DM877

Constraint Programming

Constraint Propagation Algorithms

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Resume

» Definitions
(CSP, restrictions, projections, istantiation, local consistency)

» Tigthtenings

> Global consistent (any instantiation local consistent can be extended to a solution) needs
exponential time
~ local consistency defined by condition ® of the problem

» Tightenings by constraint propagation: reduction rules + rules iterations

» reduction rules < ® consistency
> rules iteration: reach fixed point, that is, closure of all tightenings that are ® consistent

Outline

1. Local Consistency

Node Consistency

We call a CSP node consistent if for every variable x every unary constraint on x coincides with the
domain of x.

Example

> C,x; >0,....,x,>0;x1 €N,...,x, €N)

and C does not contain other unary constraints
node consistent

> (C,x1>0,...,x,>0;x1 €N,... x, € Z)
and C does not contain other unary constraints
not node consistent

A CSP is node consistent iff it is closed under the applications of the Node Consistency rule
(propagator):
(C;x e D)
(C;xe CnD)

(the rule is parameterised by a variable x and a unary constraint C)

Arc Consistency
Arc consistency: every value in a domain is consistent with every binary constraint.

> C = c(x,y) with D = {D(x), D(y)} is arc consistent iff
> Va e D(x) there exists b € D(y) such that (a,b) € C
> Vb e D(y) there exists a € D(x) such that (a,b) € C

> P is arc consistent iff it is AC for all its binary constraints

In general arc consistency does not imply global consistency.
An arc consistent but inconsistent CSP:

x € {a, b} = y €{a, b}

A consistent but not arc consistent CSP:
O———0

x € {a, b} y € {a}

Arc Consistency

A CSP is arc consistent iff it is closed under the applications of the Arc Consistency rules
(propagators):

(C;x € D(x),y € D(y))
(C;x e D'(x),y € D(y))

where D'(x) :={a € D(x) | 3b € D(y),(a,b) € C}

(C;x € D(x),y € D(y))
(C;x € D(x),y € D'(y))

where D'(y) :={b € D(y) | 3a € D(x),(a,b) € C}

Exercise — Binary CSP

Theorem

An arbitrary (non-binary) CSP can be polynomially converted into an equivalent binary CSP.

Generalized Arc Consistency (GAC)

Given arbitrary (non-normalized, non-binary) P, C € C, x; € X(C)

(Value) v € D(x;) is consistent with C in D iff 3 a valid tuple 7 for C: v; = 7[x;]. 7 is called
support for (x;, v;)

(Variable) D is GAC on C for x; iff all values in D(x;) are consistent with C in D (i.e.,
D(xi) € 73 (CN7ix(c)y (D))

(Problem) P is GAC iff D is GAC for all x in X on all C € C

P is arc inconsistent iff the only domain tighter than D which is GAC for all
variables on all constraints is the empty set.

(aka, hyperarc consistency, domain consistency)

Example

(x=1,y€{0,1},z€{0,1};C={xAy =2z})
is hyperarc consistent

(xe€{0,1},y €{0,1},z=1,C={xAy =1z})
is not hyper-arc consistent

Example: arc consistency # 2-consistency, AC < 2C on non-normalized binary CSP, and
incomparable on arbitrary CSP (later)

Generalized Arc Consistency

A CSP is arc consistent iff it is closed under the applications of the Arc Consistency rules
(propagators):

(C;x1 € D(x),...,xk € D(x«))

(C;x1 € D(x1), ..., xi—1 € D(xi—1),x; € D'(x;), xi+1 € D(Xi31), - -, xk € D(xx))
where D'(x;) == {a € D(x;)|37 € C,a = 7[x]}

10

Outline

2. Arc Consistency Algorithms

12

Arc Consistency

Arc Consistency rule 1 (propagator):
(Cix € D(x),y € D(y))
(Cix € D'(x),y € D(y))
where D'(x) := {a € D(x)|3b € D(y),(a, b) € C}

This can also be written as (x represents the join):

D(x) <= D(x) N mi (1(C, D(y)))

Arc Consistency rule 2 (propagator):
(Cix € D(x),y € D(y))
(Cix e D(x),y € D'(y))
where D’(y) := {b € D(y)|3a € D(x),(a,b) € C}

This can also be written as:
D(y) « D(y) Ny ((C, D(x)))

13

Generalized Arc Consistency

(Generalized) Arc Consistency rule (propagator):

(C;x1 € D(x),...,xx € D(x«))

