate how many things a bin takes
array[l..num_bins] of var 0..bin_capacity: bin_loads;

% number of loaded bins (which we will minimize)
var 0..num_bins: num_loaded _bins;

% minimize the number of loaded bins
% solve minimize num_loaded _bins;

% alternative solve statement
solve :: int_search(
[bins[i,j] | 1 in 1..num_bins, j in 1..num_stuff], %+ bin loads
input_order, % first_fail,
indomain_max,
complete)
minimize num_loaded_bins;
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constraint
% sanity clause: No thing can be larger than capacity.
% forall(s in 1..num _stuff) (
% stuff[s] <= bin_ capacity
% )
% /\ % the total load in the bin cannot exceed bin capacity
forall(b in 1..num_bins) (
bin_loads[b] = sum(s in 1..num_stuff) (stuff[s]lxbins[b,s])
)
/\ % calculate the total load for a bin
sum(s in 1..num_stuff) (stuff[s]) = sum(b in 1..num_bins) (bin_loads[b])
/\ % a thing is packed just once
forall(s in 1..num_stuff) (
sum(b in 1..num_bins) (bins[b,s]) =1

)

% /\ % symmetry breaking:

% % if bin_loads[i+1] is > 0 then bin loads[i] must be > 0
% forall(b in 1..num_bins—1) (

% (bin_loads[b+1] > 0 —> bin_loads[b] > 0)

% % /\ % and should be filled in order of weight

% % bin_loads[b] >= bin_loads[b+1]

% )

/\

decreasing(bin_loads) :: domain

/\ % another symmetry breaking: first bin must be loaded
bin_loads[1] > 0

/\ % calculate num _loaded bins

num_loaded_bins = sum(b in 1..num_bins) (bool2int(bin_loads[b] > 0))
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6. Summary
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Common modeling principles

> what are the variables

» finding the constraints

» finding the propagators

» implied (redundant) constraints
» finding the branching

» symmetry breaking
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Modeling Strategy

» Understand problem

> identify variables
> identify constraints
> identify optimality criterion

» Attempt initial model ~ simple?
try on examples to assess correctness

» Improve model ~~ much harder!
scale up to real problem size
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Viewpoints

Viewpoint (definition of variables and domain extension (X', D)):

> same solutions
» can be combined
» rule of thumb in choosing a viewpoint:
it should allow the constraints to be easily and concisely expressed;

the problem to be described using as few constraints as possible, as long as those constraints
have efficient, low-complexity propagation algorithms

Releated concept: auxiliary variables and linking or channelling
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Modeling Constraints

Better understood if:

> aware of the range of constraints supported by the constraint solver and the level of
consistency enforced on each

> have some idea of the complexity of the corresponding propagation algorithms.
» combine them

> use global constraints

> extensional constraints

» implied constraints
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