
DM877

Constraint Programming

Symmetry Breaking

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Resume and Outlook

I Modeling in CP
I Global constraints (declaration)
I Notions of local consistency
I Global constraints (operational: filtering algorithms)
I Search
I Set variables
I Symmetry breaking

2

Outline

1. Symmetries in CSPs

2. Group theory

3. Avoiding symmetries
...by Reformulation
...by static Symmetry Breaking
...during Search (SBDS)
...by Dominance Detection (SBDD)

3

Symmetries

Example

P = 〈xi ∈ {1 . . . 3},∀i = 1, . . . 3; C ≡ {x1 = x2 + x3}〉

Solutions: (2, 1, 1), (3, 1, 2), (3, 2, 1).

Because of the symmetric nature of the plus operator, swapping the values of x2 and x3 gives raise
to equivalent solutions.
I Many constraint satisfaction problem models have symmetries (some examples in a few slides)
I Breaking symmetry reduces search by avoiding to explore equivalent states (half of the search

tree in the previous case)
I Inducing a preference on a (possibly singleton) subset of each solution equivalence class

4

Symmetry Example: Social Golfer Problem

Problem statement
Given:

I g groups of
I s golf players,
I and w weeks.

All players play once a week and we do not want that two players play in the same group more than
once.

A possible model (different from the two previously seen) considers a three-dimensional matrix Xijk

i ∈ {1, . . . ,w}, j ∈ {1, . . . , g}, k ∈ {1, . . . s} of integer variables {1, . . . g × s} representing the
player playing as k-th player during week i in group j .

5

Symmetry Example: Social Golfer Problem

I g = 5
I s = 3
I players 0..14
I w = 7

group 1 group 2 group 3 group 4 group 5
week 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
week 2 0 3 6 1 4 9 2 7 12 5 10 13 8 11 14
week 3 0 4 13 1 3 11 2 6 10 5 8 12 7 9 14
week 4 0 5 14 1 10 12 2 3 8 4 7 11 6 9 13
week 5 0 7 10 1 8 13 2 4 14 3 9 12 5 6 11
week 6 0 8 9 1 5 7 2 11 13 3 10 14 4 6 12
week 7 0 11 12 1 6 14 2 5 9 3 7 13 4 8 10

6

Symmetry Example: Social Golfer Problem

Permuting position in group

group 1 group 2 group 3 group 4 group 5
week 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
week 2 0 3 6 1 4 9 2 7 12 5 10 13 8 11 14
week 3 0 4 13 1 3 11 2 6 10 5 8 12 7 9 14
week 4 0 5 14 1 10 12 2 3 8 4 7 11 6 9 13
week 5 0 7 10 1 8 13 2 4 14 3 9 12 5 6 11
week 6 0 8 9 1 5 7 2 11 13 3 10 14 4 6 12
week 7 0 11 12 1 6 14 2 5 9 3 7 13 4 8 10

7

Symmetry Example: Social Golfer Problem

Permuting position in group

group 1 group 2 group 3 group 4 group 5
week 1 2 1 0 3 4 5 6 7 8 9 10 11 12 13 14
week 2 6 3 0 1 4 9 2 7 12 5 10 13 8 11 14
week 3 13 4 0 1 3 11 2 6 10 5 8 12 7 9 14
week 4 14 5 0 1 10 12 2 3 8 4 7 11 6 9 13
week 5 10 7 0 1 8 13 2 4 14 3 9 12 5 6 11
week 6 9 8 0 1 5 7 2 11 13 3 10 14 4 6 12
week 7 12 11 0 1 6 14 2 5 9 3 7 13 4 8 10

8

Symmetry Example: Social Golfer Problem

Permuting groups

group 1 group 2 group 3 group 4 group 5
week 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
week 2 0 3 6 1 4 9 2 7 12 5 10 13 8 11 14
week 3 0 4 13 1 3 11 2 6 10 5 8 12 7 9 14
week 4 0 5 14 1 10 12 2 3 8 4 7 11 6 9 13
week 5 0 7 10 1 8 13 2 4 14 3 9 12 5 6 11
week 6 0 8 9 1 5 7 2 11 13 3 10 14 4 6 12
week 7 0 11 12 1 6 14 2 5 9 3 7 13 4 8 10