<C;X1 c D(Xl)7 S S D(X,'_l),X,' S D/(X/)7Xi+1 (S D(X,'.;.l)7 Lo, Xk € D(Xk)>
where D'(x;) == {a € D(x;)|37 € C,a = 7[x]}

This can also be written as:

D(xi) <= D(xi) N i3 (C N (o) (D))

14

AC1 — Reduction rule

Revision: making a constraint arc consistent by propagating the domain from a variable to anohter
Corresponds to:
D(x) = D(x) N (x(C, D(y)))
for a given variable x and constraint C
Assume normalized network:

REVISE((2;), ;)

input: a subnetwork defined by two variables X = {x;,z;}, a distinguished variable x;,
domains: D; and D;, and constraint R;;

output: D;, such that, z; arc-consistent relative to z;

1. for each a; € D;

2 if there is no a; € D; such that (a;,a;) € Ry

3. then delete a; from [);

4 endif

5. endfor

Complexity:O(d?) or O(rd")
d values, r arity
15

AC1 — Rules Iteration

Binary case

procedure AC-1
{ Q@ <- {c(Xi,Xj) in C};
repeat

Interaction
among constraints

CHANGE <- false;
for each c(Xi,Xj) in Q do
{ CHANGE <- REVISE(Xi,Xj) or CHANGE; }
until not (CHANGE) }

> Complexity (Mackworth and Freuder, 1986): O(end®)
e number of arcs, n variables
(ed? each loop, a single succesful removal causes all loop again ~ nd number of loops)

> best-case = O(ed)
> Arc-consistency is at least O(ed?) in the worst case (see later)

» -~ too many calls to Revise

16

AC3 (Macworth, 1977)

General case — Arc oriented (coarse-grained)

function Revise3(in z;: variable; ¢: constraint): Boolean ;
begin

1
2
3
4
5
6

fonction AC3 /GAC3(in X: set): Boolean ;

10
11
12

end

end

CHANGE « False;
foreach v; € D(z;) do
if At € eN@x(e)(D) with T[z;] = v; then
remove v; from D(x;);
CHANGE «— true;
return CHANGE ;

O(er®d 1) time
O(er) space

/¥ initalisation */;
Q@ {(z,0) | c € C,z € X(O)):
/* propagation */;
while () # @ do
select and remove (z;, ¢) from Q;
if Revise(z;,c) then
if D(z;} = 0 then return false ;

else @ — QU {(zj,c') | €EC AL #ehzyz; € X(C)Aj# ik

return troe ;

17

AC3

Example

P = <X = (X,y,Z), D= {D(X) = D(Y) - {1727374}7D(Z) = {3}}7
C={G=x<y,G=y+#z}})

Initialisation: Revise (X,c1). (Y.cl) (Y.c2), (Z.c2) Propagation: Revise (X.c1)

cl: c2: cl: c2:
X Xe=y Y y4z Z X Xey Y yiz 2

10+ 4 constraint 4+ 1 constraint 9 constraint
checks checks checks

AC4

Binary normalized problems — value oriented (fine grained)

function AC4(in X: set): Boolean ;

[

P |

10
11
12
13
14
15

begin
/* initialization */;
Q — B Sluj, 5] = 0,Vu; € D(z;), Vr; € X;
foreach z; € X,¢;; € C,v; € D(x;) do
initialize counter|ri, vi,z;] to [{v; € D(x;) | (vi,v;) € cij };
if counter(z;,vi,z;] = 0 then remove v; from D(x;) and add (x;, v;) to
Qs
add (i, v;i) to each Sz;,v;] s.it. (vi,v;) € cij;
if D(z;) = () then return false ;
/* propagation */;
while Q #) do
select and remove (z;,v;) from Q;
foreach (z;,v;) € S[z;,v;] do
if v; € D(x;) then
counter|[x;, vi, ¥;] = counter|z;,vi, ;] — 1;
if counter(z;,v;,z;] = 0 then
remove v; from D(x;); add (zq,vi) to @Q;

if D(z;) = (0 then return false ;

O(ed?) time (optimal)
O(ed?) space
O(erd") time for GAC

return true ;
end

19

AC4

Example

P=(X=

counter|z, 1,y =4
counter|z,2,y| = 3
counter|z, 3,y| = 2
counter|z, 4,y =1

Sz, 1] ={(y.,1), (y,2). (y.
Slz.2] ={(y.2),(y.3). (y.
S[z,3] ={(y.3), (v, 4)}
Sz, 4] ={(y.4)}

