DM877 (5 ECTS – 1st quarter)

Constraint Programming

[Constraint Programmering]

Marco Chiarandini lektor, IMADA www.imada.sdu.dk/~marco

Course Formalities

Prerequisites:

Programming (Java or Python or Matlab)

Algorithms and data structures (DM507)

Target:

students from comp sci, applied math, math and econ at 3rd (but challenging), 5th semester of Bachelor degree or at Master level

Constraint Programming is

a set of methods and tools for modelling and solving constraint (optimisation or decision) problems.

Constraint Programming is

a set of methods and tools for modelling and solving constraint (optimisation or decision) problems.

Application areas:

- Configuration
- Design
- Logistics
- Planning
- Scheduling
- ► Transport
- Testing
- ▶ ...

Constraint Programming is

a set of methods and tools for modelling and solving constraint (optimisation or decision) problems.

Application areas:

- Configuration
- Design
- Logistics
- ► Planning
- Scheduling
- Transport
- Testing
- ▶ ...

Using techniques from:

- Artificial Intelligence
- Combinatorics
- Computational Logic
- Concurrent Computation
- Database Management
- Discrete Mathematics
- Operations Research
- Programming Languages

Constraint Programming is

a set of methods and tools for modelling and solving constraint (optimisation or decision) problems.

Application areas:

- Configuration
- Design
- Logistics
- ► Planning
- Scheduling
- Transport
- Testing
- ▶ ...

Using techniques from:

- Artificial Intelligence
- Combinatorics
- Computational Logic
- Concurrent Computation
- Database Management
- Discrete Mathematics
- Operations Research
- Programming Languages

Constraint Programming is

a set of methods and tools for modelling and solving constraint (optimisation or decision) problems.

Application areas:

- Configuration
- Design
- Logistics
- ► Planning
- Scheduling
- Transport
- Testing
- ▶ ...

Using techniques from:

- Artificial Intelligence
- Combinatorics
- Computational Logic
- Concurrent Computation
- Database Management
- Discrete Mathematics
- Operations Research
- Programming Languages

Constraint Programming = Representation (modeling) + Reasoning (search + inference)

Characteristics of the Tasks (Problems)

- There are no dedicated algorithms
 - NP-completeness
 - Different strategies and heuristics have to be tested.

Characteristics of the Tasks (Problems)

- There are no dedicated algorithms
 - NP-completeness
 - Different strategies and heuristics have to be tested.
- Requirements are quickly changing:
 - Programs should be flexible enough to adapt to these changes rapidly.

Characteristics of the Tasks (Problems)

- There are no dedicated algorithms
 - NP-completeness
 - Different strategies and heuristics have to be tested.
- Requirements are quickly changing:
 - Programs should be flexible enough to adapt to these changes rapidly.
- Decision support required
 - Co-operate with user
 - Friendly interfaces

Modeling

Modeling

Modelling in MILP and SAT

Modelling in CP

Problems with Constraints

Social Golfer Problem (Combinatorial Design)

Problems with Constraints

Social Golfer Problem (Combinatorial Design)

	Group 1	Group 2	Group 3
Day 0	???	???	???
Day 1	???	???	???
Day 2	???	???	???
Day 3	???	???	???

- ▶ 9 golfers: 1, 2, 3, 4, 5, 6, 7, 8, 9
- wish to play in groups of 3 players in 4 days
- ► such that no golfer plays in the same group with any other golfer more than just once. Is it possible?

Modeling

Modeling

Golfers

	Group 1	Group 2	Group 3
Day 0	???	???	???
Day 1	???	???	???
Day 2	???	???	???
Day 3	???	???	???

Modeling

Golfers

	Group 1	Group 2	Group 3
Day 0	???	???	???
Day 1	???	???	???
Day 2	???	???	???
Day 3	???	???	???

Groups

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Modeling

Golfers

	Group 1	Group 2	Group 3
Day 0	???	???	???
Day 1	???	???	???
Day 2	???	???	???
Day 3	???	???	???

Groups

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Integer variables:

assign[i,j] variable whose value is from the domain $\{1,2,3\}$

Modeling

Golfers

	Group 1	Group 2	Group 3
Day 0	???	???	???
Day 1	???	???	???
Day 2	???	???	???
Day 3	???	???	???