9

Symmetry Example: Social Golfer Problem

Permuting groups

group 1 group 2 group 3 group 4 group 5
week 1 0 1 2 9 10 11 6 7 8 3 4 5 12 13 14
week 2 0 3 6 5 10 13 2 7 12 1 4 9 8 11 14
week 3 0 4 13 5 8 12 2 6 10 1 3 11 7 9 14
week 4 0 5 14 4 7 11 2 3 8 1 10 12 6 9 13
week 5 0 7 10 3 9 12 2 4 14 1 8 13 5 6 11
week 6 0 8 9 3 10 14 2 11 13 1 5 7 4 6 12
week 7 0 11 12 3 7 13 2 5 9 1 6 14 4 8 10

10

Symmetry Example: Social Golfer Problem

Permuting weeks

group 1 group 2 group 3 group 4 group 5
week 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
week 2 0 3 6 1 4 9 2 7 12 5 10 13 8 11 14
week 3 0 4 13 1 3 11 2 6 10 5 8 12 7 9 14
week 4 0 5 14 1 10 12 2 3 8 4 7 11 6 9 13
week 5 0 7 10 1 8 13 2 4 14 3 9 12 5 6 11
week 6 0 8 9 1 5 7 2 11 13 3 10 14 4 6 12
week 7 0 11 12 1 6 14 2 5 9 3 7 13 4 8 10

11

Symmetry Example: Social Golfer Problem

Permuting weeks

group 1 group 2 group 3 group 4 group 5
week 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
week 2 0 7 10 1 8 13 2 4 14 3 9 12 5 6 11
week 3 0 4 13 1 3 11 2 6 10 5 8 12 7 9 14
week 4 0 5 14 1 10 12 2 3 8 4 7 11 6 9 13
week 5 0 3 6 1 4 9 2 7 12 5 10 13 8 11 14
week 6 0 8 9 1 5 7 2 11 13 3 10 14 4 6 12
week 7 0 11 12 1 6 14 2 5 9 3 7 13 4 8 10

12

Symmetry Example: Social Golfer Problem

Permuting players

group 1 group 2 group 3 group 4 group 5
week 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
week 2 0 3 6 1 4 9 2 7 12 5 10 13 8 11 14
week 3 0 4 13 1 3 11 2 6 10 5 8 12 7 9 14
week 4 0 5 14 1 10 12 2 3 8 4 7 11 6 9 13
week 5 0 7 10 1 8 13 2 4 14 3 9 12 5 6 11
week 6 0 8 9 1 5 7 2 11 13 3 10 14 4 6 12
week 7 0 11 12 1 6 14 2 5 9 3 7 13 4 8 10

13

Symmetry Example: Social Golfer Problem

Permuting players

group 1 group 2 group 3 group 4 group 5
week 1 0 1 2 3 4 5 6 9 8 7 10 11 12 13 14
week 2 0 3 6 1 4 7 2 9 12 5 10 13 8 11 14
week 3 0 4 13 1 3 11 2 6 10 5 8 12 9 7 14
week 4 0 5 14 1 10 12 2 3 8 4 9 11 6 7 13
week 5 0 9 10 1 8 13 2 4 14 3 7 12 5 6 11
week 6 0 8 7 1 5 9 2 11 13 3 10 14 4 6 12
week 7 0 11 12 1 6 14 2 5 7 3 9 13 4 8 10

14

Symmetry Example: Social Golfer Problem

Number of (equivalent) solutions:

I Permuting positions: 3! · 5 = 30
I Permuting groups: 5! = 120
I Permuting weeks: 7! = 5040
I Permuting players: 15! = 1, 307, 674, 368, 000

15

Symmetry Example: n-Queens

id r90 r180 r270

y x d1 d2

16

Symmetry Example: n-Queens
Symmetric failure

id r90 r180 r270

y x d1 d2

17

Symmetries: general considerations

I Widespread
I Inherent in the problem (n-Queens, chessboard)
I Artifact of the model (Social Golfer: order of players in groups)

I Different types:
I variable symmetry (swapping variables)
I value symmetry (permuting values)

18

Types of symmetries

I Variable symmetry: permuting variables is solution invariant

{xi = vi} ∈ sol(P) ⇐⇒ {xσ(i) = vi} ∈ sol(P)

eg: first three symmetries in golfers
I Value symmetry: permuting values is solution invariant

{xi = vi} ∈ sol(P) ⇐⇒ {xi = σ(vi)} ∈ sol(P)

eg: graph coloring, player symmetry in golfers
I Variable/value symmetry: both variables and values permutation is solution invariant

{xi = vi} ∈ sol(P) ⇐⇒ {xσ1(i) = σ2(vi)} ∈ sol(P)

eg: n-queens

19

Outline

1. Symmetries in CSPs

2. Group theory

3. Avoiding symmetries
...by Reformulation
...by static Symmetry Breaking
...during Search (SBDS)
...by Dominance Detection (SBDD)