(x,y,2), DE = {D(x) =

counterfy,l,z] =1
counter(y,2,z] =2
counter(y,3,z] =3
countery,4,z] =4

D(Y) = {1’25374}5 D(Z) - {3}}v

C={G=x<y,G=y#z}})

counter(y,1,z] =1
counter(y,2,z] =1
counterly,3,z] =0
counter(y,4,z] =1
counter|z,3,y] = 3

3), (3 4)) STy, 1] = {(2,1),(=,3)}
1) S1y.2] = {(x,1). (2.2).(=.3)}
S1y.3] = {(2. 1), (,2), (2. 3)}

STy, 4] = {(,1). (z,2). (2.3), (x,4). (=.3)}
S(z.3] = {(y. 1). (4.2), (4, 9)}

20

AC6

Binary normalized problems
S[x;j, vj] list of values (x;, v;) currently having (x;, v;) as their first support
function AC6(in X: set): Boolean ;

begin
/¥ initialization */;

1 Q1 S[IJST"J] =0, V; ED(mJ)lV:DJ € X;
2 foreach z; € X,¢;; € C,v; € D(z;) do
3 v; + smallest value in D(z;) s.t. (vi,v;) € cij;
4 if v; exists then add (z,v:) to S[z;, v,];
5 else remove v; from D(z;) and add (@, v:) to @;
6 if D(x:) = () then return false ;
/* propagation */; o\ .
7 while Q # 0 do O(ed?) time
8 select and remove (z;,v;) from Q; O(ed) space
9 foreach (x:, vi) € S[z;,v;] do
10 if v; € D(z;) then
11 v} « smallest value in D(x;) greater than v; s.t. (vi,v;) € eij;
12 if v} exists then add (zi,v:) to S[z;,vj];
13 else
14 remove v; from D(z;); add (zi,vi) to @@
15 if D(x;) = () then return false ;
16 return true ;

end

AC6

Example

P=(X=

Sz, 1
Sz, 2
Slx,3
Slxz,4

(X7Y7Z)7 DE = {D(X) = D(Y) = {1’27374}7D(Z) - {3}}a
C={G=x<y, G=y#z}}

| =1{} ﬂJﬂz{wZH
| ={} Sy, 3] = {(2,3)}
I={ Sy, 4] = {(z,4)}

S[z,3] ={(y,1), (y,2), (y,4)}

22

Reverse2001

Binary case

function Revise2001(in x;: variable; ¢;;: constraint): Boolean :

function AC3/GAC3(in X: set): Boolean :

10
11
1z

begin
CHANGE « false;
foreach v; € D(x;) s.t. Last(zi,vi,z;) € D(z;) do
vj « smallest value in D(x;) greater than Last(z;, vi, z;) s.t.
(v0s13) € i
if v; exists then Last(xq, vi, ;) — vy}
else
remove v; from D(x;);
CHANGE « true;
return CHANGE ;

end

begin
/* initalisation */;
Q — {(zi,c) |ce Cox e X(e)h
/* propagation */;
while @ # () do
select and remove (4, ¢) from Q;
if Revise(x:,¢) then
if D(x;) =0 then return false ;
else Q@ — Q U{(z;,c) | deCAnd #Zermy o, e X()Nj#i)
return true ;
end

23

Reverse2001

Example

P =(X=(x,y,2), DE ={D(x) = D(y) = {1,2,3,4}, D(z) = {3}},

Last[z,1,y] =1
Last(z,2,y] =2
Last(z,3,y] =3
Last(z,4,y] =4

Last[y,1l,z] =1
Last[y,2,2] =1
Last(y,3,z] =1
Last[y,4,z] =1

C={G=x<y G=y#z}})

Last[y,1,z] =3
Last[y,2,z] =3
Last(y, 3, z] = nil
Last[y,4,z] =3
Last[z,3,y] =1

24

Limitation of Arc Consistency

Example

(x <y,y<z2z<xxy,z€{1.100000})
is inconsistent.
Proof: Apply revise to (x,x < y)

(x <y,y<z,z<x;xe€{1.99999},y,z € {1..100000}),

ecc. we end in a fail.

» Disadvantage: large number of steps.
Run time depends on the size of the domains!

> Note: we could prove fail by transitivity of <.
~ Path consitency involves two constraints together

25

	Local Consistency
	Arc Consistency Algorithms