Groups

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Integer variables:

<code>assign[i,j]</code> variable whose value is from the domain $\{1,2,3\}$

Constraints:

- C1: each group has exactly groupSize players
- C2: each pair of players only meets once

Model with Integer Variables

```
int: golfers = 9;
int: groupSize = 3;
int: days = 4;
int: groups = golfers/groupSize;
```

```
set of int: Golfer = 1..golfers;
set of int: Day = 1..days;
set of int: Group = 1..groups;
```

array[Golfer, Day] of var Group: assign; % Variables

Model with Integer Variables

```
int: golfers = 9;
int: groupSize = 3;
int: days = 4;
int: groups = golfers/groupSize;
set of int: Golfer = 1..golfers;
set of int: Day = 1..days;
set of int: Group = 1..groups;
array[Golfer, Day] of var Group: assign: % Variables
solve :: int_search([assign[i,j] | i in Golfer, j in Day ],
                   first fail, indomain min, complete) satisfy:
constraint
  % C1: Each group has exactly groupSize players
  forall (gr in Group, d in Day) ( % c1
  sum (g in Golfer) (bool2int(assign[g,d] = gr)) = groupSize
  ^{\prime}
  % C2: Each pair of players only meets at most once
  forall (g1, g2 in Golfer, d1, d2 in Day where g1 != g2 /\ d1 != d2) (
   (bool2int(assign[q1,d1] = assign[q2,d1]) + bool2int(assign[q1,d2] = assign[q2,d2])) <=1
```

Solution: Assign and Propagate

Groups

Concre					
	Group 1	Group 2	Group 3		
Day 0	012				
Day 1					
Day 2					
Day 3					

Golfers

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{2,3}	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Groups

	Group 1	Group 2	Group 3
Day 0	012	345	
Day 1			
Day 2			
Day 3			

Golfers

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	{3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	{3}	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	{3}	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Groups

	Group 1	Group 2	Group 3
Day 0	012	345	678
Day 1			
Day 2			
Day 3			

Golfers

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 1	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 3	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	3	{1,2,3}	{1,2,3}	{1,2,3}

Constraint Programming DM877 -

Solution: Assign and Propagate

Groups

Golfers

	Group 1	Group 2	Group 3
Day 0	012	345	678
Day 1	0		
Day 2			
Day 3			

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	1	{1,2,3}	{1,2,3}
Golfer 1	1	{2,3}	{1,2,3}	{1,2,3}
Golfer 2	1	{2,3}	{1,2,3}	{1,2,3}
Golfer 3	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	3	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Groups

Golfers

	Group 1	Group 2	Group 3
Day 0	012	345	678
Day 1	0	1	
Day 2			
Day 3			

	Day 0	Day 1	Day 2	Day 3
Golfer 0	1	1	{1,2,3}	{1,2,3}
Golfer 1	1	2	{1,2,3}	{1,2,3}
Golfer 2	1	{3}	{1,2,3}	{1,2,3}
Golfer 3	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 4	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 5	2	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 6	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 7	3	{1,2,3}	{1,2,3}	{1,2,3}
Golfer 8	3	{1,2,3}	{1,2,3}	{1,2,3}

Solution: Assign and Propagate

Groups

Golfers				Day 0	Day 1	Day 2	Day 3	
			Golfer 0	1	1			
	Group 1	Group 2	Group 3	Golfer 1	1	2		
Day 0	012	345	678	Golfer 2	1	{3}		
Day 1	036	147	258	Golfer 3	2			
Day 2	048	156	237	Golfer 4	2			
Day 3	057	138	246	Golfer 5	2			
				Golfer 6	3			
				Golfer 7	3			

Golfer

8

3

Effect of constraint propagation on the domains of variables during search in a placement problem.

Contents: Constraint Programming

- Modelling and Applications Integer variables, set variables, float variables, constraints
- Principles
 Consistency levels
- Filtering Algorithms Alldifferent, cardinality, regular expressions, etc.
- Search: Backtracking, Strategies
- Symmetry Breaking
- Restart Techniques
- CP Systems: Minizinc

Aims & Contents

- model problems with constraint programming
- implement the models in a CP system
- assess the programs
- describe with appropriate language

Assessment (5 ECTS)

Three obligatory assignments (last one project based):

- individual
- deliverables: program + short written report
- graded with internal censor

DM877 (5 ECTS – 1st quarter)

Constraint Programming

[Constraint Programmering]

Marco Chiarandini lektor, IMADA www.imada.sdu.dk/~marco