20

Group basics

Group

A set G and an associated operation ⊗ form a group if
I G is closed under ⊗, i.e., a, b ∈ G ⇒ a⊗ b ∈ G

I ⊗ is associative, i.e., a, b, c ∈ G ⇒ (a⊗ b)⊗ c = a⊗ (b ⊗ c)

I G has an identity ιG , such that a ∈ G ⇒ a⊗ ιG = ιG ⊗ a = a

I every element has an inverse, i.e., a ∈ G ⇒ ∃a−1 : a⊗ a−1 = a−1 ⊗ a = ιG

21

Permutations

Permutation representations:
Cauchy’s two-line notation:(

1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

)
element 1 maps to 7, 7 to 9, 9 to 3, 3 to 1.

Cycle notation:

(2, 4, 8, 6)(1, 7, 9, 3)(5)

set of cycles derived from the two-line notation
indicating the mapping, ie, 2 becomes 4, 4
becomes 8, etc.

22

The set of all permutations of a finite set S of objects together with composition form a group.

Group properties for permutations with composition ◦ as operation. Let f and g be two
permutations, p a point:
I f ◦ g composition
I pf ◦g = (pf)g

I id = ι

I f ◦ f −1 = id inverse (in Cauchy form, swap the two rows and reorder the first; in cycle
notation, reverse the order of each cycle.)

I associativity: f ◦ (g ◦ h) = (f ◦ g) ◦ h

23

I |G | is the order of a group, ie, number of elements in the set G
I Set Sn of all permutations of n objects is called a symmetry group over n elements. |Sn| = n!

I Any subgroup of a permutation group defines a permutation group
I The set of symmetries in n-queens defines a permutation group:
{id , r90, r180, r270, x , y , d1, d2}

I symmetries define a permutation of a set of points.
I p a point in the solution space, g ∈ G a permutation, pg the point to which p is moved under

g . Eg: {1, 3, 8}r90 = {1r90, 3r90, 8r90} = {7, 1, 6}

24

Generators

Generators
A set S ⊆ G is called a generator of group G iff

∀g ∈ G ∃S ′ ⊆ S : g =
⊗
s∈S′

s

Generators describe groups in a compact form.
For example:

I Generator of chessboard symmetries: {r90, d1}
I G =< s >

I There is always a generator of log2(|G |) size or smaller.

25

Orbits

Orbits
The orbit of an element with respect to a permutation group G is

OG = {pg | g ∈ G}

The orbit of a set of elements (called also points) is defined accordingly.

Orbits are the set of elements encountered by starting from one element and moving through
different permutations.

26

Outline

1. Symmetries in CSPs

2. Group theory

3. Avoiding symmetries
...by Reformulation
...by static Symmetry Breaking
...during Search (SBDS)
...by Dominance Detection (SBDD)

27

How to avoid symmetry

Never explore a state that is the symmetric of one already explored

I Model reformulation
I Addition of constraints (static symmetry breaking)
I During search (dynamic symmetry breaking)
I By dominance detection (dynamic symmetry breaking)

28

Outline

1. Symmetries in CSPs

2. Group theory

3. Avoiding symmetries
...by Reformulation
...by static Symmetry Breaking
...during Search (SBDS)
...by Dominance Detection (SBDD)

29

Model reformulation

I Use set variables (inherently unordered)
I In the Social Golfers example: groups can be represented as sets
I Only within group symmetry has been removed, but not the groups/weeks/player ones

I Solve a different problem (try to redefine the problem avoiding symmetries)
I Solve the dual problem

30

Solve a different problem: example

A series is a sequence of twelve tone names (pitch classes) of the chromatic scale, in which each
pitch class occurs exactly once. In an all-interval series, also all eleven intervals between the twelve
pitches are pairwise distinct.

All-different series

In general words, we are asked to find a permutation of the integers {0, . . . , n}, such that the
differences between adjacent numbers are a permutation of {1, . . . , n}.

0 10 1 9 2 8 3 7 4 6 5
10 9 8 7 6 5 4 3 2 1

The problem has many symmetric solutions, e.g. reverse values, “invert” from 10, shifting
(according to a pivot), . . .

0 10 1 9 2 8 3 7 4 6 5
10 9 8 7 6 5 4 3 2 1

3 7 4 6 5 0 10 1 9 2 8
4 3 2 1 5 10 9 8 7 6

31

Solve a different problem: example

All-different series: new formulation

Find a permutation of the integers {0, . . . , n} such that:
I the permutation starts with 0, n, 1
I the differences |xi+1 − xi | and |xn − x0| are in {1, . . . , n}
I exactly one difference occurs twice

This extracts solutions from the original problem with a specific structure

32

Solve dual problem

I Mainly for value symmetries
I Example: players in golfers
I Consider the dual problem w.r.t. each value v

I Introduce a set Xv such that
i ∈ Xv ⇐⇒ yi = v

(yi are the original variables)
I Applicable when constraints can be stated easily on the dual problem

33

Outline

1. Symmetries in CSPs

2. Group theory

3. Avoiding symmetries
...by Reformulation
...by static Symmetry Breaking
...during Search (SBDS)
...by Dominance Detection (SBDD)

34

Symmetry breaking constraints

I Rule out symmetric solutions by adding further constraints to the original model.
I Assumption: domains are ordered

Lex-leader constraints
Let Σ be the set of all variable symmetry permutations
These symmetries are broken by imposing:

[x1, . . . , xn] �lex [xσ(1), . . . xσ(n)], ∀σ ∈ Σ

Only the lexicographically smallest solution, called lex-leader is preserved

I Distinct integers, σ(1) 6= 1: [x1, . . . , xn] �lex [xσ(1), . . . xσ(n)] ⇐⇒ x1 < xσ(1)
I Disjoint integer sets, σ(1) 6= 1: [x1, . . . , xn] �lex [xσ(1), . . . xσ(n)] ⇐⇒ min(x1) < min(xσ(1))

I Arbitrary integers or sets: special propagators

35

Lex-leader constraints: examples

I n-Queens: σ(i) = n − i + 1 (eliminate symmetry rotation on y)

[q1, . . . qn] �lex [qσ(1), . . . qσ(n)] = [qn, . . . , q1]

=⇒ q1 < qn

I All-Intervals:
|x2 − x1| > |xn − xn−1|

36

In Gecode

I Lexicographic constraints between variable arrays. (where the sizes of x and y can be
different), If x and y are integer variable arrays� �
rel(home, x, IRT_LE, y);� �

I x is an array of set variables and c is an array of integers� �
precede(home, x, c);� �
it is enforced that ck precedes ck+1 in x for 0 ≤ k < |c | − 1

37

Social Golfers
In Gecode

I Using set variables to model the groups avoids introducing symmetry among the players in a
group.� �
SetVarArray groups(home,g*w,IntSet::empty,0,g*s-1,s,s);
Matrix<SetVarArray> schedule(groups,g,w);� �

I Within a week, the order of the groups is irrelevant. Static order requiring that all minimal
elements of each group are ordered increasingly
min(schedule(g ,w)) < min(schedule(g + 1,w))� �
for (int j=0; j<w; j++) {
IntVarArgs m(g);
for (int i=0; i<g; i++)
m[i] = expr(home, min(schedule(i,j)));

rel(home, m, IRT_LE);
}� �

I similarly, the order of the weeks is irrelevant, hence order on group elements (remove {0} as
from above it will be always in schedule(0, j)� �
IntVarArgs m(w);
for (int j=0; j<w; j++)
m[j] = expr(home, min(schedule(0,j)-IntSet(0,0)));

rel(home, m, IRT_LE);� �38

Social Golfers
In Gecode

I the players can be permuted arbitrarily.� �
precede(home, groups, IntArgs::create(g*s, 0));� �
c = (0, . . . , 14): It enforces that for any pair of players ck and ck+1, 0 ≤ k ≤ 14, ck+1 can
appear in a group without ck only if there is an earlier group where ck appears without ck+1.
Eg, 9 appears in a group without 7 but 7 should appear earlier, hence the constraint is not
satisfied.

group 1 group 2 group 3 group 4 group 5
week 1 0 1 2 3 4 5 6 9 8 7 10 11 12 13 14
week 2 0 3 6 1 4 7 2 9 12 5 10 13 8 11 14
week 3 0 4 13 1 3 11 2 6 10 5 8 12 9 7 14
week 4 0 5 14 1 10 12 2 3 8 4 9 11 6 7 13
week 5 0 9 10 1 8 13 2 4 14 3 7 12 5 6 11
week 6 0 8 7 1 5 9 2 11 13 3 10 14 4 6 12
week 7 0 11 12 1 6 14 2 5 7 3 9 13 4 8 10

39

Value symmetries

I Same idea:

[x1, . . . , xn] �lex [σ(x1), . . . σ(xn)], ∀σ ∈ Σ

I how to implement σ(xi)?
I element constraint to implement σ(xi)

Example

σ(v) = n − v
3 7 4 6 5 0 10 1 9 2 8
4 3 2 1 5 10 9 8 7 6

7 3 6 4 5 10 0 9 1 8 2
4 3 2 1 5 10 9 8 7 6

σ = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
[x0, . . . , xn−1] �lex [σ(x0), . . . σ(xn−1)] ⇐⇒ x0 < σ(x0) ⇐⇒ x0 < x1

40

Pros and Cons

I Good: for each symmetry, only one solution remains

I Bad:
may have to add many constraints
remaining solution may not be the first one according to branching heuristic!

I Especially bad with dynamic variable selection (like first-fail heuristics)

41

Outline

1. Symmetries in CSPs

2. Group theory

3. Avoiding symmetries
...by Reformulation
...by static Symmetry Breaking
...during Search (SBDS)
...by Dominance Detection (SBDD)

42

Symmetry Breaking During Search (SBDS)

I Add constraints during backtracking to prevent the visit of symmetric search states
I Similar idea to branch-and-bound
I Pros: Works with every type of symmetry
I Cons: Can result in a huge number of constraints to be added, and all symmetries have to be

specified explicitly

43

SBDS Example: n-Queens

Goal: Eliminate r90: {qi = j} ∈ sol(n-Queens) ⇐⇒ {qj = n − i} ∈ sol(n-Queens)

q0 = 2 q0 6= 2

Too strict: we need to post the whole path:
¬(q0 = 2 ∧ q1 = 4) (q0 = 2 =⇒ q1 6= 4)r90

44

SBDS Example: n-Queens

Goal: Eliminate r90: {qi = j} ∈ sol(n-Queens) ⇐⇒ {qj = n − i} ∈ sol(n-Queens)

q0 = 2 q0 6= 2, q2 6= 8− 0

Too strict: we need to post the whole path:
¬(q0 = 2 ∧ q1 = 4) (q0 = 2 =⇒ q1 6= 4)r90

44

SBDS Example: n-Queens

Goal: Eliminate r90: {qi = j} ∈ sol(n-Queens) ⇐⇒ {qj = n − i} ∈ sol(n-Queens)

q0 = 2 q0 6= 2, q2 6= 8− 0

q1 = 4 q1 6= 4

Too strict: we need to post the whole path:
¬(q0 = 2 ∧ q1 = 4) (q0 = 2 =⇒ q1 6= 4)r90

44

SBDS Example: n-Queens

Goal: Eliminate r90: {qi = j} ∈ sol(n-Queens) ⇐⇒ {qj = n − i} ∈ sol(n-Queens)

q4 6= 8− 1

q0 = 2 q0 6= 2, q2 6= 8− 0

q1 = 4 q1 6= 4

Too strict: we need to post the whole path:
¬(q0 = 2 ∧ q1 = 4) (q0 = 2 =⇒ q1 6= 4)r90

44

SBDS Example: n-Queens

Goal: Eliminate r90: {qi = j} ∈ sol(n-Queens) ⇐⇒ {qj = n − i} ∈ sol(n-Queens)

q2 = 8− 0 =⇒ q4 6= 8− 1

q0 = 2 q0 6= 2, q2 6= 8− 0

q1 = 4 q1 6= 4

Too strict: we need to post the whole path:
¬(q0 = 2 ∧ q1 = 4) (q0 = 2 =⇒ q1 6= 4)r90

44

SBDS in group theory perspective

(A =⇒ var 6= val) =⇒ (A =⇒ var 6= val)g

We do not need to add the full form. We operate dynamically:
At the choice point c backtracking from var = val we know that A is true and var 6= val is also
true, hence we add:

Ag =⇒ (var 6= val)g

SBDS
For each symmetry g , and a current partial assignment A and choice c , post the constraint:

g(A) =⇒ ¬g(c)

Only interested in different g(A) and g(c)

I compute the orbit of the current partial assignment A

45

Lightweight Dynamic Symmetry Breaking
In Gecode

Dynamic symmetry breaking: given a specification of the symmetries, avoid visiting symmetric
states during the search

I break value symmetry (that is, values that are interchangeable)� �
Symmetries syms;
syms << ValueSymmetry(IntArgs::create(n,0));
branch(* this, x, INT_VAR_NONE(), INT_VAL_MIN(), syms);� �

I break variable symmetry (that is, certain sequences of variables are interchangeable):� �
IntVarArgs rows;
for (int r = 0; r < m.height(); r++)
rows << m.row(r);

syms << VariableSequenceSymmetry(rows, m.width());
IntVarArgs cols;
for (int c = 0; c < m.width(); c++)
cols << m.col(c);

syms << VariableSequenceSymmetry(cols, m.height());� �
I See sec. 8.10.1 for other possibilities
I Combining LDSB with other forms of symmetry breaking — such as static ordering constraints

— can cause the search to miss some sol.
46

Outline

1. Symmetries in CSPs

2. Group theory

3. Avoiding symmetries
...by Reformulation
...by static Symmetry Breaking
...during Search (SBDS)
...by Dominance Detection (SBDD)

47

Symmetry Breaking by Dominance Detection (SBDD)

I Do not explore subtrees dominated by a previously visited node
I Multiple definitions of dominance are possible
I Pros: No constraints added, very configurable
I Cons: Storage of previous states, checking dominance can be expensive

The idea is similar to no goods.
It can be used for propagation.

48

Ingredients

Idea: Perform a check at every node in the search tree to see if the node about to be explored is
symmetrically equivalent to one already explored. If so prune this branch. Need only to store nodes
at the root of fully explored subtrees.

I No-good: A node v is a no-good w.r.t. a node n if there exists an ancestor na of n s.t. v is
the left hand child of na and v is not an ancestor of n.

I δ(v) set of decisions labelling the path from the root of the tree to the node v

I ∆(v) set of variables whose domain is reduced to a singleton at node v .

I Dominance:
a node n is dominated if there exists a no-good v w.r.t. n and a symmetry g s.t.
(δ(v))g ⊆ ∆(n)

I Database T of already seen domains

49

SBDD Example: n-Queens

q0 = 2 q0 6= 2

Dominated

50

SBDD Example: n-Queens

q0 = 2 q0 6= 2

T = {{q0 = 2}}

Dominated

50

SBDD Example: n-Queens

q0 = 2 q0 6= 2

q2 = 8 q2 6= 8 T = {{q0 = 2}}

Dominated

50

SBDD Example: n-Queens

q0 = 2 q0 6= 2

q2 = 8 q2 6= 8 T = {{q0 = 2}}
Dominated

50

SBDD Example: n-Queens

q0 = 2 q0 6= 2

q1 = 4 q1 6= 4

q2 = 8 q2 6= 8 T = {{q0 = 2, q1 = 4}}

Dominated

50

SBDD Example: n-Queens

q0 = 2 q0 6= 2

q1 = 4 q1 6= 4

q2 = 8 q2 6= 8 T = {{q0 = 2, q1 = 4}}

Dominated

50

SBDD Example: n-Queens

q0 = 2 q0 6= 2

q1 = 4 q1 6= 4

q2 = 8

q4 = 7

q2 = 8 q2 6= 8 T = {{q0 = 2, q1 = 4}}

Dominated

50

SBDD Example: n-Queens

q0 = 2 q0 6= 2

q1 = 4 q1 6= 4

q2 = 8

q4 = 7

q2 = 8 q2 6= 8 T = {{q0 = 2, q1 = 4}}
Dominated

50

SBDD in the group theory perspective

SBDD
A domain d dominates the current node c if c is in the orbit of d

Detection:
function Φ : Dom×Dom 7→ B
such that Φ(δ(v),∆(n)) = true iff δ(v) dominates ∆(n) under some symmetry σ.

Optimization: only keep domains left-adjacent to the path from the root to the current node

51

Pros and Cons

I Good: No constraints added

I Good: Handles all kinds of symmetry

I Good: Very configurable (by implementing)

I Bad: Still all symmetries must be encoded

I Bad: Checking dominance at each node may be expensive

52

References

Backofen W. (2002). Excluding symmetries in constraint-based search. Constraints, (3).

Barnier N. and Brisset P. (2005). Solving kirkman’s schoolgirl problem in a few seconds. Constraints,
(10), pp. 7–21.

Gent I.P., Petrie K.E., and Puget J.F. (2006). Symmetry in constraint programming. In Handbook of
Constraint Programming, edited by F. Rossi, P. van Beek, and T. Walsh, chap. 10, pp. 329–376. Elsevier.

53

	Symmetries in CSPs
	Group theory
	Avoiding symmetries
	...by Reformulation
	...by static Symmetry Breaking
	...during Search (SBDS)
	...by Dominance Detection (SBDD)

